


Adaptation

e ‘Regular spiking’ cells most common in cortex

Adaptation occurs because of a slow
hyperpolarizing K current in these cells
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Adapting LAl cirelik

A variable resistor, Radapt, can account for this K
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aLIF Behaviour

o Adapt channels stay closed until a spike, then
they open (by decreasing Radapt) €ssentially
lowering the reset voltage, making it harder for
the next spike to be fired.

Between spikes, the channels start to close,
raising Radapt at a speed determined by Tadapt.
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Comparison of aLIF response function to a
complex conductance model
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g decoding

aLIF (as we will see) is more efficient
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Net Force at Rest

Drwing toroe Net driving lorce
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http:/ /tx.technion.ac.il/ ~yarmola /bioPhys/Nerve%?20impulse%20propagation.htm

B: Na open
C: K open
D: Na close
E: Na pump
F: K close
G: Pumps


http://tx.technion.ac.il/~yarmola/bioPhys/Nerve%20impulse%20propagation.htm
http://tx.technion.ac.il/~yarmola/bioPhys/Nerve%20impulse%20propagation.htm

e Absolute: Na channels are open or recovering.
No second spike

e Relative: K channels are open memberane is
hyperpolarized (-80mV), so hard to generate 2nd
spike (usually from -70mV)
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HodgkimHuxleg circuit
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HodgkimHuxleg equations

4D nonlinear differential equation

dm 1
7 — MV
dt 7'771(V) ( e ( ))
dh 1

dt Th(v)( v+ H(V))
dn 1

il ) (—n + N(V)).




HH parameter dgnamics

m, n activation; h, inactiviation params

all approach some asymptote (e.g., N(V)) with a
time constant (e.g., 7,).
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HH Dynamics: Hop?
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Class | circuit

zero minimum spiking hz and grow monotonically

need to add A-current, another fast K current
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Theta neuron behaviour

Canonical model of saddle-node bifurcation

Phase variable maps to neural states

stable point b) d)

Jaahe

o Al

0 40 80 0 40 80
tme (ms) tnme (ms)

absolute
refractory

relative
refractory

excited

MO

rest threshold




Theta neuron decoding

Takes 100x longer than LIF to run
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Wilson Neuron (reduced)

Start with a HH neuron model. Rinzel simps:

Na activation is very fast (\tau(V)) is really
small), so allow m=M(V) (no dynamics)

e Na inactivation is equal and opposite to K
activation, so let h=1-n (combine h & n -> R)

o We need the A-current. Rose & Hindmarsh simp:
e Make the dynamics for R quadratic.
e Include adaptation variable with slow dynamics

Have 3D class I model!



Wilson neuron equations
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Comparison of Wilson neuron and real data
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e Pros: it's a class I, adapting neuron with spike
dynamics; captures spike height changes, spike
shape, and after-hyperpolarizations (overshoot
of the resting value after a spike)

e Cons: 600x slower than LIF



Wilson neuron decoding




Comparison of neurons

Neuron Rate | Bits/spike | RMSE | Run time (s)
LIF [14 [.24 0.153 0.18
Adapting LIF [14 2.23 0.153 0.24
6-Neuron 109 0.96 0.160 20.1
Wilson Model 91 2.00 0.186 [25.2




Summarg

e variety: "phenomenological' models through to
more complete models that include adaptation,
spike dynamics, and ion channel dynamics.

e We haven't discussed are compartmental models.
(http: [ [ diwww.epfl.ch/ ~gerstner /SPNM /nodel 7.html) :

e All of the models have info rates between 1-3 b/s

Adaptation seems to help improve efficiency
(using Gaussian white noise here)

o LIF are very computationally efficient and have
reasonable info trans efficiency.


http://diwww.epfl.ch/~gerstner/SPNM/node17.html
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