Sugandha Sharma, Brent J. Komer, Terrence C. Stewart, Chris Eliasmith
In this paper, we present a spiking neural model of context dependent decision making. Prefrontal cortex (PFC) plays a fundamental role in context dependent behaviour. We model the PFC at the level of single spiking neurons, to explore the underlying computations which determine its contextual responses. The model is built using the Neural Engineering Framework and performs input selection and integration as a nonlinear recurrent dynamical process. The results obtained from the model closely match behavioural and neural experimental data obtained from macaque monkeys that are trained to perform a context sensitive perceptual decision task. The close match suggests that the low-dimensional, nonlinear dynamical model we suggest captures central aspects of context dependent decision making in primates.