
Temporal 
Representation in 

Neurons



LIF is a good standard because:

it is simple

it produces spikes

it is known to be a limiting case of more 
complex models

the parameters in the model map onto known 
properties of real neurons

L e a k y  i n t e g r a t e - a n d - f i r e
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L I F  a n d  b i o - p l a u s i b i l i t y
the bilipid cell membrane acts like a capacitor

has a passive flow of ions through the cell 
membrane ion channels -- a `leak' current in R

neurons elicit a stereotypical (spike) when the 
soma voltage passes a threshold

the spike cannot be repeated for about 1ms after 
a spike (absolute refractory period).

for molecular biology details see: http://
soma.npa.uiuc.edu/courses/bio303/ch2.html.

http://soma.npa.uiuc.edu/courses/bio303/ch2.html
http://soma.npa.uiuc.edu/courses/bio303/ch2.html
http://soma.npa.uiuc.edu/courses/bio303/ch2.html
http://soma.npa.uiuc.edu/courses/bio303/ch2.html


The current across the membrane can be found 
by differentiating V=Q/C to give

The ionic current, JR, accounts for this passive 
leak of charge. Ohm's law gives

D e r i v a t i o n  o f  L I F  m o d e l

JC = C
dV

dt

JR =
V

R
.



Input from dendrites results in JM, a membrane 
current which is the result of Jbias and Jdrive.  
Kirchoff’s law means

So, for τRC = RC

JM = JC + JR

JM = C
dV

dt
+

V

R
dV

dt
= − 1

τRC
(V (t)− JM (t)R)



This first-order ODE only describes the passive 
behaviour. 

Once V crosses the neuron threshold, Vth, the 
gate closes for τref and a delta function, δ(tn), 
spike is generated

So τref is the absolute refractory period and the 
spike is a delta function

S p i k i n g



S o l v i n g  t h e  O D E

Start by assuming a solution of the form 

Substituting gives

V (t) = F (t)e−t/τRC

d

dt

(
F (t)e−t/τRC

)

= − 1
τRC

(
F (t)e−t/τRC

− JM (t)R
)



Solving the ODE with that solution form gives:

I.e. the voltage right now (at t) depends on all 
past current input, JM(t'), where each input is 
weighted by a function that exponentially decays 
as it gets further away (in the past) from the 
current time (memory).

Evaluting this integral for constant JM gives:

V (t) =
R

τRC

∫ t

0
e−(t−t′)/τRC

JM (t′)dt′.

V (t) = JMR
(
1− e−t/τRC

)
.



Firing rate as a function of time to threshold is

We can find tth

Substituting and re-arranging gives

L I F  R e s p o n s e  F u n c t i o n

a(tth) =
1

tth + τ ref

Vth = JMR
(
1− e−tth/τRC

)

tth = −τRC ln
(

1− Vth

JMR

)
.

a(x) =
1

τ ref − τRC ln
(
1− Jth

JM (x)

)

Recall : JM (x) = αx + Jbias



W e a k n e s s e s  o f  t h e  L I F  m o d e l

they are point neurons

time courses of different ion conductances are 
not modeled

many physiologically unrealistic assumptions (R 
constant, JM static, Vth static, no adaptation, etc.)

One standard complaint with LIF models is that 
dendrites are linear, but the way JM(x) is 
determined is not part of the LIF model



Te m p o r a l  C o d i n g

Debate between two views of neural coding:

1. rate codes: The firing rate (over about 100ms) 
of the neuron is what carries information.

2. timing codes: The precise pattern of spike 
generation carries information. 

So defined, both contradicted by some evidence

Luckily, we don't have to choose either kind of 
code, given our characterization.



Te m p o r a l  e n c o d i n g

Temporal encoder, just like population encoder

Where

Need a temporal decoder, h(t)

a(x(t)) = G[J(x(t))] =
∑

n

δ(t− tn),

J(x(t)) = αφ̃x(t) + Jbias



Te m p o r a l  D e c o d i n g

In short, we want to find the optimal linear h(t) 
in

I.e., we’re trying to find the impulse response of 
a linear system that would give the best estimate 
of x(t) given the spike train

Evaluating gives:

x̂(t) =
∫ T

0
h(t− t′)

∑

n

δ(t′ − tn)dt′

x̂(t) =
∑

n

h(t− tn).



C o n v o l u t i o n

The response of a linear system (which could be 
a decoder), is just such a convolution of the 
impulse response with the input

r(t) = f(t) ∗ g(t) =
∫ ∞

−∞
g(t− τ)f(τ)dτ



N e u r a l  c o n v o l u t i o n s

V (t) =
R

τRC

∫ t

0
e−(t−t′)/τRC

JM (t′)dt′.

x̂(t) =
∫ T

0
h(t− t′)

∑

n

δ(t′ − tn)dt′

=
∑

n

∫ T

0
h(t− t′)δ(t′ − tn)dt′

for one n =
∫ T

0
h(t− t′)δ(t′ − s)dt′

g(τ)f(t-τ)



Temporal Representation

'On' neuron spikes

'Off' neuron spikes

Decoded estimate

Input signal
0

h(t)





We need to define our domain (‘x’ in the 
population case)

How about a Fourier series

Where the coefficients are chosen somehow

F i n d i n g  h ( t )

x(t;A) =
(N−1)/2∑

n=−(N−1)/2

Aneiωnt

ρ(A) =
(N−1)/2∏

n=0

ρ(An) =
(N−1)/2∏

n=0

1√
2πPn

e−A2
n/2Pn



Fo u r i e r  t r a n s f o r m

Any function can be expressed as a series of 
sines and cosines

f f+3f

f+3f+5f f+3f+5f+...+15f



Fo u r i e r  s e r i e s

since

An are complex

An are complex conjugates around zero if f(t) is 
real.

f(t) =
1
2
a0 +

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

f(t) =
∞∑

n=−∞
Aneint

eint = cos(nt) + i sin(nt)



A n  e x a m p l e

y = sin(x) +2*cos(2*x)+
.5*sin(5*x)+cos(8*x);

plot(x,y)

plot(fftshift(abs(fft(y))))



M i n i m i z i n g

So, we want to minimize:

In frequency space:

〈
[x(t;A)− h(t) ∗R(t;A)]2

〉

E =
〈

1
2π

|x(ω;A)− h(ω)R(ω;A)|2
〉

A,ω



M o n t e  C a r l o

We can’t solve this directly, so we estimate

with a bunch of samples (i.e., windowing)

This allows us to solve for the decoder

E =
1

Nα

∑

α

∑

n

|Aα(ωn)− h(ωn)R(ωn;Aα)|2 .

h(ω) =
〈A(ω)R∗(ω)〉A〈
|R(ω;A)|2

〉

A



A  s a m p l e  f i l t e r



A b o u t  t h i s  f i l t e r

The filter was found for bandlimited (0-30Hz) 
Gaussian white noise on 4 s of data.

The filter is not symmetrical in time but skewed 
in the positive direction

The filter has a negative time component (non-
causal). 



D e c o d i n g  e x a m p l e s



Po w e r  S p e c t r u m  C o m p a r i s o n



Same h(t), different signals (note x-axis)

R a t e / t i m i n g  c o d e



C o r r e l a t i o n  t i m e s
One way to think about the difference between 
these functions is in terms of correlation time

Correlation time: the maximum time window for 
which the autocorrelation function is above half 
its maximum value. 

Future values of the signal are predictable out to 
that window

So generally, a wider bandwidth means a shorter 
correlation time

A(τ) =
∫ ∞

−∞
f(t)f(t + τ) dt



Different correlations times for finding h(t) make 
some, but not a huge difference

C o r r e l a t i o n  t i m e 



O n  o p t i m a l  f i l t e r s

Optimal decoder extends just over 5 ms or so.

They are non-causal... hence not used by brains

Nevertheless, they provide:

a means of comparing models to real neurons

bounds for non-optimal decoding

justification of linear filtering



Ty p i c a l  PS C s

From: http://www.zoo.utoronto.ca/
berry/zoo252/l9/lect9.htm 

http://www.zoo.utoronto.ca/berry/zoo252/l9/lect9.htm
http://www.zoo.utoronto.ca/berry/zoo252/l9/lect9.htm
http://www.zoo.utoronto.ca/berry/zoo252/l9/lect9.htm
http://www.zoo.utoronto.ca/berry/zoo252/l9/lect9.htm


Po s t - s y n p a t i c  c u r r e n t s

PSCs are ellicited upon the reception of 
neurotransmitters by dendrites. 

PSCs look surprisingly like optimal filters 
(although they are strictly causal).

They can be used as temporal filters...



D e c o d i n g  w i t h  PS C s



Po w e r  s p e c t r u m  c o m p a r i s o n



PS C s  v s  O p t i m a l  f i l t e r s

Results in small reduction in information 
transmission, but a huge gain in plausibility

Reductions in coding accuracy can be made up 
for by including more neurons.

Similarity suggests linear decoding is a good 
characterization of neural representation

So, all future models use PSC filtering instead of 
optimal filtering



I n f o r m a t i o n  i n  n e u r a l  s y s t e m s
measures are surprisingly consistent across 
many different neural systems

cricket cercal system, between about 150 and 300 b/s. (between 1.1 and 3 
bits per spike)

bullfrog sacculus rates of about 3 b/s

motion-selective H1 neurons; about 3 b/s

salamander retina, rate of about 3.4 b/s

primate visual area V5  1-2 b/s 

highest transmission rates: bullfrog auditory 
neurons, rates as high as 7.8 b/s (natural stimuli, 
broadband, 1.4 b/s)



L e s s o n s

these are impressively high transmission rates, 
approach the optimal possible coding efficiencies

in frog sacculus, cricket cerci, bullfrog audition, 
and electric fish, the codes are 20-60% efficient

efficiency increases for natural stimuli

methods provide alower bound on the code, 
efficiencies could be higher



I n f o r m a t i o n  t h e o r y
Self-information is defined as

So, for independent events,

Entropy

Transmitter Channel Receiver

Noise

I(x) = log2(1/p(x)) = −log2(p(x))

I(x1x2) = I(x1) + I(x2)

H(x) = E(I(x)) = −
∑

n

p(xi)log2p(xi)



I n f o r m a t i o n  i n  m o d e l  n e u r o n s

Technically, since the models are deterministic, 
there is no source of uncertainty.

However, we have a source of error (linear 
decoding for nonlinear encoding).

Can calculate information by looking at sources 
of error and using the Hartley-Shannon theorem:

I =
1
2

log2(1 + SNR)



I n f o r m a t i o n  a n d  S N R

Signal is explained power, noise is unexplained 
power (or variance), so 

Where

SNR =
〈
x̂2

〉
x

MSE

MSE =
〈
x2

〉
x
−

〈
x̂2

〉
x〈

x̂2
〉

x
=

〈
h2R2

〉
x



I n f o r m a t i o n  r a t e

Information wrt input signal x per frequency 
channel:

So we can compute the rate as

I =
1
2

log2




〈
x2

〉
x

〈x2〉x − 〈x·R(x)〉2x
〈R2(x)〉x





InfoRate =
1
2

∆ω

2π

∑

n

In



O p t i m a l  &  PS C  d e c o d i n g

optimal

PSC


