
Nonlinear 
Transformations

Note: Projects...



N o n l i n e a r i t i e s
Common in the nervous system (as we know)

Generally ‘small’ nonlinearities (near linear)

‘Big’ nonlinearities are essential for useful 
information processing

Such nonlinearities in single neurons (e.g. locust 
visual system) and in networks (e.g. gain fields)

Single cell nonlinearities are not yet indisputable 
(and their form is not well understood)



L o c u s t  v i s u a l  s y s t e m

Single cell multiplication
Firing rate is given by

Mechanism unknown

From Koch and Segev, 2000, Nat. Neuro

=!'

f(t) = ⇥⇤(t� �) ⇥ e��⇥⇤(⌅�⇥)



S i n g l e  c e l l  n o n l i n .  i n  c o r t e x

Bartlett Mel and 
colleagues have found 
evidence for 
nonlinearities in single 
neurons in cortex 
(pyramidal cells). 



R e c i p e  f o r  l i n e a r  t r a n s .
1. Define the repn (enc/dec) for all variables 
involved in the operation.

2. Write the transformation in terms of these 
variables.

3. Write the transformation using the decoding 
expressions for all variables except the output 
variable. 

4. Substitute this expression into the encoding 
expression of the output variable. 



Pr o d u c t  o f  v a r i a b l e s

Follow the recipe (volunteer)

Representation:

Transformation

ai(x) = Gi

⌅
�i

�
�̃ix

⇥
+ Jbias

i

⇧

x̂ =
⇤

i

ai(x)�x
i

ck(x · y) = Gk

⌦
�k⇥̃k(x · y) + Jbias

k

↵

= Gk

⇤

⇧�k⇥̃k

�

⌥
 

i

ai(x)⇥x
i ·
 

j

bj(y)⇥y
j

⇥

�+ Jbias
k

⌅

⌃

= Gk

⇤

⇧
 

ij

⇤kijai(x)bj(y) + Jbias
k

⌅

⌃

⇤kij = �k⇥̃k⇥x
i ⇥y

j



S i n g l e  c e l l  n o n l i n e a r i t i e s

Need individual neurons computing 
nonlinearities

One proposed mechanism for implementing this 
kind of multiplication in neurons is 

‘coincidence detection’



C o i n c i d e n c e  d e t e c t i o n

Input to two dendrites 
applied at different 
delays. 

Hiroshi Kuba et al 
Development of 
membrane conductance 
improves coincidence 
detection in the nucleus 
laminaris of the chicken, 
J Physiol April 15, 2002 
vol. 540 no. 2 529-542

A These graphs are 10 
superimposed traces.

B Firing probability 
calculated from 40 
stimuli.

http://jp.physoc.org/search?author1=Hiroshi+Kuba&sortspec=date&submit=Submit
http://jp.physoc.org/search?author1=Hiroshi+Kuba&sortspec=date&submit=Submit


C o - i n c i d e n c e  d e t e c t i o n

In 1

In 2

Out

Coincidences



C o i n c i d e n c e  d e t e c t i o n

Let’s look at the PSCs

For convenience let h(t) be small Gaussians

ai(x)bj(y) =
�

n,m

hi(t� tin)hj(t� tjm)

ai(x)bj(y) =
�

n,m

e�(t�tin)2/2�2
e�(t�tjm)2/2�2

=
�

n,m

e�[(t�tin)2+(t�tjm)2]/2�2



C o i n c i d e n c e  d e t e c t i o n

After a little manipulation, we have

So, multiplying PSCs is just like CD 

Drawback: every spike from each neuron must 
be compared to every other spike from each 
neuron... massively ‘over connected’ structure.

ai(x)bj(y) =
�

n,m

e
�

»
2

“
t� tin+tjm

2

”2
+ 1

2 (tin�tjm)2
–
/2�2

=
�

n,m

e
�2

“
t� tin+tjm

2

”2
/2�2

e�
1
2 (tin�tjm)2/2�2



N e t w o r k s :  G a i n  f i e l d s

The rate of the (idealized) 
neurons in b) are R=f(x)g(y)

x+y is needed to reach target

Adding these multiplicatively 
modulated ‘gain fields’ gives 
an estimate

From Salinas and Their, 2000, Neuron



H o w  t o  p e r f o r m  m u l t i p l i c a t i o n

First, notice that we can compute nonlinear 
functions of encoded variables by finding 
“transformational decoders”

As before:

But:

E =
1
2
h[f(x) � f̂(x)]2i

=
1
2
h[f(x) �

X

i

a

i

(x)�f(x)
i

]2i

⌥i =
Z

ai(x)f(x)dx

�f(x) = ��1⌥



Tr a n s f o r m a t i o n a l  d e c o d e r s

Representation

Ω
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

600

700

Neuron Tuning Curves
Fi

rin
g 

R
at

e

Encoding

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ω

Estimate
Actual

Decoding
(Linearity)

Computation

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ω

Quadratic

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ω

Cubic



S p i k i n g  n e t w o r k
Can be implemented in a noisy spiking network 
(ramp input) 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

Po
pu

la
tio

n 
R

es
po

ns
e

20

30

40

50

60

70

80

90

100

N
eu

ro
n 

N
um

be
r



N o n l i n e a r i t i e s  v i a  n e t w o r k s

Form an intermediate repn in a `middle layer' of 
neurons with dimensionality Dm=Dx+Dy



N o n l i n e a r i t i e s  v i a  n e t w o r k s

Then find an optimal linear decoder to 
approximate the product

By solving

f̂(m) =
�

l

dl(m)�f
l

Ef =
�⇤

f(m)� f̂(m)
⌅2

⇥

m



Ve c t o r  f u n c t i o n  d e c o d e r s

When we compute 
nonlinear functions 
of vectors, it is 
analogous to 
computing nonlinear 
functions in scalar 
spaces (though along 
any direction).



N e t w o r k  n o n l i n e a r i t i e s

First find the weights to put the inputs into this 
m-D space

dl(m = [x y]) = Gl

⌦
�l

⌥
�̃lm
�

+ Jb
l

↵

= Gl

⌦
�l

�
⇥̃m1

l x̂ + ⇥̃m2
l ŷ
⇥

+ Jb
l

↵

= Gl

⇤

⇧
 

i

⇤m1
li ai(x) +

 

j

⇤m2
lj bj(y) + Jb

l

⌅

⌃ ,

⇤m1
li = �l⇥

x
i ⇥̃m1

l ⇤m2
lj = �l⇥

y
j ⇥̃m2

l



N e t w o r k  n o n l i n e a r i t i e s

Then use the transformation decoders we found 
earlier to extract the product

ck(f(m)) = Gk

�
�k

�
⇥̃kf(m)

⇥
+ Jb

k

 

= Gk

⇧
�k

⇤
⇥̃k

⌥

l

dl(m)⇥f
l

⌅
+ Jb

k

⌃

= Gk

⇧
⌥

l

⇤kldl(m) + Jb
k

⌃

⇤kl = �k⇥̃k⇥f
l



N e n g o  i m p l e m e n t a t i o n

Run demo



C o m m e n t s

Essentially, we have derived the `hidden layer' 
typical in ANNs. ANNs with such a layer can 
compute any function of the input

Also suggests a way of including nonlinearities 
in dendrites: embed the m layer into the 
dendrites. 

Makes nonlinearities internal to the cell, and we 
need far fewer cells to do multiplication -- not 
too straightforward, however



N e g a t i v e  w e i g h t s

Largely skipping this section

Dale’s principle: neurons are inhibitory or 
excitatory

This provides a mapping from any mixed weight 
network to a ‘biologically plausible’ one while 
preserving the function

Works for recurrent nets, and arbitrary 
dimensions (Nengo button)



Function 
Representation



R e p r e s e n t a t i o n s  w e ’ v e  s e e n



R e p r e s e n t a t i o n a l  h i e r a r c h y



W h y  f u n c t i o n s ?

Function representation is a common kind of 
representation because it is so general

If the relation between two continuous variables 
(e.g. light intensity and space, pitch and time, 
etc.) is represented, then function representation 
is likely most appropriate.

Consider primary visual cortex tuning to 
orientation (i.e. space by orientation)



V 1  t y p i c a l  t u n i n g  c u r v e



A n  e x t e n d e d  e x a m p l e  ( L I P )

Consider lateral intraparietal cortex (LIP). 

Evidence that differently-shaped objects at the 
same location cause different firing patterns 



F u n c t i o n  r e p r e s e n t a t i o n

Let " be space, and y be the ‘other’ variable (e.g. 
shape), then we can write y=x(") as the repn

Need to specify the domain of the repn

Do as for temporal decoding, a basis 
decomposition

x(�;A) =
�

m

Am�m(�) forA � ⇥(A)



LIP represents multi-bumped, variable height 
‘sum of Gaussian’ functions. 

Find an orthogonal basis that spans the space of 
possible representations, x("). 

F u n c t i o n  r e p r e s e n t a t i o n

= SVD of 



D e f i n i n g  t h e  d o m a i n
Defining ρ(A) is a way of limiting the space 
spanned by # to a subspace of interest

Like a Fourier representation, defining ρ(A) gets 
you high/low/band-pass functions.

It's often difficult to define the probability 
distribution ρ(A). 

Instead, identify vectors A that represent these 
functions then use them as a MC sample 



F u n c t i o n  r e p r e s e n t a t i o n

Encoding (guesses?)

Decoding

x̂(�;A) =
�

i

ai(A)⇥i(�)

ai(x(⇥;A)) = Gi

⇤
�i

�
x(⇥;A)⇤̃i(⇥)

⇥

�
+ Jbias

i

⌅

= ai(A)



F u n c t i o n  r e p r e s e n t a t i o n

Neuron tuning properties: 



F i n d i n g  d e c o d e r s

Just like before

So, 

Where

E =

⇤�
x(⇥;A)�

⇧

i

(ai(A) + �i) ⇤i(⇥)

⇥2⌅

A,�

�(�) = ��1⇥(�)

�ij = �ai(A)aj(A)⇥A + ⇤2
��ij

⇥i(⇥) = �x(⇥;A)ai(A)⇥A



C o n s e q u e n c e s

The `tuning curve' measured by neuroscientists 
will change depending on the input (!)

must be very prudent in our choice of `test' 
functions for the `real' tuning curve of a cell 
(an appropriate delta function)

Can show the cell everything you can (white 
noise), and narrow down the elements of the 
stimulus set that the cell actually responds to



F u n c t i o n s  a s  v e c t o r s
Useful translation:

⇥i(�) =
M�

m

qim�m(�)

ai(A) = Gi

 

↵�i

⌥
�

n,m

Am�m(⇤)q̃in�n(⇤)

�

�

+ Jbias
i

⌦

�

= Gi

⇧
�i

⇤
�

n,m

Amq̃in⇥nm

⌅
+ Jbias

i

⌃

= Gi

⇧
�i

⇤
�

m

Amq̃im

⌅
+ Jbias

i

⌃

= Gi

�
�i �Aq̃i⇥m + Jbias

i

⇥

⇥̃i(�) =
M�

m

q̃im�m(�)



F u n c t i o n s  a s  v e c t o r s
So, we can express function decoding as one of 
vector decoding:

Why bother with function representation? 

1. Some neural systems are more naturally 
thought of this way (reln of continuous values)

2. Clarifies how different dimensions of a 
vector can have distinct mappings to the brain.

Âm =
�

i

ai(A)qim

Â =
�

i

ai(A)qi



W h a t  i s  r e p r e s e n t a t i o n

Representation = {encoding, decoding}

Therefore, you don’t know what a representation 
is until you know how it’s used (big phil debate).

So, merely carrying information isn’t enough to 
represent (e.g., bumps on the head).

So, let’s think more about decoders



W h a t  i s  r e p r e s e n t a t i o n

First, there are more than one

So, let’s stipulate that the representational 
decoders are those which identify the variable 
that all other actual decodings are functions of

Still doesn’t solve the inverse issue: 

Let’s appeal to consistency with other sciences 
(hence we’ll choose variables like ‘velocity’)

�x
i and �f(x)

i and, of course x = f�1(f(x))


