
Neural Control 
Theory



A  c o g n i t i v e  m o d e l i n g  h i s t o r y
Cybernetics (40s) Goals. Neurophysiologists 
(McCulloch & Rosenblueth), mathematicians 
(Weiner) and engineers (Forrester). Too 
behaviourist, classical control.

GOFAI (60s-) Representation and computation. 
Turing machines, von Neumann architecture, etc. 
Largely ignores time

Contemporary (90s-) Time is essential, obvious 
to neurophysiologists. Idea: reintroduce modern 
control theory



S t a n d a r d  c o n t r o l  s y s t e m

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

state vector

dynamics matrix

input matrix

h(t)



The synaptic dynamics dominate the overall 
population dynamics. 

We need to use the intrinsic synaptic dynamics to 
characterize ‘neural’ control theory

Laplace transform is:

N e u r a l  c o n t r o l  t h e o r y

h(t) =
1
τ

e−t/τ

h(s) =
1

1 + sτ



N e u r a l  c o n t r o l  t h e o r y

Put this into the control diagram (leaving out the 
C and D matrices)

h(t)

x(s) =
1

1 + sτ
[A′x(s) + B′u(s)]

=
τ−1

τ−1 + s
[A′x(s) + B′u(s)]



So, 

Recall also,

Equating the two and solving gives the 
‘translation’

N e u r a l  c o n t r o l  t h e o r y

(τ−1 + s)x(s) = τ−1 [A′x(s) + B′u(s)]
sx(s) = τ−1 [A′ − I]x(s) + τ−1B′u(s)

sx(s) = Ax(s) + Bu(s)

A′ = τA + I
B′ = τB



G e n e r i c  n e u r a l  s u b s y s t e m

GNS: a theoretical subsystem that can be 
mapped to any spiking neural population 
involved in some dynamic transformation

Let’s introduce some general notation by looking 
at different levels of description

Then we’ll write the equations for each principle 
of the NEF



B a s i c - l e v e l  d e s c r i p t i o n



H i g h e r - l e v e l  d e s c r i p t i o n



G e n e r i c  n e u r a l  s u b s y s t e m

So we can see ωαβ
ij =

〈
φ̃

α

i MαβφαFβ
j

〉

m



Encoding

Decoding

where

Pr i n c i p l e  1 :  R e p r e s e n t a t i o n

∑

n

δ(t− tin) = Gi

[
αi

〈
φ̃ix(t)

〉

m
+ Jbias

i

]

x̂(t) =
∑

i

ai(x(t))φx
i

ai(x(t)) =
∑

n

hi(t) ∗ δ(t− tin)

=
∑

n

hi(t− tin)



Pr i n c i p l e  2 :  Tr a n s f o r m a t i o n

Same encoding with a different decoding

(where ai is defined as in principle 1)

f̂(x(t)) =
∑

i

ai(x(t))φf
i



Pr i n c i p l e  3 :  D y n a m i c s

Allowing x(t) to be the neural repn (and hence 
state variable) and u(t) to be the input, we have 
the following

In fact this could be written more generally by 
having the control system be any f(A,B,x,u,t)

Principle 2 then tells us how to compute f

∑

n

δ(t− tin) = Gi

[
αi

〈
φ̃i (hi(t) ∗ [A′x(t) + B′u(t)])

〉

m
+ Jbias

i

]



N e u r a l  i n t e g r a t o r



NPH & VN turn velocity signals into eye 
position commands

Difficult problem to solve, but simple to 
formulate:

N e u r a l  i n t e g r a t o r

ẋ = Ax + Bu

A = 0
B = 1



N e u r a l  i n t e g r a t o r

So, in ‘neural control’ we have (assuming input 
and recurrent time constants are equal)

A′ = 1
B′ = τ



N e u r a l  i n t e g r a t o r

Substitute this into the encoding equation:

Gives

Where

aj(t) = Gj

[
αj

〈
x(t)φ̃j

〉
+ Jbias

j

]

aj(t) = Gj

[
αj

〈
h(t) ∗ φ̃j

[
A′

∑

i

ai(t)φx
i + B′u(t)

]〉
+ Jbias

j

]

= Gj

[
h(t) ∗

[
∑

i

ωjiai(t) + B′φ̃ju(t)

]
+ Jbias

j

]

ωji = αjA
′φx

i φ̃j



N e u r a l  i n t e g r a t o r

If we expect any error in x(t), we won’t be able to 
build a perfect integrator... and we expect error

We can think of error as being captured by some 
gain, k, in the circuit (which is a function of x)

This gain effectively acts to modify A, and any 
deviation of A from 0 (or 1 in the neural case) 
moves the circuit over time, even with no input



E f f e c t i v e  t i m e  c o n s t a n t

So, A acts like a rate constant:

Or, in neural terms:

So, an increase in synaptic time constant will 
lengthen the effective time constant

A = − 1
τeff

− 1
τeff

=
A′ − 1

τ

τeff =
τ

1−A′



I n t e g r a t o r  a n d  s y n a p t i c  TC



R e p r e s e n t a t i o n  e r r o r

Since we can set A’, and setting it to 1 gives an 
infinite time constant, the only remaining source 
of error is representational

So, looking at the deviation from identity (as 
we’ve graphed many times) gives insight into 
the dynamics of the system

You can see stable points and drift speed directly 
from this graph



D y n a m i c s  a n d  e r r o r



Effect of number of neurons and membrane time 
constants

F i x e d  p o i n t s  i n  i n t e g r a t o r



Tu n a b l e  f i l t e r

We can take this a step further and tune A’ 
directly with a neural ensemble

Direct substitution gives

Using an intermediation population gives

Using a 2D population is most efficient

A′(t) =
∑

l

bl(t)φA′

l

aj(t) = Gj

[
αj

(
h(t) ∗ φ̃j

[
∑

l

bl(t)φA′

l

∑

i

ai(t)φx
i + B′u(t)

])
+ Jbias

j

]

aj(t) = Gj

[
αj

(
h(t) ∗ φ̃j

[
∑

m

cm(t)φp
m + B′u(t)

])
+ Jbias

j

]



Tu n a b l e  f i l t e r



H u m a n s  a n d  g o l d f i s h
Humans (left) have more neurons, and hence 
slower drift (70s vs 10s) 

Both have centripital drift (i.e. A’<1)



W o r k i n g  m e m o r y

Just another integrator...

Defined over the co-efficients in the high-
dimensional vector space representing functions

This model was one of the first successful ones of 
parametric working memory (observed e.g., in 
LIP)



I m p l e m e n t a t i o n  ( 2 0 0 0  n e u r o n s ,  5 0 0 0  i t e r a t i o n s )



Pr e d i c t i o n s
For narrow stimuli central cells (+) have 
decreased firing rate but peripheral cells (o) have 
increased firing rate.



Pr e d i c t i o n s
For multiple stimuli whose centers are too close 
together, there are two kinds of error, forgetting 
and blending.

BlendingForgetting


