
Dynamics: Attractor 
Networks



A t t r a c t o r

An attractor in dynamical systems theory is a 
system state (or states) towards which other 
states tend over time

The standard analogy is to imagine the state 
space as a ‘hill-like’ topology which a ball travels 
through (tending downhill).



A t t r a c t o r

Point attractor at A



A t t r a c t o r s

In neural network research, attractor networks 
(networks with dynamical attractors) have long 
been thought relevant for various behaviours 

e.g., memory, integration, off-line updating of 
representations, repetitive pattern generation, 
noise reduction, etc.

The neural integrator and working memory are 
both examples of attractor networks



L i n e  a t t r a c t o r
The neural integrator can be thought of as a line 
attractor (approximately)



A line attractor that's wrapped in a circle is a ring 
attractor (describes systems that encode and hold 
positions over a repeating axis (e.g., head 
direction in hippocampus))

R i n g  a t t r a c t o r



R i n g  a t t r a c t o r

A ring attractor over time



A t t r a c t o r s
Attractor networks were extensively examined in 
the ANN community (e.g. hopfield nets). Amit 
suggested that persistent activity could be 
associated with recurrent biological networks 

Persistent activity is found in motor, premotor, 
parietal, prefrontal, frontal, hippocampal, and 
inferotemporal cortex; and basal ganglia, 
midbrain, superior colliculus, and brainstem

Focus to date is on simple attractors, let’s 
generalize...



A t t r a c t o r s

Can generalize representation, or dynamics

Representational gives more complex memory 
circuits (next slide)

As a result, we can see the effects of e.g., 
heterogeneity on the dynamic properties of such 
systems (e.g. number of fixed points)



P l a n e  a t t r a c t o r

The memory network can be thought of as a 
plane attractor (approximately)



F i x e d  p o i n t s

Fixed points vs various x-intercept distributions



G e n e r a l i z i n g  a t t r a c t o r s

We can also generalize the dynamics, because we 
can relate dynamics to the control dynamics eqn

So, e.g., we can determine the effects of 
interesting choices of A

Consider a simple harmonic oscillator:

A =
[

0 ω
−ω 0

]



C y c l i c  a t t r a c t o r

NB: The ball analogy no longer applies



C y c l i c  a t t r a c t o r
This isn't a simple cyclic attractor, since the 
amplitude depends on the initial conditions. 

Just as we control the stable point of the line 
attractor by adjusting u(t), we can control the 
cycle (i.e., amplitude) at which the oscillator 
attractor operates by adjusting u(t). 

The oscillator also includes the variable ω which 
controls the speed around the attractor. 

Useful for describing repetitive behaviours 



L a m p r e y

The lamprey example implements a cyclic 
attractor (simple harmonic oscillator). 

There are two techniques of interest in this 
example: ‘damping’ and ‘leveling’

Damping is just the insight that because neural 
representation is inaccurate, you sometimes have 
to write dynamical eqns that explicitly damp the 
introduced error.



L a m p r e y

Leveling is simply taking advantage of the 
representational hierarchy we defined long ago

In this case, we can introduce an intermediate 
level of representation (between the harmonic 
oscillator and neural characterizations), which is 
a ‘neural group’ level of representation that 
maps to lamprey spinal organization.



L a m p r e y  s w i m m i n g

(lampswim.avi in MPlayer)



L a m p r e y  s w i m m i n g

Single cell behaviour



L a m p r e y

This approach is unique in CPG modelling

Advantages:

Accounts for observed dynamic behaviour

Can explicitly enforce stability and control

Consistent with neurophysiology and 
anatomy



L o r e n z  A t t r a c t o r

The Lorenz attractor is the simplest continuous 
chaotic attractor.

Here we show how to move between kinds of 
attractors in a single network

This kind of control is ideal for understanding 
various behaviours that have distinct regimes of 
operation (walking vs running, etc.)



C h a o t i c  a t t r a c t o r  ( L o r e n z )



L o r e n z  e q u a t i o n s

a=10, b=28, and c=8/3; changing b over the 
range [1, 300] traverses different attractor types

(Nonlinear) control version

ẋ1 = a(x2 − x1)
ẋ2 = bx1 − x2 − x1x3

ẋ3 = x1x2 − cx3




ẋ1

ẋ2

ẋ3



 =




−a a 0
b −1 x1

x2 0 −c








x1

x2

x3







C h a o t i c  a t t r a c t o r  ( L o r e n z )



L o r e n z  e q u a t i o n s

This wide range of b, and coupling to x3, means 
we need big dynamic range (hence lots of 
neurons).  More efficiently we can rearrange:

The control is now not even multiplicative




ẋ1

ẋ2

ẋ3



 =




−a a 0
0 −1 −x1

x2 0 −c








x1

x2

x3



 +




0 0 0
0 0 0

−(c + 1) 0 0








b
0
0







C h a o t i c  a t t r a c t o r  ( L o r e n z )


