NONLINEAR TRANSFORMATIONS

Note: Projects...

Nonlinearities

- Common in the nervous system (as we know)
- Generally 'small' nonlinearities (near linear)
- 'Big' nonlinearities are essential for useful information processing
- Such nonlinearities in single neurons (e.g. locust visual system) and in networks (e.g. gain fields)
- Single cell nonlinearities are not yet indisputable (and their form is not well understood)

Locust visual system

Single cell multiplication Firing rate is given by $f(t) = \theta'(t - \delta) * e^{-\alpha * \theta(\tau - \delta)}$ Mechanism unknown

From Koch and Segev, 2000, Nat. Neuro

Single cell nonlin. in cortex

Bartlett Mel and colleagues have found evidence for nonlinearities in single neurons in cortex (pyramidal cells).

Recipe for linear trans.

- 1. Define the repn (enc/dec) for all variables involved in the operation.
- 2. Write the transformation in terms of these variables.
- 3. Write the transformation using the decoding expressions for all variables except the output variable.
- 4. Substitute this expression into the encoding expression of the output variable.

Product of variables

- Follow the recipe (volunteer)
- Representation:
- $a_{i}(x) = G_{i} \left[\alpha_{i} \left\langle \tilde{\phi}_{i} x \right\rangle + J_{i}^{bias} \right]$ $\hat{x} = \sum_{i} a_{i}(x) \phi_{i}^{x}$ Transformation $c_k(x \cdot y) = G_k \left[\alpha_k \tilde{\phi}_k(x \cdot y) + J_k^{bias} \right]$ $G_{k}\left[\alpha_{k}\tilde{\phi}_{k}\left(\sum_{a_{i}(x)\phi_{i}^{x}}\cdot\sum_{b_{i}(y)\phi_{i}^{y}}\right)+J_{k}^{bias}\right]$

$$= \alpha_k \left[\alpha_k \phi_k \left(\sum_i \alpha_i(x) \phi_i - \sum_j \phi_j(y) \phi_j \right) + \sigma_k \right]$$
$$= G_k \left[\sum_{ij} \omega_{kij} a_i(x) b_j(y) + J_k^{bias} \right]$$
$$\omega_{kij} = \alpha_k \tilde{\phi}_k \phi_i^x \phi_j^y$$

Single cell nonlinearities

 Need individual neurons computing nonlinearities

• One proposed mechanism for implementing this kind of multiplication in neurons is

'coincidence detection'

Coincidence detection

Input to two dendrites applied at different delays.

Hiroshi Kuba et al Development of membrane conductance improves coincidence detection in the nucleus laminaris of the chicken, J Physiol April 15, 2002 vol. 540 no. 2 529-542

A These graphs are 10 superimposed traces.

B Firing probability calculated from 40 stimuli.

Co-incidence detection

Coincidence detection

• Let's look at the PSCs

$$a_i(x)b_j(y) = \sum_{n,m} h_i(t - t_{in})h_j(t - t_{jm})$$

• For convenience let h(t) be small Gaussians

$$a_{i}(x)b_{j}(y) = \sum_{n,m} e^{-(t-t_{in})^{2}/2\Delta^{2}} e^{-(t-t_{jm})^{2}/2\Delta^{2}}$$
$$= \sum_{n,m} e^{-[(t-t_{in})^{2}+(t-t_{jm})^{2}]/2\Delta^{2}}$$

Coincidence detection

• After a little manipulation, we have

0

$$i(x)b_{j}(y) = \sum_{n,m} e^{-\left[2\left(t - \frac{t_{in} + t_{jm}}{2}\right)^{2} + \frac{1}{2}(t_{in} - t_{jm})^{2}\right]/2\Delta^{2}}$$
$$= \sum_{n,m} e^{-2\left(t - \frac{t_{in} + t_{jm}}{2}\right)^{2}/2\Delta^{2}} e^{-\frac{1}{2}(t_{in} - t_{jm})^{2}/2\Delta^{2}}$$

- So, multiplying PSCs is just like CD
- Drawback: every spike from each neuron must be compared to every other spike from each neuron... massively 'over connected' structure.

Networks: Gain fields

- The rate of the (idealized) neurons in b) are R=f(x)g(y)
- x+y is needed to reach target
- Adding these multiplicatively modulated 'gain fields' gives an estimate

• From Salinas and Their, 2000, Neuron

How to perform multiplication

 First, notice that we can compute nonlinear functions of encoded variables by finding "transformational decoders"

$$E = \frac{1}{2} \langle [f(x) - \hat{f}(x)]^2 \rangle$$
$$= \frac{1}{2} \langle [f(x) - \sum_i a_i(x)\phi_i^{f(x)}]^2 \rangle$$
$$\bullet \text{ As before: } \phi^{f(x)} = \Gamma^{-1} \Upsilon$$

• But:
$$\Upsilon_i = \int a_i(x) f(x) dx$$

Transformational decoders

Spiking network

• Can be implemented in a noisy spiking network (ramp input)

Nonlinearities via networks

 Form an intermediate repn in a `middle layer' of neurons with dimensionality D_m=D_x+D_y

Nonlinearities via networks

• Then find an optimal linear decoder to approximate the product

$$\hat{f}(\mathbf{m}) = \sum_{l} d_{l}(\mathbf{m})\phi_{l}^{f}$$

$$g \qquad E_{f} = \left\langle \left[f(\mathbf{m}) - \hat{f}(\mathbf{m}) \right] \right\rangle$$

• By solving

Vector function decoders

• When we compute nonlinear functions of vectors, it is analogous to computing nonlinear functions in scalar spaces (though along any direction).

Network nonlinearities

• First find the weights to put the inputs into this *m*-*D* space

$$d_{l}(\mathbf{m} = [x \, y]) = G_{l} \left[\alpha_{l} \left\langle \tilde{\phi}_{l} \mathbf{m} \right\rangle + J_{l}^{b} \right]$$
$$= G_{l} \left[\alpha_{l} \left(\tilde{\phi}_{l}^{m_{1}} \hat{x} + \tilde{\phi}_{l}^{m_{2}} \hat{y} \right) + J_{l}^{b} \right]$$
$$= G_{l} \left[\sum_{i} \omega_{li}^{m_{1}} a_{i}(x) + \sum_{j} \omega_{lj}^{m_{2}} b_{j}(y) + J_{l}^{b} \right]$$

 $\omega_{li}^{m_1} = \alpha_l \phi_i^x \tilde{\phi}_l^{m_1} \qquad \qquad \omega_{lj}^{m_2} = \alpha_l \phi_j^y \tilde{\phi}_l^{m_2}$

Network nonlinearities

• Then use the transformation decoders we found earlier to extract the product

$$\begin{aligned} (f(\mathbf{m})) &= G_k \left[\alpha_k \left(\tilde{\phi}_k f(\mathbf{m}) \right) + J_k^b \right] \\ &= G_k \left[\alpha_k \left(\tilde{\phi}_k \sum_l d_l(\mathbf{m}) \phi_l^f \right) + J_k^b \right] \\ &= G_k \left[\sum_l \omega_{kl} d_l(\mathbf{m}) + J_k^b \right] \end{aligned}$$

$$\omega_{kl} = \alpha_k \tilde{\phi}_k \phi_l^f$$

 C_k

Nengo implementation

• Run demo

Comments

- Essentially, we have derived the `hidden layer' typical in ANNs. ANNs with such a layer can compute any function of the input
- Also suggests a way of including nonlinearities in dendrites: embed the **m** layer into the dendrites.
- Makes nonlinearities internal to the cell, and we need far fewer cells to do multiplication -- not too straightforward, however

Negative weights

- Largely skipping this section
- Dale's principle: neurons are inhibitory or excitatory
- This provides a mapping from any mixed weight network to a 'biologically plausible' one while preserving the function
- Works for recurrent nets, and arbitrary dimensions (Nengo button)

FUNCTION REPRESENTATION

Representations we've seen

Neural System	Dimension	Encoder $(a_i(x))$	Decoder (\hat{x})
Neural Integrator	1-D scalar	$G_i \left[\alpha_i x + J_i^{bias} \right]$	$\sum_{i} a_i(x)\phi_i$
Motor Cortex	2-D vector	$G_i \left[\alpha_i \left\langle \tilde{\boldsymbol{\phi}}_i \mathbf{x} \right\rangle_n + J_i^{bias} \right]$	$\sum_i a_i(\mathbf{x}) \boldsymbol{\phi}_i$
Semicircular Canals	2-D vector	$G_{im}\left[\alpha_{im}\left\langle \mathbf{x}\tilde{\pmb{\phi}}_{im}\right\rangle_{n}+J_{im}^{bias}\right]$	$\sum_{i,m} a_{im}(\mathbf{x}) \boldsymbol{\phi}_{im}$

Representational hierarchy

Kind	Encoder $(a_i(x))$	Decoder (\hat{x})
Scalar (1)	$G_i \left[\alpha_i x + J_i^{bias} \right]$	$\sum_{i} a_i(x)\phi_i$
Vector (N)	$G_i \left[\alpha_i \left\langle \tilde{\phi}_i[n] x[n] \right\rangle_n + J_i^{bias} \right]$	$\sum_{i} a_i(x[n])\phi_i[n]$
Function (∞)	$G_i \left[\alpha_i \left\langle \tilde{\phi}_i(\nu) x(\nu) \right\rangle_{\nu} + J_i^{bias} \right]$	$\sum_{i} a_i(x(\nu))\phi_i(\nu)$
Vector Field $(\infty \times N)$	$G_i\left[\alpha_i\left\langle \tilde{\phi}_i(\nu,[n])x(\nu,[n])\right\rangle + J_i^{bias}\right]$	$\sum_i a_i(x(\nu, [n])\phi_i(\nu, [n])$

Why functions?

- Function representation is a common kind of representation because it is so general
- If the relation between two continuous variables (e.g. light intensity and space, pitch and time, etc.) is represented, then function representation is likely most appropriate.
- Consider primary visual cortex tuning to orientation (i.e. space by orientation)

V1 typical tuning curve

An extended example (LIP)

• Consider lateral intraparietal cortex (LIP).

• Evidence that differently-shaped objects at the same location cause different firing patterns

Function representation

- Let v be space, and y be the 'other' variable (e.g. shape), then we can write y=x(v) as the repn
- Need to specify the domain of the repn
- Do as for temporal decoding, a basis decomposition

$$x(\nu; \mathbf{A}) = \sum_{m} A_m \Phi_m(\nu) \text{ for } \mathbf{A} \in \rho(\mathbf{A})$$

Function representation

 LIP represents multi-bumped, variable height 'sum of Gaussian' functions.

• Find an orthogonal basis that spans the space of possible representations, x(v).

Defining the domain

- Defining ρ(A) is a way of limiting the space spanned by Φ to a subspace of interest
- Like a Fourier representation, defining ρ(A) gets you high/low/band-pass functions.
- It's often difficult to define the probability distribution ρ(A).
- Instead, identify vectors **A** that represent these functions then use them as a MC sample

Function representation

• Encoding (guesses?) $a_i(x(\nu; \mathbf{A})) = G_i \left[\alpha_i \left\langle x(\nu; \mathbf{A}) \tilde{\phi}_i(\nu) \right\rangle_{\nu} + J_i^{bias} \right]$ $= a_i(\mathbf{A})$

• Decoding $\hat{x}(\nu; \mathbf{A}) = \sum_{i} a_i(\mathbf{A})\phi_i(\nu)$

Function representation

• Neuron tuning properties:

Finding decoders

• Just like before

$$E = \left\langle \left[x(\nu; \mathbf{A}) - \sum_{i} \left(a_i(\mathbf{A}) + \eta_i \right) \phi_i(\nu) \right]^2 \right\rangle_{\mathbf{A}, \eta}$$

- So, $\phi(\nu) = \Gamma^{-1} \Upsilon(\nu)$
- Where

$$\Gamma_{ij} = \langle a_i(\mathbf{A})a_j(\mathbf{A})\rangle_{\mathbf{A}} + \sigma_{\eta}^2 \delta_{ij}$$

$$\Upsilon_i(\nu) = \langle x(\nu; \mathbf{A})a_i(\mathbf{A})\rangle_{\mathbf{A}}$$

Consequences

- The `tuning curve' measured by neuroscientists will change depending on the input (!)
 - must be very prudent in our choice of `test' functions for the `real' tuning curve of a cell (an appropriate delta function)
- Can show the cell everything you can (white noise), and narrow down the elements of the stimulus set that the cell actually responds to

Functions as vectors

• Useful translation:

$$\tilde{\phi}_{i}(\nu) = \sum_{m}^{M} \tilde{q}_{im} \Phi_{m}(\nu) \qquad \phi_{i}(\nu) = \sum_{m}^{M} q_{im} \Phi_{m}(\nu)$$

$$a_{i}(\mathbf{A}) = G_{i} \left[\alpha_{i} \left\langle \sum_{n,m} A_{m} \Phi_{m}(\nu) \tilde{q}_{in} \Phi_{n}(\nu) \right\rangle_{\nu} + J_{i}^{bias} \right]$$

$$= G_{i} \left[\alpha_{i} \left(\sum_{n,m} A_{m} \tilde{q}_{in} \delta_{nm} \right) + J_{i}^{bias} \right]$$

$$= G_{i} \left[\alpha_{i} \left(\sum_{m} A_{m} \tilde{q}_{im} \right) + J_{i}^{bias} \right]$$

$$= G_{i} \left[\alpha_{i} \left(\sum_{m} A_{m} \tilde{q}_{im} \right) + J_{i}^{bias} \right]$$

Functions as vectors

- Why bother with function representation?
 - 1. Some neural systems are more naturally thought of this way (reln of continuous values)
 - 2. Clarifies how different dimensions of a vector can have distinct mappings to the brain.

What is representation

- Representation = {encoding, decoding}
- Therefore, you don't know what a representation is until you know how it's used (big phil debate).
- So, merely carrying information isn't enough to represent (e.g., bumps on the head).
- So, let's think more about decoders

What is representation

- First, there are more than one $\phi_i^{\mathbf{x}}$ and $\phi_i^{f(\mathbf{x})}$ and, of course $x = f^{-1}(f(x))$
- So, let's stipulate that the representational decoders are those which identify the variable that all other actual decodings are functions of
- Still doesn't solve the inverse issue:
 - Let's appeal to consistency with other sciences (hence we'll choose variables like 'velocity')