CUE: A unified spiking neuron model of short-term and long-term memory

Psychological Review, 2021

Jan Gosmann, Chris Eliasmith

Abstract

We present the context-unified encoding (CUE) model, a large-scale spiking neural network model of human memory. It combines and integrates activity-based short-term memory with weight-based long-term memory. The implementation with spiking neurons ensures biological plausibility and allows for predictions on the neural level. At the same time, the model produces behavioral outputs that have been matched to human data from serial and free recall experiments. In particular, well-known results such as primacy, recency, transposition error gradients, and forward recall bias have been reproduced with good quantitative matches. Additionally, the model accounts for the Hebb repetition effect. The CUE model combines and extends the ordinal serial encoding (OSE) model, a spiking neuron model of short-term memory, and the temporal context model (TCM), a mathematical memory model matching free recall data. To implement the modification of the required association matrices, a novel learning rule, the association matrix learning rule (AML), is derived that allows for one-shot learning without catastrophic forgetting. Its biological plausibility is discussed and it is shown that it accounts for changes in neural firing observed in human recordings from an association learning experiment.

Full text links

 PDF

 External link

 DOI

Journal Article

Doi
10.1037/rev0000250
Journal
Psychological Review
Month
01
Volume
128
Number
1
Pages
104-124

Cite

Plain text

BibTeX