


Leakg integrate~and~{:ire

o LIF is a good standard because:
e itis simple
o it produces spikes

e it is known to be a limiting case of more
complex models

o the parameters in the model map onto known
properties of real neurons
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LIF and bio~Plausibi|it9

the bilipid cell membrane acts like a capacitor

has a passive flow of ions through the cell
membrane ion channels -- a “leak' current in R

neurons elicit a stereotypical (spike) when the
soma voltage passes a threshold

the spike cannot be repeated for about 1ms after
a spike (absolute refractory period).

for molecular biology details see: http:/ /
soma.npa.uiuc.edu/courses /bio303 / ch2.html.
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Derivation of LIF model

e The current across the membrane can be found
by differentiating V=Q/C to give

dV
b =
c dt

e The ionic current, Jr, accounts for this passive
leak of charge. Ohm's law gives

JR:E.



e Input from dendrites results in Jp, a membrane
current which is the result of Jpias and Jdrive.
Kirchoff’s law means

e —= Jo+ I
e SO, for TRC = RC
ay - 4
— (' |
M it R
dV 1

dt T RO (

V(t) = Ju(t)R)



Spiking

o This first-order ODE only describes the passive
behaviour.

Once V crosses the neuron threshold, Vy, the
gate closes for t™f and a delta function, o(t»),
spike is generated

So 1 is the absolute refractory period and the
spike is a delta function



Solving the ODE

e Start by assuming a solution of the form
RC
V(t)= F(t)e t"

e Substituting gives

d RC
= i )
dt( (e

e

= ——= (F)e " — Iu()R)




e Solving the ODE with that solution form gives:

R :
V(t) — m 6_(t_t )/TRC JM(t/)dt/
0

o Le. the voltage right now (at t) depends on all
past current input, Ju(t'), where each input is
weighted by a function that exponentially decays
as it gets further away (in the past) from the
current time (memory).

e Evaluting this integral for constant Ju gives:

V(e) = JuR (1 - e—t/TRC) |



LIE Response Function

o Firing rate as a function of time to threshold is

1
? a’(tth) Tz ref
e We can find ty Gefr ot

‘/;fh ik JMR (1 e e—tth/TRC)

et Vin :
Ju R

o Substituting and re-arranging gives
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Weaknesses of the LIF model

e they are point neurons

e time courses of different ion conductances are
not modeled

many physiologically unrealistic assumptions (R
constant, Ju static, Vg, static, no adaptation, etc.)

e One standard complaint with LIF models is that
dendrites are linear, but the way Jm(x) is
determined is not part of the LIF model



Temporal Coding

o Debate between two views of neural coding:

1. rate codes: The firing rate (over about 100ms)
of the neuron is what carries information.

o 2. timing codes: The precise pattern of spike
generation carries information.

So defined, both contradicted by some evidence

Luckily, we don't have to choose either kind of
code, given our characterization.



Temporal encocling

o Temporal encoder, just like population encoder

a(z(t)) = GlJ(z(t)] = Y o(t —ta).

e Where

J(x(t)) = o@r(t) + J"*

o Need a temporal decoder, h(t)



Temporal Decoding

e In short, we want to find the optimal linear h(t)
n

Z(t) = /OT h(t—t) ) 6@t —tn)dt’

Le., we're trying to find the impulse response of
a linear system that would give the best estimate
of x(t) given the spike train

o Evaluating gives:  Z(t) = Z h(t —t,).



Convolution

O

r(t) = F(t) % g(t) = / ot — T (r)dr

g 82, )

Y
1oF
J'
08
£ 0.6 F
04
02

-l " A A " 1 " A 2 e e

=2 -1 - 1 2

The response of a linear system (which could be
a decoder), is just such a convolution of the
impulse response with the input



Neural convolutions

Z(t) = /OT h(t—t)) S(t' —tn)dt’

7k
= Z/ h(t —t")o(t' —t,)dt’
-
T
for one n = / h(t —t")o(t' — s)dt’
0

flt-t)  g(7)

i /
V(t) = G oAt Y RO Tas()dt'
0



Teml:)oral Rel:)resentation
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Findingh(t)

We need to define our domain (‘x” in the
population case)

How about a Fourier series
(N—1)/2

Tt X)) = Z A et

s (N 15D

e Where the coefficients are chosen somehow

(N-1)/2 (N-1)/2

p(A)= || ela)= ]]

n=0 =10
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Fourier transtorm
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Fourier series

1 ©.©) 0
f(t) = zao + ; a,, cos(nt) + ; b, sin(nt)
e since €™ = cos(nt) + isin(nt)

f(t) = Z A e

n=——oo

o A, are complex

e A, are complex conjugates around zero if f(t) is
real.



e y = sin(x) +2*cos(2*x)+
5*sin(5*x)+cos(8*x);

e plot(x,y)
o plot(fftshift(abs(fft(y))))




Minimizin g
e SO, we want to minimize:

([e(t; A) = h(t) « R(E: A))°)

e In frequency space:

P = ( 5 i)~ MR AP



Monte Carlo

We can’t solve this directly, so we estimate
1 . .

E=— > ) |A%(wn) — hlwn)R(wn; A%

with a bunch of samples (i.e., windowing)

This allows us to solve for the decoder

h(w) — LR @) 5
(IR(w; A)*)

A



A sample filter

b)




About this Filter

e The filter was found for bandlimited (0-30Hz)
Gaussian white noise on 4 s of data.

o The filter is not symmetrical in time but skewed
in the positive direction

o The filter has a negative time component (non-
causal).



Decoding examples
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Power Spcctrum Comparison
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Same h(t), different signals (note x-axis)

Rate/timing code
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Correlation times

One way to think about the difference between
these functions is in terms of correlation time

Correlation time: the maximum time window for
which the autocorrelation function is above half

its maximum value. A(r) = / - f@)f(t+7)dt

Future values of the signal are predictable out to
that window

So generally, a wider bandwidth means a shorter
correlation time



Correlation time

Different correlations times for finding h(t) make

some, but not a huge difference
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On optimal filters

e Optimal decoder extends just over 5 ms or so.
e They are non-causal... hence not used by brains
o Nevertheless, they provide:
e a means of comparing models to real neurons
bounds for non-optimal decoding

justification of linear filtering
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Typical PSCs

No sensory
nerve

Q) 8= N stimulation

5 a c Stimulate

() axon a, then

- f Gas axonc

(3) Stimulate

e

T axens a+c
| o> mV simultaneously

5ms

From: http:/ / www.zoo.utoronto.ca/
berry /700252 /19 /lect9.htm
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Post~59npatic currents

e PSCs are ellicited upon the reception of
neurotransmitters by dendrites.

e PSCs look surprisingly like optimal filters
(although they are strictly causal).

e They can be used as temporal filters...



Decoding with PSCs

input signal
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Power spectrum comparison
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PSCs vs Optimal filters

Results in small reduction in information
transmission, but a huge gain in plausibility

Reductions in coding accuracy can be made up
for by including more neurons.

o Similarity suggests linear decoding is a good
characterization of neural representation

So, all future models use PSC filtering instead of
optimal filtering



information in neural sgstems

e measures are surprisingly consistent across
many different neural systems

®

cricket cercal system, between about 150 and 300 b/s. (between 1.1 and 3
bits per spike)

bullfrog sacculus rates of about 3 b/s
motion-selective H1 neurons; about 3 b/s

salamander retina, rate of about 3.4 b/s

primate visual area V5 1-2b/s

e highest transmission rates: bullfrog auditory
neurons, rates as high as 7.8 b/s (natural stimuli,

broadband, 1.4 b/s)



lLessons

these are impressively high transmission rates,
approach the optimal possible coding efficiencies

in frog sacculus, cricket cerci, bullfrog audition,
and electric fish, the codes are 20-60% efficient

efficiency increases for natural stimuli

methods provide alower bound on the code,
efficiencies could be higher



information theory

o Self-information is defined as
I(z) = log2(1/p(z)) = —loga(p(z))
e S0, for independent events,
I(x125) = I(x1) + I(x2)
e Entropy
H(z) = E(I(z)) = — ZP(%)ZQ%Z?(%)

Noise

Transmitter \:> Channel \:> Receiver



information in model neurons

o Technically, since the models are deterministic,
there is no source of uncertainty.

e However, we have a source of error (linear
decoding for nonlinear encoding).

o Can calculate information by looking at sources
of error and using the Hartley-Shannon theorem:

1
i - log,(1+ SNR)



information and SNR

e Signal is explained power, noise is unexplained
power (or variance), SO

SN <§;2>x
NS E
o Where
MSE = (%), - (&),

o



Information rate

e Information wrt input signal x per frequency

channel:
1 (z?)
L= ~log,; - 2
2 (r Bid))
2, - ey

e So we can compute the rate as

1A
InfoRate = ——WZI



Optimal & PSC decoding
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