This page describes the time dependency of postsynaptic currents (PSCs), focusing on rise times and time constants of decay.

Summary

Your browser does not support SVG Your browser does not support SVG Biexponential values ($\tau_\text{fast}$ and $\tau_\text{slow}$) are plotted as a weighted geometric mean.

Data

20-80% $t_\text{rise}$ (ms)Decay, $\tau$ (ms)Neuron detailsSource
GluR (unspecified type)
6.63 $\pm$ 2.13 Presynapse: interneuron; postsynapse: Mauthner cell; Carassius auratus. (also: glycine and glutamate) Faber et al., 1980
Nicotinic ACh receptor
(0.8) 5.1 $\pm$ 0.3
(0.2) 33 $\pm$ 1
$\alpha$2$\beta$2, ganglionic EPSC, Xenopus laevis, -150 mV Figl et al., 2000
(0.8) 4.4 $\pm$ 0.5
(0.2) 43 $\pm$ 2
$\alpha$2$\beta$2, ganglionic EPSC, Xenopus laevis, -80 mV Figl et al., 2000
(0.7) 5 $\pm$ 0.5
(0.3) 50 $\pm$ 2
$\alpha$3$\beta$2, ganglionic EPSC, Xenopus laevis, -150 mV Figl et al., 2000
(0.7) 4.5 $\pm$ 0.2
(0.3) 35 $\pm$ 3
$\alpha$3$\beta$2, ganglionic EPSC, Xenopus laevis, -80 mV Figl et al., 2000
(0.65) 7 $\pm$ 1
(0.35) 73 $\pm$ 6
$\alpha$4$\beta$2, ganglionic EPSC, Xenopus laevis, -150 mV Figl et al., 2000
(0.65) 5.5 $\pm$ 0.4
(0.35) 57 $\pm$ 3
$\alpha$4$\beta$2, ganglionic EPSC, Xenopus laevis, -80 mV Figl et al., 2000
(0.55) 97 $\pm$ 20
(0.45) 620 $\pm$ 50
$\alpha$2$\beta$4, ganglionic EPSC, Xenopus laevis, -150 mV Figl et al., 2000
(0.65) 32 $\pm$ 7
(0.35) 220 $\pm$ 20
$\alpha$2$\beta$4, ganglionic EPSC, Xenopus laevis, -80 mV Figl et al., 2000
(0.5) 116 $\pm$ 8
(0.5) 600 $\pm$ 40
$\alpha$3$\beta$4, ganglionic EPSC, Xenopus laevis, -150 mV Figl et al., 2000
(0.7) 85 $\pm$ 6
(0.3) 430 $\pm$ 70
$\alpha$3$\beta$4, ganglionic EPSC, Xenopus laevis, -80 mV Figl et al., 2000
(0.65) 39 $\pm$ 5
(0.35) 1000 $\pm$ 200
$\alpha$4$\beta$4, ganglionic EPSC, Xenopus laevis, -150 mV Figl et al., 2000
(0.7) 37 $\pm$ 2
(0.3) 480 $\pm$ 50
$\alpha$4$\beta$4, ganglionic EPSC, Xenopus laevis, -80 mV Figl et al., 2000
4.6 $\pm$ 0.4 Superior cervical ganglion neurons, rabbit Derkach et al., 1983
Glycine
0.7 $\pm$ 0.1 * (0.922) 7.8 $\pm$ 0.3
(0.078) 38.3 $\pm$ 1.7
eIPSC, MSO, 3-11 day old rat (6-11 day for trise) Smith et al., 2000
3.9 $\pm$ 0.3 eIPSC, MSO, 11 day old rat. Slow component contributes less than 1%. Smith et al., 2000
0.62 $\pm$ 0.11 * (0.74) 5.3 $\pm$ 0.4
(0.26) 16.5 $\pm$ 0.3
Spontaneous miniature IPSC, MSO, rat Smith et al., 2000
6.63 $\pm$ 2.13 Presynapse: interneuron; postsynapse: Mauthner cell; Carassius auratus (also: GABA and glutamate) Faber et al., 1980
GABA-A-R
10.41 $\pm$ 6.16 IN, neocortex, somatosensory cortex, rat Gupta et al., 2000
8.3 $\pm$ 2.2 IN, neocortex, somatosensory cortex, rat Gupta et al., 2000
6.44 $\pm$ 1.7 IN, neocortex, somatosensory cortex, rat Gupta et al., 2000
0.58 $\pm$ 0.02 (0.333) 6.4 $\pm$ 0.4
(0.667) 22 $\pm$ 3
sIPSC of pyramid neurons, visual cortex, rat Xiang et al., 1998
1.8 $\pm$ 0.1 (0.5) 12 $\pm$ 1
(0.5) 47 $\pm$ 3
eIPSC of pyramid neurons, visual cortex, rat Xiang et al., 1998
0.61 $\pm$ 0.02 (0.28) 6.5 $\pm$ 0.6
(0.72) 49 $\pm$ 4
IN sIPSC, visual cortex, rat Xiang et al., 1998
1.8 $\pm$ 0.2 (0.5) 13 $\pm$ 2
(0.5) 64 $\pm$ 4
IN eIPSC, visual cortex, rat Xiang et al., 1998
(0.768) 1.6 $\pm$ 0.1
(0.232) 11 $\pm$ 2.3
BC-BC, dentate gyrus, hippocampus, rat Bartos et al., 2001
0.27 $\pm$ 0.02 (0.9) 1.2 $\pm$ 0.1
(0.1) 8 $\pm$ 1.2
BC-BC, CA1, parvalbumin-EGFP mice Bartos et al., 2002
0.25 $\pm$ 0.02 (0.84) 0.8 $\pm$ 0.2
(0.16) 3.8 $\pm$ 1
BC-BC, CA3, parvalbumin-EGFP mice Bartos et al., 2002
0.3 $\pm$ 0.03 (0.74) 1 $\pm$ 0.2
(0.26) 10 $\pm$ 2.8
BC-BC, DG, parvalbumin-EGFP mice Bartos et al., 2002
0.2 $\pm$ 0.01 (0.81) 1.4 $\pm$ 0.2
(0.19) 9.3 $\pm$ 1.7
BC-BC, DG, WT mice Bartos et al., 2002
0.3 $\pm$ 0.02 (0.6) 1.2 $\pm$ 0.4
(0.6) 7.3 $\pm$ 1.9
BC-PN, CA1, parvalbumin-EGFP mice Bartos et al., 2002
0.3 $\pm$ 0.02 (0.6) 1.2 $\pm$ 0.4
(0.4) 7.9 $\pm$ 0.2
BC-PN, CA3, parvalbumin-EGFP mice Bartos et al., 2002
0.2 $\pm$ 0.03 (0.6) 1.8 $\pm$ 0.7
(0.4) 8.5 $\pm$ 3.7
BC-PN, DG, parvalbumin-EGFP mice Bartos et al., 2002
0.2 $\pm$ 0.02 (0.5) 1.3 $\pm$ 0.2
(0.5) 5.6 $\pm$ 0.4
BC-PN, DG, WT mice Bartos et al., 2002
(0.562) 37.5 $\pm$ 3.8
(0.438) 186.1 $\pm$ 18.3
Thalamus, nRt, sIPSC Zhang et al., 1997
(0.426) 42.5 $\pm$ 6.1
(0.574) 177.6 $\pm$ 16.4
Thalamus, nRt, electrically-evoked IPSC Zhang et al., 1997
224.8 $\pm$ 22.2 Thalamus, nRt, GABA-evoked IPSC Zhang et al., 1997
(0.578) 16.7 $\pm$ 1.8
(0.422) 39 $\pm$ 2.9
Thalamus, VB, sIPSC Zhang et al., 1997
(0.716) 23 $\pm$ 3.4
(0.284) 68.3 $\pm$ 6.7
Thalamus, VB, electrically-evoked IPSC Zhang et al., 1997
115 $\pm$ 15.4 Thalamus, VB, GABA-evoked IPSC Zhang et al., 1997
5 to 10 sIPSC; SG (layers 2-3), layer IV, IG neurons Salin et al., 1996
0.9 $\pm$ 0.04 8.3 $\pm$ 1.3 mIPSC; SG (layers 2-3), layer IV, IG neurons Salin et al., 1996
7.9 $\pm$ 1.9 Purkinje neurons Puia et al., 1994
0.6 $\pm$ 0.3 (0.4) 7 $\pm$ 1.6
(0.6) 59 $\pm$ 16
Granule neurons Puia et al., 1994
(0.4) 6.4 $\pm$ 0.9
(0.6) 65 $\pm$ 19
Granule neurons, with tetrodotoxin Puia et al., 1994
0.34 $\pm$ 0.12 (0.4) 2.7 $\pm$ 0
(0.6) 53.6 $\pm$ 0
mIPSC, GABAA, granule cells, dentate gyrus, hippocampus, rat Edwards et al., 1990
(0.18) 2.3 $\pm$ 0
(0.82) 57.5 $\pm$ 0
eIPSC, GABAA, granule cells, dentate gyrus, hippocampus, rat Edwards et al., 1990
6.63 $\pm$ 2.13 Presynapse: interneuron; postsynapse: Mauthner cell; Carassius auratus. (also: glycine and glutamate) Faber et al., 1980
non-NMDA-type GluR
7.2 $\pm$ 0 Pyramid neurons, hippocampus, rat Hestrin et al., 1990
2 $\pm$ 1 3 to 15 IN, hippocampus, rat Sah et al., 1990
(0.78) 288 $\pm$ 23
(0.22) 2824 $\pm$ 253
Dendrite of pyramid neuron, hippocampus CA1, rat Spruston et al., 1995
(0.85) 230 $\pm$ 36
(0.15) 2918 $\pm$ 491
Soma of pyramid neuron, hippocampus CA1, rat Spruston et al., 1995
(0.72) 175 $\pm$ 20
(0.28) 1188 $\pm$ 181
Dendrite of pyramid neuron, hippocampus CA3, rat Spruston et al., 1995
(0.82) 197 $\pm$ 24
(0.18) 1287 $\pm$ 129
Soma of pyramid neuron, hippocampus CA3, rat Spruston et al., 1995
7 $\pm$ 0.5 52 $\pm$ 9 Presynapse: pyramid neuron; Postsynapse: IN Angulo et al., 1999
AMPA-type GluR
(0.83) 2.2 $\pm$ 0.2
(0.17) 9 $\pm$ 1.1
Dendrite of pyramid neuron, hippocampus CA1, rat Spruston et al., 1995
(0.78) 2.2 $\pm$ 0.2
(0.22) 6.8 $\pm$ 0.6
Soma of pyramid neuron, hippocampus CA1, rat Spruston et al., 1995
(0.83) 1.8 $\pm$ 0.2
(0.17) 8.1 $\pm$ 1.5
Dendrite of pyramid neuron, hippocampus CA3, rat Spruston et al., 1995
(0.79) 1.7 $\pm$ 0.2
(0.21) 6.3 $\pm$ 1
Soma of pyramid neuron, hippocampus CA3, rat Spruston et al., 1995
0.29 $\pm$ 0.04 2 $\pm$ 0.8 Presynapse: pyramid neuron; Postsynapse: IN Angulo et al., 1999
0.249 $\pm$ 0.015 0.772 $\pm$ 0.091 EPSC; Presynapse: PN; Postsynapse: IN Geiger et al., 1997
0.143 $\pm$ 0.016 0.367 $\pm$ 0.029 Quantal EPSC; Presynapse: PN; Postsynapse: IN Geiger et al., 1997
1.99 $\pm$ 0.16 MSO, rat Smith et al., 2000
0.5 $\pm$ 0.2 4.1 $\pm$ 0.9 2 mM Ca2+, 1 mM Mg2+; MF-CA3 pyramid cell, hippocampus, rat Jonas et al., 1993
0.6 $\pm$ 0.2 4.7 $\pm$ 1.3 1 mM Ca2+, 3 mM Mg2+; MF-CA3 pyramid cell, hippocampus, rat Jonas et al., 1993
0.59 $\pm$ 0.05 * 1.33 $\pm$ 0.18 Evoked EPSC, 4-11 day old rat Bellingham et al., 1998
0.46 $\pm$ 0.02 * 0.66 $\pm$ 0.2 Evoked EPSC, 12-18 day old rat Bellingham et al., 1998
0.25 $\pm$ 0.01 * 0.43 $\pm$ 0.04 Spontaneous EPSC, 4-11 day old rat Bellingham et al., 1998
0.22 $\pm$ 0.004 * 0.34 $\pm$ 0.04 Spontaneous EPSC, 12-18 day old rat Bellingham et al., 1998
evoked/none given
2.6 $\pm$ 0.4 * (0.5) 6.9 $\pm$ 0.8
(0.5) 34.4 $\pm$ 7.7
Evoked EPSC in submandibular ganglion cells Callister et al., 1996
(0.5) 8.3 $\pm$ 1.2
(0.5) 38 $\pm$ 9.6
Evoked EPSC in submandibular ganglion cells Callister et al., 1996
mGluR1
199 $\pm$ 25 809 $\pm$ 92 Inward EPSC (V = -75 mV), dopamine neurons, SNc, rat Bengtson et al., 2004
890 $\pm$ 90 3180 $\pm$ 440 Outward EPSC (V = 47 mV), dopamine neurons, SNc, rat Bengtson et al., 2004
960 $\pm$ 90 3100 $\pm$ 340 With DHPG agonist, inward EPSC (V = -75 mV), dopamine neurons, SNc, rat Bengtson et al., 2004
4820 $\pm$ 1100 11150 $\pm$ 1520 With DHPG agonist, outward EPSC (V = 45 mV), dopamine neurons, SNc, rat Bengtson et al., 2004
Dopamine
7.06 $\pm$ 0.94 * 25.57 $\pm$ 2.12 Effect of D1-type dopamine receptor amplification on EPSP. Layer 5 pyramidal neurons, rat PFC) Rotaru et al., 2007
NMDA-type GluR
(0.65) 23.5 $\pm$ 3.8
(0.35) 123 $\pm$ 83
Pyramid neurons, hippocampus, rat Hestrin et al., 1990
8 $\pm$ 3 50 to 100 IN, hippocampus, rat Sah et al., 1990
19.4 $\pm$ 3.1 EPSC; Presynapse: PN; Postsynapse: IN Geiger et al., 1997
262.8 $\pm$ 20.8 Low NR2A subunit expression, cortical neuron, neocortex, 3/4 day old rats Flint et al., 1997
146 $\pm$ 9.1 High NR2A subunit expression, cortical neuron, neocortex, 8/9 day old rats Flint et al., 1997
5.8 $\pm$ 0.62 * (0.5) 27.6 $\pm$ 3.9
(0.5) 147.4 $\pm$ 13.2
Medial vestibular nucleus (MVN), rat Kinney et al., 1994
6.63 $\pm$ 2.13 Presynapse: interneuron; postsynapse: Mauthner cell; Carassius auratus (also: glycine and glutamate) Faber et al., 1980
101.2 $\pm$ 11.5 Evoked EPSC, 4-11 day old rat Bellingham et al., 1998
60.4 $\pm$ 3.4 Evoked EPSC, 12-18 day old rat Bellingham et al., 1998
95 $\pm$ 8.6 Spontaneous EPSC, 4-11 day old rat Bellingham et al., 1998
64 $\pm$ 4.7 Spontaneous EPSC, 12-18 day old rat Bellingham et al., 1998

* 10-90% $t_\text{rise}$

Details

A single value for the decay time constant $\tau$ implies an exponential model: $I = I_0 \cdot e^{-t / \tau}$

Two values imply a biexponential model based on a fast component ($\tau_f$) and slow component ($\tau_s$): $I = I_{0,f} \cdot e^{-t / \tau_f} + I_{0,s} \cdot e^{-t / \tau_s}$. This model also requires coefficients for each term. These may be given as absolute currents or charges, or relative percentages.

Primary Sources

  • Angulo, M. C., Rossier, J., & Audinat, E. (1999). Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex. J. Neurophysiol., 82, 1295-1302.
    • Presynaptic pyramidal cells, postsynaptic IN
      • AMPA-type GluR-mediated EPSCs: $t_\text{rise}$ = 0.29 $\pm$ 0.04 ms; $\tau$ = 2 $\pm$ 0.8 ms; n = 16
    • NMDA-type GluR-mediated EPSCs: $t_\text{rise}$ = 7 $\pm$ 0.5 ms; $\tau$ = 52 $\pm$ 9 ms; n = 4
  • Bartos, M., Vida, I., Frotscher, M., Geiger, J. R. P., and Jonas, P. (2001). Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J. Neurosci., 21(8), 2687-2698.
    • GABA$_A$ receptors, basket cell-basket cell synapses, recorded at soma
      • Biexponential, n = 11
        • $\tau_f$: 1.6 $\pm$ 0.1 ms; contribution 76.8 $\pm$ 7.8%
        • $\tau_s$: 11.0 $\pm$ 2.3 ms
      • Exponential: $\tau$ = 2.5 $\pm$ 0.2 ms; n = 14
  • Bartos, M., Vida, I., Frotscher, M., Meyer, A., Monyer, H., Geiger, J. R. P., et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc. Natl. Acad. Sci. U.S.A., 99(20), 13222-13227.
    • IPSCs at BC-BC and BC-PN synapses, in CA1, CA3, and DG (parvalbumin-EGFP and wild-type mice)
    • CA1, BC-BC: 20-80% $t_\text{rise}$ = 0.27 $\pm$ 0.02 ms; $\tau_f$ = 1.2 $\pm$ 0.1 ms (90 $\pm$ 3%); $\tau_s$ = 8.0 $\pm$ 1.2 ms
    • CA3, BC-BC: 20-80% $t_\text{rise}$ = 0.25 $\pm$ 0.02 ms; $\tau_f$ = 0.8 $\pm$ 0.2 ms (84 $\pm$ 7%); $\tau_s$ = 3.8 $\pm$ 1.0 ms
    • DG, BC-BC: 20-80% $t_\text{rise}$ = 0.3 $\pm$ 0.03 ms; $\tau_f$ = 1.0 $\pm$ 0.2 ms (74 $\pm$ 8%); $\tau_s$ = 10.0 $\pm$ 2.8 ms
    • DG (WT), BC-BC: 20-80% $t_\text{rise}$ = 0.2 $\pm$ 0.01 ms; $\tau_f$ = 1.4 $\pm$ 0.2 ms (81 $\pm$ 6%); $\tau_s$ = 9.3 $\pm$ 1.7 ms
    • CA1, BC-PN: 20-80% $t_\text{rise}$ = 0.3 $\pm$ 0.02 ms; $\tau_f$ = 1.2 $\pm$ 0.4 ms (60 $\pm$ 8%); $\tau_s$ = 7.3 $\pm$ 1.9 ms
    • CA3, BC-PN: 20-80% $t_\text{rise}$ = 0.3 $\pm$ 0.02 ms; $\tau_f$ = 1.2 $\pm$ 0.4 ms (60 $\pm$ 4%); $\tau_s$ = 7.9 $\pm$ 0.2 ms
    • DG, BC-PN: 20-80% $t_\text{rise}$ = 0.2 $\pm$ 0.03 ms; $\tau_f$ = 1.8 $\pm$ 0.7 ms (60 $\pm$ 20%); $\tau_s$ = 8.5 $\pm$ 3.7 ms
    • DG (WT), BC-PN: 20-80% $t_\text{rise}$ = 0.2 $\pm$ 0.02 ms; $\tau_f$ = 1.3 $\pm$ 0.2 ms (50 $\pm$ 8%); $\tau_s$ = 5.6 $\pm$ 0.4 ms
  • Bellingham, M.C., Lim, R., Walmsley, B. (1998). Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J. Physiol. 511, 861-869.
    • AMPA/NMDA time constants in young vs. old rats in the endbulb-bushy cell synapse
    • Evoked AMPA EPSC:
      • 10-90% $t_\text{rise}$ = 0.59 +- 0.05 ms (4-11 days old)
      • 10-90% $t_\text{rise}$ = 0.46 +- 0.02 ms (12-18 days old)
      • $\tau$ = 1.33 +- 0.18 ms (4-11 days old)
      • $\tau$ = 0.66 +- 0.20 ms (12-18 days old)
    • Spontaneous AMPA EPSC:
      • 10-90% $t_\text{rise}$ = 0.25 +- 0.01 ms (4-11 days old)
      • 10-90% $t_\text{rise}$ = 0.22 +- 0.004 ms (12-18 days old)
      • $\tau$ = 0.43 +- 0.04 ms (4-11 days old)
      • $\tau$ = 0.34 +- 0.04 ms (12-18 days old)
    • Evoked NMDA EPSC:
      • $\tau$ = 101.2 +- 11.5 ms (4-11 days old)
      • $\tau$ = 60.4 +- 3.4 ms (12-18 days old)
    • Spontaneous NMDA EPSC:
      • $\tau$ = 95.0 +- 8.6 ms (4-11 days old)
      • $\tau$ = 64.0 +- 4.7 ms (12-18 days old)
  • Bengtson, C. P., Tozzi, A., Bernardi, G., Mercuri, N. B. (2004). Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. J. Physiol., 555, 323-330.
    • EPSCs mediated by group I metabotropic glutamate receptor subtype 1 (mGluR1) in rat dopamine neurons from the substantia nigra pars compacta (SNc)
    • Inward current (V = -75 mV): $t_\text{rise}$ = 199 $\pm$ 25 ms; $\tau_\text{decay}$ = 809 $\pm$ 92 ms; n = 15
    • Outward current (reversed by V = 47 mV): $t_\text{rise}$ = 890 $\pm$ 90 ms; $\tau_\text{decay}$ = 3180 $\pm$ 440 ms;
    • With DHPG agonist
      • Inward current (V = -75 mV): $t_\text{rise}$ = 960 $\pm$ 90 ms; $\tau_\text{decay}$ = 3100 $\pm$ 340 ms; n = 9
      • Outward current (reversed by V = 45 mV): $t_\text{rise}$ = 4820 $\pm$ 1100 ms; $\tau_\text{decay}$ = 11150 $\pm$ 1520 ms;
  • Callister, R.J., Walmsley, B. (1996). Amplitude and time course of evoked and spontaneous synaptic currents in rat submandibular ganglion cells. J. Physiol. 490, 149-157.
    • EPSCs in submandibular ganglion cells. Found no significant difference between evoked and spontaneous EPSC time courses.
    • Evoked EPSC:
      • 10-90% $t_\text{rise}$ = 2.6 $\pm$ 0.4 ms
      • $\tau$fast = 6.9 $\pm$ 0.8 ms
      • $\tau$slow = 34.4 $\pm$ 7.7 ms
    • Spontaneous EPSC:
      • $\tau$fast = 8.3 $\pm$ 1.2 ms
      • $\tau$slow = 38.0 $\pm$ 9.6 ms
  • Derkach, V. A., Selyanko, A. A., Skok, V. I. (1983). Acetylcholine-induced current fluctuations and fast excitatory post-synaptic currents in rabbit sympathetic neurones. J. Physiol., 336, 511-526.
    • Rabbit superior cervical ganglion neurons
    • EPSC from ACh nicotinic receptors (muscarinic receptor blocked by atropine)
    • $\tau$ = 4.6 $\pm$ 0.4 ms; n = 10
  • Edwards, F. A., Konnerth, A., Sakmann, B. (1990). Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. J. Physiol. (Lond.) 430: 213-249.
    • GABAA, granule cells, dentate gyrus, hippocampus, rat
    • mIPSC: $t_\text{rise}$ = 0.34 $\pm$ 0.12; $\tau_f$ = 2.7 (Af = 10 pA); $\tau_s$ = 53.6 (As = 15 pA)
    • eIPSC: $\tau_f$ = 2.3 (Af = 16 pA); $\tau_s$ = 57.5 (As = 73 pA)
  • Faber, D. S. and Korn, H. (1980). Single-Shot Channel Activation Accounts for Duration of Inhibitory Postsynaptic Potentials in a Central Neuron. Science, vol. 208, no. 4444, pp. 612-615.
    • Presynapse: interneuron; postsynapse: Mauthner cell; Carassius auratus
    • GABA, glycine, and glutamate
    • $\tau$ = 6.63 $\pm$ 2.13 ms (range 3.5-11.9 ms, n = 46)
  • Figl, A., Cohen, B. N. (2000). The $\beta$ subunit dominates the relaxation kinetics of heteromeric neuronal nicotinic receptors. J. Physiol., 524, 685-699.
    • Ganglionic EPSCs from postsynaptic nicotinic ACh receptors in Xenopus laevis
    • Subtype[ACh] (mM)-150 mV-80 mV
      $\tau_f$ (ms)$\tau_s$ (ms)Fast component fractionn$\tau_f$ (ms)$\tau_s$ (ms)Fast component fractionn
      $\alpha$2$\beta$2 500 5.1 $\pm$ 0.3 33 $\pm$ 1 0.7-0.9 5 4.4 $\pm$ 0.5 43 $\pm$ 2 0.7-0.9 6
      $\alpha$3$\beta$2 500 5.0 $\pm$ 0.5 50 $\pm$ 2 0.6-0.8 12 4.5 $\pm$ 0.2 35 $\pm$ 3 0.6-0.8 4
      $\alpha$4$\beta$2 50 7 $\pm$ 1 73 $\pm$ 6 0.45-0.85 4 5.5 $\pm$ 0.4 57 $\pm$ 3 0.45-0.85 3
      $\alpha$2$\beta$4 200 97 $\pm$ 20 620 $\pm$ 50 0.3-0.8 3 32 $\pm$ 7 220 $\pm$ 20 0.5-0.8 3
      $\alpha$3$\beta$4 200 116 $\pm$ 8 600 $\pm$ 40 0.4-0.6 6 85 $\pm$ 6 430 $\pm$ 70 0.6-0.8 6
      $\alpha$4$\beta$4 100 39 $\pm$ 5 1000 $\pm$ 200 0.5-0.8 4 37 $\pm$ 2 480 $\pm$ 50 0.6-0.85 4
  • Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R., & Monyer, H. (1997). NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex. J. Neurosci., 17(7), 2469-2476.
    • Cortical neuron, neocortex, rat: NMDAR EPSC time courses depend on subunits NR2(A/B/C/D)
    • Decrease in $\tau$ related to age-dependent expression of NMDAR subunits (especially NR2A, which is expressed at 8/9 days but not 3/4 days)
      • 3/4 days: $\tau$ = 262.8 $\pm$ 20.8 ms (n = 30)
      • 8/9 days: $\tau$ = 146 $\pm$ 9.1 ms (n = 41)
      • Supports results from Crair and Malenka, 1995; Carmignoto and Vicini, 1992; Hestrin, 1992; Takahashi et al., 1996.
    • Low NR2A: $\tau$ = 256.2 $\pm$ 22.1 ms
    • High NR2A: $\tau$ = 116.3 $\pm$ 4.9 ms
    • At 3/4 days:
      • no NR2A: $\tau$ = 306.3 $\pm$ 28.5 ms
      • with NR2A: $\tau$ = 104.5 and 113 ms
    • At 8/9 days:
      • no NR2A: $\tau$ = 193.5 $\pm$ 18.6 ms
      • with NR2A: $\tau$ = 117.5 $\pm$ 5.7 ms
  • Geiger, J. R. P., Lbke, J., Roth, A., Frotscher, M., and Jonas, P. (1997). Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron, 18, 1009-1023.
    • AMPA-type GluR, average EPSC, n = 9
      • 20-80% $t_\text{rise}$: 249 $\pm$ 15 $\mu$s (range 159-313)
      • $\tau$: 772 $\pm$ 91 $\mu$s (range 473-1302)
    • AMPA-type GluR, quantal EPSC, n = 4
      • 20-80% $t_\text{rise}$: 143 $\pm$ 16 $\mu$s (range 102-171)
      • $\tau$: 367 $\pm$ 29 $\mu$s (range 306-418)
    • NMDA-type GluR, EPSC
      • $\tau$: 19.4 $\pm$ 3.1 ms (range 11.6-27.1)
    • Use more references from this article.
  • Gupta, A., Wang, Y., & Markram, H. (2000). Organizing Principles for a Diversity of GABAergic Interneurons and Synapses in the Neocortex. Science 287(5451). 273-278.
    • Layers II to IV, somatosensory cortex, neocortex, rat
    • Divides GABA synapses into three types, based on their time constants for recovery from facilitation (F) and depression (D).
    • F1: $\tau$ = 10.41 $\pm$ 6.16 ms (n = 9)
      • Facilitated recovery: F/D $\approx$ 10
      • F1 appeared to be mediated only by GABAA receptors
    • F2: $\tau$ = 8.3 $\pm$ 2.2 ms (n = 52)
      • Depressed recovery: F/D $\approx$ 1/40
    • F3: $\tau$ = 6.44 $\pm$ 1.7 (n = 4)
      • Unchanged recovery: F $\approx$ D
  • Hestrin, S., Sah, P., & Nicoll, R. (1990). Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron, 5, 247-253
    • Studies effect of temperature and other variables on NMDA and non-NMDA GluR in rat hippocampal pyramid neurons.
    • NMDA component
      • $\tau_f$ = 23.5 $\pm$ 3.8 ms, contribution 65% $\pm$ 12%
      • $\tau_s$ = 123 $\pm$ 83 ms
    • Non-NMDA component
      • $\tau$ = 7.2 ms
  • Jonas, P., Major, G., and Sakmann, B. (1993). Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (London), 472, 615-663.
    • One cell, evoked EPSC, AMPA-type GluR, presynapse: MF, postsynapse: CA3 pyramidal cell
    • Extracellular solution of 2 mM Ca2+ and 1 mM Mg2+
      • Latency: 3.7 $\pm$ 0.3 ms; n = 1100
      • 20-80% $t_\text{rise}$: 0.5 $\pm$ 0.2; n = 1100
      • $\tau$ = 4.1 $\pm$ 0.9 ms; n = 696
    • Extracellular solution of 1 mM Ca2+ and 3 mM Mg2+
      • Latency: 4.1 $\pm$ 0.4 ms; n = 593
      • 20-80% $t_\text{rise}$: 0.6 $\pm$ 0.2; n = 593
      • $\tau$ = 4.7 $\pm$ 1.3 ms; n = 356
  • Kinney, G. A., Peterson, B. W., and Slater, N. T. (1994). The synaptic activation of N-methyl-d-aspartate receptors in the rat medial vestibular nucleus. J. Neurophysiol., 72(4), 1588-1595.
    • NMDA receptors in second-order neurons from rat medial vestibular nucleus (MVN)
    • NMDA-mediated EPSC: 10-90% $t_\text{rise}$ = 5.8 $\pm$ 0.62 ms (range 3-9 ms); $\tau_f$ = 27.6 $\pm$ 3.9 ms; $\tau_s$ = 147.4 $\pm$ 13.2 ms; n = 6
  • Puia, G., Costa, E. & Vicini, S. (1994). Functional diversity of GABA$_A$ Activated Cl-currents in Purkinje versus granule neurons in rat cerebellar slices. Neuron, 12, 117-126.
    • Heterogeneity of GABA responses: cerebellar granule cells vs. Purkinje cells
    • Biexponential model reflects intrinsic properties of GABAA receptor channels
    • Purkinje neurons: $\tau$ = 7.9 $\pm$ 1.9 ms (n = 7)
      • Vincent, P., Armstrong, C. M., and Marty, A. (1992). Inhibitory synaptic currents in rat cerebellar Purkinje cells: modulation by postsynaptic depolarization. J. Physiol. 456, 453-471.
    • Granule neurons: $t_\text{rise}$ = 0.6 $\pm$ 0.3 ms (range 0.3-1.3); $\tau_f$ = 7.0 $\pm$ 1.6 ms, $\tau_s$ = 59 $\pm$ 16 ms; contribution of slow = 60 $\pm$ 23%; (n = 7)
      • With tetrodotoxin: $\tau_f$ = 6.4 $\pm$ 0.9 ms, $\tau_s$ = 65 $\pm$ 19 ms; contribution of slow = 57 $\pm$ 19%;
  • Rotaru, D.C., Lewis, D.A., Gonzalez-Burgos, G. (2007). Dopamine D1 receptor activation regulates sodium channel-dependent EPSP amplification in rat prefrontal cortex pyramidal neurons. J. Physiol. 581, 981-1000.
    • Effect of D1-type dopamine receptor amplification on EPSP. Layer 5 pyramidal neurons, rat PFC).
      • 10-90% $t_\text{rise}$ = 7.06 $\pm$ 0.94 ms
      • $\tau$ = 25.57 $\pm$ 2.12 ms
  • Sah, P., Hestrin, S., & Nicoll, R. A. (1990). Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J. Physiol., 430, 605-616.
    • Rat hippocampus IN
    • NMDA receptor-mediated excitatory PSCs consist of a slow NMDA receptor component and a fast non-NMDA receptor component. The fast component was blocked with CNQX to isolate the slow component. The slow component was blocked with AP5 to isolate the fast component.
    • NMDA receptor component: $t_\text{rise}$ = 5 to 11 ms; $\tau$ = 50 to 100 ms
    • Non-NMDA receptor component: $t_\text{rise}$ = 1 to 3 ms; $\tau$ = 3 to 15 ms
  • Salin, P. A., & Prince, D. A. (1996). Spontaneous GABA$_A$ receptor mediated inhibitory currents in adult rat somatosensory cortex. J. Neurophysiol., 75, 1573-1588.
    • GABAA mediated, SG (layers 2-3), layer IV (IV), and IG neurons
    • sIPSC: $\tau$ = 5-10 ms
    • mIPSC: $t_\text{rise}$ = 0.9 $\pm$ 0.04 ms (range 0.2-4); $\tau$ = 8.3 $\pm$ 1.3 ms (n = 24)
  • Smith, A. J., Owens, S., Forsythe, I. D. (2000). Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol., 529, 681-698.
    • EPSC and IPSC of MSO neuron in rats
    • AMPA receptor EPSC: $\tau$ = 1.99 $\pm$ 0.16 ms (n = 8)
    • Significant GABAA contribution to IPSC at less than 6 days old.
    • Glycinergic
      • eIPSC:
      • Up to 11 days old: 10-90% $t_\text{rise}$ = 0.7 $\pm$ 0.1 ms; $\tau_f$ = 7.8 $\pm$ 0.3 ms; $\tau_s$ = 38.3 $\pm$ 1.7 ms (contribution 7.8 $\pm$ 0.6%); n = 121
      • At 11 days old: $\tau_f$ = 3.9 $\pm$ 0.3 ms; $\tau_s$ contribution < 1%; n = 12
      • Spontaneous miniature IPSC: 10-90% $t_\text{rise}$ = 0.62 $\pm$ 0.11 ms; $\tau_f$ = 5.3 $\pm$ 0.4 ms; $\tau_s$ = 16.5 $\pm$ 0.3 ms; slow contribution of 26 $\pm$ 3.6%; n = 7
    • More results may be included in the paper.
  • Spruston, N., Jonas, P., & Sakmann, B. (1995). Dendritic glutamate receptor channel in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol., 482, 325-352.
    • Glutamate applied to AMPA- and NMDA-type GluR of CA3 and CA1 pyramidal neuron dendrites and soma from rat hippocampus.
      • CA3 patches formed in the MF synapse region (15-76 $\mu$m from soma)
      • CA1 patches formed in the Schaffer collateral innervation region (25-174 $\mu$m from soma)
    • Response consisted of fast and slow components.
      • Fast component was blocked CNQX, suggesting that it is mediated by AMPA-type GluR channel
      • Slow component was blocked by AP5, suggesting that it is mediated by NMDA-type GluR channel
    • TypeHippocampal subfieldLocation on neuronFast componentSlow componentn
      $\tau_f$ (ms)Contribution$\tau_s$ (ms)Contribution
      AMPA-type CA3 dendrite 1.8 $\pm$ 0.2 0.83 8.1 $\pm$ 1.5 0.17 23
      AMPA-type CA3 soma 1.7 $\pm$ 0.2 0.79 6.3 $\pm$ 1.0 0.21 10
      AMPA-type CA1 dendrite 2.2 $\pm$ 0.2 0.83 9.0 $\pm$ 1.1 0.17 18
      AMPA-type CA1 soma 2.2 $\pm$ 0.2 0.78 6.8 $\pm$ 0.6 0.22 10
      NMDA-type CA3 dendrite 175 $\pm$ 20 0.72 1188 $\pm$ 181 0.28 13
      NMDA-type CA3 soma 197 $\pm$ 24 0.82 1287 $\pm$ 129 0.18 10
      NMDA-type CA1 dendrite 288 $\pm$ 23 0.78 2824 $\pm$ 253 0.22 23
      NMDA-type CA1 soma 230 $\pm$ 36 0.85 2918 $\pm$ 491 0.15 10
  • Xiang, Z., Huguenard, J. R., & Prince, D. A. (1998). GABAA receptor mediated currents in interneurons and pyramidal cells of rat visual cortex. J. Physiol., 506, 715-730.
    • GABAA receptor-mediated responses of pyramidal cells and IN sIPSC and monosynaptic eIPSC
    • Cell typePSC type10-90% $t_\text{rise}$ (ms)Fast componentSlow componentn
      $\tau_f$ (ms)Contribution$\tau_s$ (ms)Contribution
      Pyramidal sIPSC 0.58 $\pm$ 0.02 6.4 $\pm$ 0.4 ms 0.27 $\pm$ 0.05 pC 22 $\pm$ 3 0.54 $\pm$ 0.19 pC 11
      Pyramidal eIPSC 1.8 $\pm$ 0.1 12 $\pm$ 1 (not in source?) 47 $\pm$ 3 (not in source?) 9
      IN sIPSC 0.61 $\pm$ 0.02 6.5 $\pm$ 0.6 0.28 $\pm$ 0.01 pC 49 $\pm$ 4 0.72 $\pm$ 0.05 pC 9
      IN eIPSC 1.8 $\pm$ 0.2 13 $\pm$ 2 (not in source?) 64 $\pm$ 4 (not in source?) 6
  • Zhang, S. J., Huguenard, J. R. & Prince, D. A. (1997). GABAA receptor-mediated Cl- currents in rat thalamic reticular and relay neurons. J. Neurophysiol., 78, 2280-2286.
    • GABAA, thalamus, nucleus reticularis (nRt) and ventrobasal (VB) neurons
    • nRt, sIPSC, averaged from >30 events
      • n = 9
      • $\tau_f$ = 37.5 $\pm$ 3.8 ms; contribution 30.5 $\pm$ 6.5 pA
      • $\tau_s$ = 186.1 $\pm$ 18.3 ms; contribution 23.8 $\pm$ 3.9 pA
    • nRt, electrically-evoked IPSC, averaged from >20 events
      • n = 10
      • $\tau_f$ = 42.5 $\pm$ 6.1 ms; contribution 54.0 $\pm$ 12.4 pA
      • $\tau_s$ = 177.6 $\pm$ 16.4 ms; contribution 72.9 $\pm$ 18.4 pA
    • nRt, GABA-evoked IPSC, $\tau$ = 224.8 $\pm$ 22.2 ms; n = 7
    • VB, sIPSC, averaged from >30 events
      • n = 15
      • $\tau_f$ = 16.7 $\pm$ 1.8 ms; contribution 40.2 $\pm$ 5.7 pA
      • $\tau_s$ = 39.0 $\pm$ 2.9 ms; contribution 29.4 $\pm$ 5.3 pA
    • VB, electically-evoked IPSC, averaged from >20 events
      • n = 11
      • $\tau_f$ = 23.0 $\pm$ 3.4 ms; contribution 320.0 $\pm$ 77.1 pA
      • $\tau_s$ = 68.3 $\pm$ 6.7 ms; contribution 126.8 $\pm$ 29.2 pA
    • VB, GABA-evoked IPSC, $\tau$ = 115.0 $\pm$ 15.4 ms; n = 8

Secondary Sources

  • Fourcard, N. & Brunel, N. (2002). Dynamics of the Firing Probability of Noisy Integrate-and-Fire Neurons. Neural Computation, 14(9). 2057-2110.

    Synaptic inputs to a cortical neuron come from different types of receptors with different temporal characteristics. Common types of receptors are AMPA, NMDA, and GABA receptors. AMPA receptors have synaptic time constants of the order of 2 ms (Hestrin, Sah, & Nicoll, 1990; Sah, Hestrin, & Nicoll, 1990; Spruston, Jonas, & Sakmann, 1995; Angulo, Rossier, & Audinat, 1999). GABAA receptors have longer time constants (typically 5-10 ms; Salin & Prince, 1996; Xiang, Huguenard, & Prince, 1998; Gupta, Wang, & Markram, 2000). Finally, NMDA currents are the slowest, with decay time constants of about 100 ms (Hestrin et al., 1990; Sah et al., 1990).

  • Moreno-Bote, R. & Parga, N. (2005). Simple model neurons with AMPA and NMDA filters: role of synaptic time scales. Neurocomputing, 65-66. 441-448.

    Fast AMPA receptors filter presynaptic inputs with a time constant of $\tau$AMPA ~1-10ms, while NMDA filter them with a longer time scale $\tau$NMDA ~50-150ms (Bear, Connors, & Paridiso, 1996).

  • Parisien, C., Anderson, C.H., Eliasmith, C. (2008). Solving the problem of negative synaptic weights in cortical models. Neural Computation. 20, 1473-1494.

    To determine the relevant biophysical parameters, we simulate hippocampal principal neurons with AMPA-mediated PSCs with decay constants of $\tau$ = 5 ms (Jonas et al., 1993). ... Hippocampal AMPA-mediated synapses on inhibitory interneurons are fast (Geiger et al., 1997; Carter and Regehr, 2002; Walker et al., 2002), being well modeled by PSCs with $\tau$ = 1 ms for these synapses. Slower GABA-mediated inhibitory synapses with $\tau$ = 4 ms project onto the B neurons (Bartos et al., 2001, 2002). We run this simulation using recurrent NMDA-mediated synapses with $\tau$ = 150 ms as is common (Kinney et al., 1994; Seung, 1996).

Potential sources

Glossary and abbreviations

  • ACh: acetylcholine
  • AMPA: $\alpha$-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
  • AP5 (also APV): (2R)-amino-5-phosphonovaleric acid
  • BC: basket cell
  • CA1-4: cornu ammonis subfields 1 to 4
  • CNQX: 6-cyano-7-nitroquinoxaline-2,3-dione
  • DA: dopamine
  • DHPG: (S)-3,5-dihydroxyphenylglycine
  • GABA: $\gamma$-aminobutyric acid
  • Glu: glutamate
    • mGluR1: metabotropic glutamate receptor subtype 1
  • IG: infragranular
  • IN: (fast-spiking) interneuron
  • MF: mossy fibre
  • MSO: medial superior olive
  • NMDA: N-methyl-D-aspartic acid
  • nRt: nucleus reticularis
  • PFC: prefrontal cortex
  • PSC: postsynaptic current
    • EPSC: excitatory PSC
      • eEPSC: evoked EPSC
    • IPSC: inhibitory PSC
      • sIPSC: spontaneous IPSC
      • eIPSC: evoked IPSC
      • mIPSC: miniature IPSC
  • PN: principal neuron
  • SG: supragranular
  • $\tau$: time constant
  • $t_\text{rise}$: rise time (usually given as 20-80% or 10-90%)
  • VB: ventrobasal

Contributing

If you would like to contribute to this list, please go to ctn-waterloo/psc-constants and make an issue or pull request.