Biologically Plausible Cortical Hierarchical-Classifier Circuit Extensions in Spiking Neurons

Master's Thesis, 2018

Peter Suma

Abstract

Hierarchical categorization inter-leaved with sequence recognition of incoming stimuli in the mammalian brain is theorized to be performed by circuits composed of the thalamus and the six-layer cortex. Using these circuits, the cortex is thought to learn a ‘brain grammar’ composed of recursive sequences of categories. A thalamo-cortical, hierarchical classification and sequence learning “Core” circuit implemented as a linear matrix simulation and was published by Rodriguez, Whitson & Granger in 2004. In the brain, these functions are implemented by cortical and thalamic circuits composed of recurrently-connected, spiking neurons. The Neural Engineering Framework (NEF) (Eliasmith & Anderson, 2003) allows for the construction of large-scale biologically plausible neural networks. Existing NEF models of the basal-ganglia and the thalamus exist but to the best of our knowledge there does not exist an integrated, spiking-neuron, cortical-thalamic-Core network model. We construct a more biologically-plausible version of the hierarchical-classification function of the Core circuit using leaky-integrate-and-fire neurons which performs progressive visual classification of static image sequences relying on the neural activity levels to trigger the progressive classification of the stimulus. We proceed by implementing a recurrent NEF model of the cortical-thalamic Core circuit and then test the resulting model on the hierarchical categorization of images.

Full text links

 External link

Thesis

School
University of Waterloo
Type
Masters thesis

Cite

Plain text

BibTeX