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D e f i n i t i o n s
A representational space is a specific kind of vector 
space.

Vectors are simply collections of mathematical 
objects (numbers, functions, or other vectors) 

A vector space is a set of vectors that is closed 
under addition and multiplication (i.e., a sum or 
product of any vectors in the set is also in the set)

A basis is an independent set of vectors that span 
the vector space



D e f i n i t i o n s :  i n d e p e n d e n t

A set of vectors xn is independent if

only when

where an are scalars. 

So, n must be equal to the dimension of the 
vectors in V in order for xn to be independent. 

a1x1 + a2x2 + . . . + anxn = 0

a1 = a2 = . . . = an = 0



D e f i n i t i o n s :  s p a n

A set of vectors spans a vector space if any vector 
in that space can be written as a linear sum of 
those vectors. 

That is, if for all x ∈ V there are some an,

then the set of vectors xn span the vector space V. 

a1x1 + a2x2 + . . . + anxn = x



E x a m p l e

The standard Cartesian basis in any number of 
dimensions is comprised of the unit vectors 
along the principle axes (obviously independent 
and spanning V).



D e f i n i t i o n s :  o r t h o n o r m a l
Note also, the vectors in this basis are 
orthogonal, i.e., the dot product of any two will 
be zero; i.e., 

If all the vectors in a basis are orthogonal, it is 
called an orthogonal basis

Further, if the length of all the vectors in an 
orthogonal basis is equal to one then it is an 
orthonormal basis: the Cartesian basis is such

x · y = 〈xy〉n =
∑

n

x[n]y[n] = 0



O v e r c o m p l e t e  b a s i s
If we relax the constraint that the vectors have to 
be independent, we have what is called an 
overcomplete basis (or sometimes `frame'). 

overcomplete bases are redundant (hence not 
as succinct) for defining the vector space

in noisy, physical systems, this redundancy 
can prove invaluable for error correction and 
the efficient use of available resources



A  l o n g e r  e x a m p l e
Let the vector x be written in a standard 
Cartesian basis 

Suppose we have a different basis, rotated by 45 
degrees (φ1, φ2)

‘Encoding’ 

Projection onto the new basis 

‘Decoding’

x = [x1, x2] = x1i + x2j

ai = 〈xφi〉n

a = [a1, a2] = a1φ1 + a2φ2

x =
∑

i

aiφi



C o m m e n t s

 This way, we can move back and forth between 
orthonormal bases.

Notice that if we substitute the encoding into the 
decoding, we recover the same vector we 
originally encoded

Thus we can think of the coefficients ai as 
‘representing’, or ‘carrying the same 
information’, or ‘encoding’ the original 
coefficients xi



O v e r c o m p l e t e  r e p r e s e n t a t i o n
Suppose we do not know what the decoding 
basis is, but we know the encoding basis

We can guarantee that the encoding basis is 
overcomplete by using redundant, non-
orthogonal encoders

Let’s choose the encoding 
basis as equally spaced at 
120 degree intervals (i.e., 

φ̃1 = [
√

3
2

,
1
2
], φ̃2 = [−

√
3

2
,

1
2
], and φ̃3 = [0, −1]).



F i n d i n g  d e c o d e r s

We need to identify the set of vectors that span 
the space into which our vector is being encoded 
(i.e., the decoding basis). 

To find this basis, we first note, as before, that

and (notice the tilde! unlike earlier)

x =
∑

i

aiφi

ai =
〈
xφ̃i

〉

n



F i n d i n g  d e c o d e r s
Substitute the encoding into decoding to give

Writing the dot product explicitly, we get x[m] 

So,

x =
∑

i

〈
xφ̃i

〉

n
φi

x[m] =
∑

i,n

x[n]φ̃i[n]φi[m]

=
∑

n

x[n]
∑

i

φ̃i[n]φi[m]

δnm =
∑

i

φ̃i[n]φi[m]i



F i n d i n g  d e c o d e r s
In matrix notation, 

Solving for the decoders

Calculating gives 

That is, 

I = φ̃φ

I = φ̃φ

φ̃
T

= φ̃
T
φ̃φ,

φ =
(
φ̃

T
φ̃

)−1
φ̃

T

φ1 = [
√

3
3

,
1
3
],φ2 = [−

√
3

3
,

1
3
], and φ3 = [0, −2

3
]

φi =
2
3
φ̃i

(a1 1 2 2 3 3a a )



C o m m e n t s

The φi are an overcomplete basis for the vector 
space in which the ai are coordinates. Hence are 
the decoding vectors defining the representation 

A set of encoders/decoders is like this is called 
biorthogonal because together they act as an 
orthogonal basis. 

Technically, the NEF encoders/decoders don’t 
satisfy the definitions provide here, but they are 
close 



B a s i s  f u n c t i o n s
Applies equally to basis functions

Just as basis vectors define a vector space, so 
basis functions define a function space 

E.g. sines and cosines for a Fourier 
decomposition. This is an orthonormal basis. 

Can have overcomplete basis functions as well. 

The tuning curves are like a set of overcomplete 
basis functions for the space they represent.



D e c o m p o s i n g  Γ

Consider the noise free case

This is called a Gram matrix (a correlation matrix 
without the means removed). Measures 
similarity of all neural responses.

Tells us about the representation of the vector 
space by the neurons

γij = 〈ai(x)aj(x)〉x



D e c o m p o s i n g  Γ

Construct an ‘activity matrix’

AT =





a1(xmin) a1(xmin + ∆x) · · · a1(xmax −∆x) a1(xmax)
a2(xmin) a2(xmax)

...
... · · ·

...
...

aN−1(xmin) aN−1(xmax)
aN (xmin) a1(xmin + ∆x) · · · a1(xmax −∆x) aN (xmax)







D e c o m p o s i n g  Γ

So we can write our estimate

Need the optimal decoders, so take X as given 
(i.e., the actual domain)

X̂N∆×Nv = AN∆×NφN×Nv

X = Aφ

AT X = AT Aφ

(AT A)−1AT X = φ.



D e c o m p o s i n g  Γ

Taking the inverse correctly results in linear 
optimal decdoders, we can write

In other words,

Which means

γ = AT A
Υ = AT X

φ = γ−1Υ
= (AT A)−1AT X

X̂ = Aφ

= A(AT A)−1AT X.



S V D
How do we take the inverse correctly?

Because there is no noise, and tuning curves are 
very similar, the matrix is likely to be singluar

Use singular value decomposition (SVD) to 
decompose and approximately invert the matrix.

SVD decomposition of an MxN matrix, B, gives

S is a diagonal matrix of singular values

BM×N = UM×NSN×NVT
N×N



S V D

When B is square and symmetrical (as for γ), this 
simplifies to

Also, 

When γ  is singular (or nearly so), some elements 
of S are zero (or very small), so the inverse of S 
includes infinite (or very large) terms

The SVD `pseudo-inverse' is defined where for 
Si=0, the inverse is set to 0 (∞=0!). 

γ = USUT

γ−1 = US−1UT



S V D

SVD can be very informative: 

The columns of U whose corresponding 
singular values are non-zero form an 
orthonormal basis that spans the range of γ 

The columns of U whose corresponding SVs 
are zero form an orthonormal basis that spans 
the null space (i.e., x s.t. γ x=0).



S V D

When a vector in Υ lies in the range of γ, the SVD 
pseudo-inverse guarantees that the 
corresponding vector from φ minimizes the 
length of that φ vector. 

Given that γ is singular, there are an infinite 
number of solutions for φ. The solution that 
provides the shortest vector is a natural choice 
from the set



range

S V D  ( s i n g u l a r  m a t r i x )

c’

cd

SVD solution of
Ax=d

(min length)

null space

solutions of
Ax=d

solutions of
Ax=c’

c’

SVD ‘solution’ of
Ax=c

(not in range)



S V D

When a vector in Υ lies outside the range of γ, 
the SVD pseudo-inverse guarantees that the best 
(in the least squares sense) φ given Υ is found. 

I.e., this `pseudo-inverse' minimizes the error. 
Thus, we can use SVD to find the optimal 
decoding functions, which we can now write as

Which is gives the same φ as always.

φ = US−1UT AT X



Po s s i b l e  t r a n s f o r m a t i o n s

Let’s do the same thing to function decoders

So we can find lease-squares optimal decoders 
using

f(X) = Aφf

AT f(X) = AT Aφf

φf = (AT A)−1AT f(X)
= γ−1Υ

φf = US−1UT AT f(X)



Po s s i b l e  t r a n s f o r m a t i o n s

So, the representational decoder, is found in the 
special case where f(x)=x. 

Regardless of which transformation we need 
decoders for, we always perform SVD on the 
same matrix, γ=ATA. 

Understanding the properties of γ can provide 
insight into all possible decodings of the 
population, ai. 



Po s s i b l e  t r a n s f o r m a t i o n s
SVs tell us the importance of the corresponding 
U vector. Importance being: 

related to the error that would result if we left a 
particular vector out of the mapping

related to the variance of population firing along 
the vectors in the γ matrix. 

the amount of (independent) information about 
population firing that can be extracted by 
looking only at data projected onto that U vector.



Po s s i b l e  t r a n s f o r m a t i o n s

In general, we can think of the magnitude of the 
singular value as telling us how relevant the 
dimension defined by the corresponding U 
vector is to the identity of the matrix we have 
decomposed. 

Since the matrix we have decomposed is like the 
correlation matrix of the neuron tuning curves, 
the large singular values are most important for 
accounting for the structure of those correlations.



Po s s i b l e  t r a n s f o r m a t i o n s
Notice that the vectors in U are orthogonal: 

they provide an (ordered) orthogonal basis for 
that matrix, where the original γ matrix was 
generated by a non-ordered non-orthogonal 
basis (the neuron tuning curves)

Consider a point in ‘neuron space’

Here, ei are axis vectors, one for each neuron 
with activity ai.

a = a1e1 + a2e2 + . . . + aNeN



Po s s i b l e  t r a n s f o r m a t i o n s

Because the neural responses are non-
independently driven by some variable, x, only a 
subspace of the space spanned by the ei vectors 
is ever actually occupied by the population. 

The γ matrix, because it tells us the correlations 
between all neurons in the population, provides 
us with the information we need to determine 
what that subspace is (i.e., U)



Po s s i b l e  t r a n s f o r m a t i o n s

Let’s do some math:

Or more simply

So, 

or

X̂ = AUS−1UT AT X

X̂ = χΦ

χm(x) =
∑

i

ai(x)Uim

χ = AU



Po s s i b l e  t r a n s f o r m a t i o n s

and continuing

so

Notice that χ and Φ are rotated versions of A 
and φ respectively. They are rotated into the 
coordinate system defined by U. 

Φ = S−1UT AT X
= UT US−1UT AT X
= UT φ

Φm =
∑

i

Umiφi



Po s s i b l e  t r a n s f o r m a t i o n s

We can think of U as the rotation matrix that 
aligns the first axis of the coordinate system 
along the dimension with the greatest variance 
in the encoding of x, the second axis along the 
dimension with the second greatest variance, etc.

So the χ vectors also end up being orthogonal 
and ordered by importance

So they are basis functions for the function space 
computable from A



S V D  3 D  p r o j e c t i o n s



Po s s i b l e  f u n c t i o n s
Whichever χ(x) functions have reasonably large 
associated singular values, are exactly the 
functions that we can do a good job of extracting 
from our encoding of the input space

We can also extract any linear combinations of 
those functions quite well. 

Because these functions are ordered, the more 
useful the `first' function is for reconstructing 
some transformation, f(x), the better we can 
extract it



Po s s i b l e  f u n c t i o n s

Let’s apply this analysis. Start with broad tuning.



We get the following (normalized) functions. (b) 
is the Legendre polynomials

Po s s i b l e  f u n c t i o n s

li(x) =
(−1)i

2ii!
di

dxi

[(
1− x2

)i
]



Po s s i b l e  f u n c t i o n s

The similarity between χ(x) and li(x) means that 
this neural population supports the extraction of 
functions that can be well-estimated using the 
standard Legendre basis. 

But the χ(x) functions are ordered by their 
singular values. Thus, the higher-order 
polynomial terms are not as well encoded by our 
population as the lower-order ones



C o m m e n t s
Tuning curves are very broad, and the 
polynomial basis is also very broad

The li basis is ordered by decreasing linearity so 
we expect the functions in precisely that order 

None of this would be true if the population did 
not evenly tile the input space. 

The basis does not just depend on the general 
`shape' of the neuron tuning curves, but also on 
the ‘heterogeneity’ of the population



H i g h e r  d i m e n s i o n s

n-dimensional vectors have cross terms in the 
computable functions

Lots of cross terms, how big are the sigular 
values?

f(x) = c0 + c1x1 + c2x2 + c3x
2
1 + c4x

2
2 + c5x1x2 + . . .

=
Norder∑

l=0

l∑

n=0

cn,l−nxn
1xl−n

2



a) 2D b) 4D

So, higher-D means higher order is harder.

M u l t i s e t  a n d  s i n g u l a r  v a l u e s

grey line: NS(l,D) =
(l + D − 1)!
l!(D − 1)!



G a u s s i a n  t u n i n g  c u r v e s

Same analysis for Gaussian tuning



G a u s s i a n  b a s i s  f u n c t i o n s



S V s :  G a u s s i a n  v s  L i n e a r

Comparing scalar singular values for the two:



C o m m e n t s
Gaussian basis looks like a Fourier basis (but 
pinned because of the end effects)

The Gaussian basis is better for encoding 
localized functions (see singular values)

In general, examining χ(x) determines what 
kinds of transformations are and are not well-
supported by that population. 

Extremely useful for constraining hypotheses



N o i s e

Essentially everything is the same, except the 
function ‘lines’ become ‘tubes’ of uncertainty

Importantly, however, the noise doesn't scale 
with the singular values, it is isometric in the 
vector space. 

This means that small singular values are more 
greatly affected by noise.



E r r o r  w i t h  n o i s e

Write as before

E =

〈[
x−

∑

i

(ai(x) + ηi) φi

]2〉

x,η

=

〈[
x−

∑

i

ai(x)φi

]2

+ σ2
η

∑

i

φ2
i

〉

x



N o i s e

We can now use our SVD expressions to give

E =

〈[
x−

∑

m

χmΦm

]2

+ σ2
η

∑

i,j

φiδijφj

〉

x

=

〈[
x−

∑

m

χmΦm

]2

+ σ2
η

∑

i,j

φi

∑

m

UimUmjφj

〉

x

=

〈[
x−

∑

m

χmΦm

]2

+ σ2
η

∑

m

Φ2
m

〉

x



N o i s e

Minimize with respect to rotated decoders:

dE

dΦn
=

〈
2

[
x−

∑

m

χmΦm

]
(−χn) + 2σ2

ηΦn

〉

x

0 = −2 〈χnx〉x + 2

〈
∑

m

χmχnΦn

〉

x

+ 2σ2
ηΦn

〈χnx〉x = SnΦn + σ2
ηΦn

Φn =
〈χnx〉x
Sn + σ2

η



N o i s e

So, the residual error will be

Er =
〈
[x− x̂]2

〉

x,η

=

〈[
x−

∑

m

χmΦm

]2〉

x,η

=
〈
x2

〉
x,η
− 2

〈
x

∑

m

χmΦm

〉

x,η

+

〈
∑

m

χmΦm

〉2

x,η



N o i s e

Substituting the optimal rotated decoders:

Er =
〈
x2

〉
x,η

− 2

〈
x

∑

m

χm
〈χmx〉x
Sm + σ2

η

〉

x,η

+ ...

〈
∑

m

χm
〈χmx〉x
Sm + σ2

η

〉2

x,η

=
〈
x2

〉
x
− 2

∑

m

〈χmx〉2x
Sm + σ2

η

+
∑

m

(Sm + σ2
η)

〈χmx〉2x(
Sm + σ2

η

)2

=
〈
x2

〉
x
−

∑

m

〈χmx〉2x
Sm + σ2

η



C o m m e n t s
Shows how much the mth basis function reduces 
the error in our estimate under noise

As the singular value approaches the value of 
the variance of the noise, the corresponding 
element does not usefully contribute to the 
representation.

When the noise becomes near the magnitude of 
that normalization term (i.e., SNR = 1 or less), 
the projection becomes `mis-normalized' and 
thus contributes incorrectly to the representation



C o m m e n t s

So, those basis functions whose corresponding 
singular value is equal to or smaller than the noise, 
should not be used in a good representation

So, we can simply `lop off' some of the singular 
values when doing the inverse to get the same 
result as including a certain amount of noise in 
our calculation of Γ (more analysis needed)



H e t e r o g e n e i t y



R M S  e r r o r  f o r  d i s t r i b u t i o n s



H e t e r o g e n e i t y
The precise nature of the tuning curves matters.

In the book we show that heterogeneity is a good 
balance between tiling and ease of construction

Heterogeneity provides good reduction of error 
under noise. 

The representational capacity (number of 
perfectly represented points) is also high for  
heterogeneous populations.


