
Statistical Inference
and Learning

L e a r n i n g

The NEF gives analytic weights, so why learn?

fine-tuning (NEF weights are based on rate
model approximations; NEF weights are “first
guesses” at desired weights; see later)

we can compare learned with analytically
found weights giving us insight into learning

highlight both new challenges, and the
inherent strengths of this approach

L e a r n i n g a c o m m c h a n n e l

Simplest circuit to consider, just reproduction

Maximizing the variance of the responses in the
receiving pop. allows it to carry the most info it
can about incoming signals; e.g. all of it

I.e. maximize:

E =
1
2

�

j

��
bj(x)− b̄j(x)

�2
�

x

We know :

Take the derivative of E with respect to weights

Where

bj(x) = Gj

�
�

i

ωjiai(x) + Jbias
j

�

dE

δωji
=

dGj [ξ]
dξ

dξ

dωij

�
bj(x)− b̄j(x)

�

dE

δωji
=

dGj [ξ]
dξ

ai(x)
�
bj(x)− b̄j(x)

�

ξ =
�

i

ωjiai(x) + Jbias
j

L e a r n i n g a c o m m c h a n n e l

The Gj term means that the rate of change of the
activity of the neuron for input x matters

We can replace it with the simpler term bj(x) > 0
as an approximation. This evaluates to 1 when
the neuron is active and 0 when it is not

Finally, the mean can be found as

b̄j(x; t + dt) = (1− �)b̄j(x; t) + �bj(x; t)

L e a r n i n g a c o m m c h a n n e l

Now use the standard ‘delta rule’ approach:

Where κ is the learning rate

Note this is a local Hebbian rule

∆ωij = −κ
dE

δωji

= −κ (bj(x) > 0) ai(x)
�
bj(x)− b̄j(x)

�

E r r o r b e f o r e / a f t e r l e a r n i n g

L e a r n i n g a c o m m c h a n n e l

Natural to ask if we can decompose this learned
matrix into its components

Recall the general form of weights is

The encoders are ±1 and we know the gains, so
we can use SVD to ‘recover’ the decoders

Given this approximation, we then reconstruct
the original weight matrix to compare

ωji = αj φ̃jφi

W e i g h t r e c o n s t r u c t i o n
a) learned b) analytic c) reconstructed

W e i g h t r e c o n s t r u c t i o n

Similar performance emphasizes that there are
many solutions to such problems given the high-
dimensionality of weight space

Here, the pattern of connectivity is similar:
oppositely tuned neurons tend to have negative
weights; the strength of weights depends on the
similarity of the neurons' tuning curves.

W e i g h t r e c o n s t r u c t i o n

Note that even the reconstructed matrix is good
at preserving the information in the signal

Decomposition may be useful for analyzing the
results of employing a learning rule

Derived decoders can be used to determine what
function those weights compute (given the
encoding assumptions) by using them to decode
the incoming signal

A s s o c i a t i v e m e m o r y

Demonstrates a means of relating 'high-level'
learning to neural connection weights

Associate C with Y given the ‘answer’ R (next
slide)

Let the representations be as usual, e.g.
E =

1
2

[R− Y]2

Y =
�

j

yjφj

yj = Gj

�
αj

�
φ̃j

�
Ĉ + R̂

�
+ Jj

��

L e a r n i n g t r a n s f o r m a t i o n s

c y

r

R

YC

A s s o c i a t i v e m e m o r y

Substitute into E and find learning for C

As before, use (yj>0) for the derivative of Gj:

E =
1
2

�

k

φkrk −
�

j

φjGj

�
�

l

ωjlcl +
�

k

ωjkrk + Jj

�

2

dE

dωjl
= −

�

k

φkrk −
�

j

φjyj

�

d

dωjl

�

i

φiGi

�
�

l

ωilcl +
�

k

ωikrk + Jj

��

dE

dωjl
= −

�
�

k

φkrk −
�

i

φiyi

�
(yj > 0)φjcl

A s s o c i a t i v e m e m o r y

Standard delta rule:

Gives a biologically implausible rule, so multiply
by the encoders and gains:

Do it again (notice norm = 1; enc*dec ≈ K)

∆ωjl = −κ
dE

dωjl

∆ωjlαj φ̃j = κ

�
�

k

ωjkrk −
�

i

ωijyi

�
(yj > 0)φjcl

∆ωjlαj

���φ̃j

��� = κ

�
�

k

ωjkrk −
�

i

ωijyi

�
(yj > 0)cl

∆ωjl =
κ

αj

�
�

k

ωjkrk −
�

i

ωijyi

�
(yj > 0)cl

L e a r n i n g r e s u l t s

T h o u g h t s

Learning literature is enormous, we’ve barely
scratched the surface, nevertheless:

The NEF can help us gain new insights
regarding standard learning rules, because of
the analysis (e.g., reconstruction)

The representational hierarchy lets us
generalize rules and analyses to systems
trafficking in more complex representations

T h o u g h t s

Because an attractor is a ‘self-communication
channel’ & the hierarchy, we can find an attractor
learning rule (see text)

Since we have a general means of incorporating
input signals and transformations, accounting
for learning in systems with explicit error
signals, like the neural integrator (retinal slip), is
straightforward

T h o u g h t s
Importantly, the NEF gives us a means of
constructing complex, functional systems,
independent of learning

This is essential for modeling complex systems
because, at the moment, it is not clear how to
learn many of the complex behaviors exhibited
by neurobiological systems

Suggests NEF and learning approaches are
powerfully complimentary

C h a l l e n g e s
Can we generate learning rules that give rise to
the systems we construct analytically?

Kinda, but for complex transformations and
complex control structures, it is not clear what
the answer will be.

Notice that maximizing the variance between
two populations, only constrains one degree of
freedom in the network's representations.

For arbitrary transformations, we will need to
constrain many degrees of freedom

C h a l l e n g e s

Suppose that we have a population from which
we can encode the lower-order polynomials, xn

We can find decoders

Now suppose we want to compute some
function, f(x), that is a sum of these polynomials

The weights will be

So a learning rule will have to constraint M
degrees of freedom independently

ωji = φ̃j

�

m

Amφ(xn)
i

C h a l l e n g e s
Worse, there needs to be a mechanism such that
the desired values for the coefficients are applied
consistently across the population.

But, to remain biologically plausible we have to
impose these constraints using local rules

Such rules will need to be highly sophisticated
(they need to be controlled by a set of M-
dimensional signals in a neurally plausible way)

C h a l l e n g e s
Learning also highlights the ambiguity of
connection weights: there is no isolated `right'
decomposition of a weight matrix

Any ambiguity can only be overcome in the
context of a larger understanding of the system

For the comm. chan., finding decoders depends
on our assumptions about the encoders.

This is like the representational ambiguity we
discussed earlier

C h a l l e n g e s
Finally, how can we use the framework itself to
generate novel learning rules?

It would be very useful to be able to have a
means of determining plausible learning rules
that would give rise to the kinds of high-level
structure that the NEF can build into models

These challenges can be summarized by noting
that we have not provided a systematic way to
relate learning to the NEF

O n e s o l u t i o n
Exploit error signals

Error signals are common:

dopamine/serotonin

ERN (error related negativity)

ACC (anterior cingulate cortex)

Need biological rules that exploit error
information

F i n e - t u n i n g

Stability can only be achieved by tuning weights to
within 1% of the theoretical ideal

But there’s lots of noise!

Try some other approaches (e.g., Koulakov et al,
2002; Goldman 2009)

But, no strong evidence for these mechanisms

F i n e - t u n i n g

How about in vivo fine-tuning?

Past rules (e.g. Arnold and Robinson, 1992, 1997; Turaga et al., 2006; Renart
et al, 2003)

aren’t local

assume retinal slip is available (it’s not (Collewijn,

1977))

can’t learn in the dark (Harris and Cynader, 1981)

can’t detune the integrator (Major et al, 2004)

L e t ’s t r y a g a i n

Build a model with the appropriate input

Corrective saccades drive adaptation (Park & Shimojo,
2007)

Take the input from Dell’Osso and Wang’s OMS
model

Derive a learning rule to exploit that input

Neural
Integrator

O M S M o d e l
Feedback

Dell’Osso and Wang (2008)

L e a r n i n g

Minimize

Gives

Delta rule

Multiply both sides by encoder and gain

E =
1
2
(x− x̂)2

=
1
2
(x−

�

i

aidi)2

∆diejαj = καjejvcai = ∆ωij

∆di = κvcai

dE

ddi
= vcai

 Current from velocity command

Presynaptic activity

E x p e r i m e n t s

Benchmarks

1. Optimal

2. Noised (30% Gaussian on weights)

3. Learned after noised

4. Learned after continuous noise (10%)

5. Learned after continuous (5%) and noised (30%)

R e s u l t s

Case Mean CI

1 Optimal (+) 41.4 31.2 - 55.6

2 Noisy (+) 10.6 5.85 - 18.2
3 Learned1 (+) 98.7 58.5 - 153
4 Learned2 (-) 31.6 13.5 - 60.1
5 Learned3 (+) 41.4 18.9 - 78.8

1 After an initial disturbance (30%) to connection weights.
2 With continuous noise (10%) added to connection weights.
3 After an initial disturbance (30%) and continuous noise (5%).

Goldfish range between 29 and 95s (Mensh et al.,
2004)

E x p e r i m e n t s

Oculomotor integrator manipulations

1. Unstable (Major et al. 2004)

2. Damped (Major et al. 2004)

3. Lesioned (Arnold & Robinson 1991)

4. Recovery (Arnold & Robinson 1991)

5. Dark (Harris & Cynander 1981)

R e s u l t s s u m m a r y

0

50

100

150

200

250

300

O
p
tim

a
l

N
o
is
y

L
e
a
rn

e
d
1

L
e
a
rn

e
d
2

L
e
a
rn

e
d
3

U
n
st
a
b
le

D
a
m

p
e
d

L
e
si
o
n

R
e
co

ve
ry

D
a
rk

s
y
s
 (

s
e

c
)

System Time Constants and 95% Confidence Intervals

G e n e r a l i z i n g

Introduce preferred vectors and generalized ‘error’
∆ωij = καjejEai

0.5 0.6 0.7 0.8 0.9 1

5

0

0.5

1

1.5

time (s)

Input Signal

x2

x1

N
or

m
al

iz
ed

 u
ni

ts

0.5 0.6 0.7 0.8 0.9 1
6

4

2

0

0.2

0.4

0.6

0.8

1

1.2
Before learning

ideal
network

N
or

m
al

iz
ed

 u
ni

ts

0.5 0.6 0.7 0.8 0.9 1
2

0

0.2

0.4

0.6

0.8

1

1.2
After learning

ideal
network

L e a r n i n g ‘ a n y t h i n g ’
∆ωij = καjejEai

L e a r n i n g ‘ a n y t h i n g ’

Obviously, you need to have the error signal.

How are these generated?

How are they transmitted (dopamine? other
neuromodulators? directly?)

How are they encoded? (must multiply the
neuron’s encoder by the E)

G e n e r a l i z i n g

Past work has shown how to model any attractor
network (ring, plane, cyclic, and chaotic attractors;
Eliasmith, 2005)

Are the stabilizing errors available?

Head direction: yes

Working mem? others?

T h o u g h t s . . .
Learning is often considered supervised or
unsupervised

Unsupervised is often called self-organization

Captures statistics of the input stream

This seems an intermediate case:

‘Supervision’ is internally generated

Self-directed organization(?) (a kind of RL?)

S t a t i s t i c a l i n f e r e n c e

What is statistical inference?

Rather than consider the truth and falsity of
sentences (logic), probability theory considers
the likelihood of events or states of the world.

Statistical inference uses such representations
to determine an appropriate behaviour

S t a t i s t i c a l i n f e r e n c e
Why statistical inference?

Our focus is neurobiological systems in
general (most with no language) all of which
must reason about states of a noisy, uncertain
physical world.

Probability theory (PT) is an appropriate tool
for characterizing such systems

PT describes how to use multiple uncertain
sources of information to increase certainty; and,
how to update a current `take' on the world

S t a t i s t i c a l i n f e r e n c e

PT is the best available quantitative tool for
describing the relevant kinds of reasoning

There are already sophisticated probabilistic
formalisms for modeling ‘reasoning’ as SI

E.g. pattern theory (Grenander):

Bayesian inference defines transformations
that work with the complex representations
defined in pattern theory

S t a t i s t i c a l i n f e r e n c e

Why for neurobiology?

Consider the joint distribution of two variables, p
(x,y). We can write this joint in terms of the
individual distributions p(x) and p(y):

(Bayes' rule consists of equating the two right
hand sides ... but we don’t need that yet)

ρ(x,y) = ρ(y|x)ρ(x)
= ρ(x|y)ρ(y)

ρ(x|y) =
ρ(y|x)ρ(x)

ρ(y)

S t a t i s t i c a l i n f e r e n c e

To determine the probability density function
(PDF) for either parameter alone, we
`marginalize' (i.e., integrate) the joint:

In the NEF, these are represented in a neural
population

ρ(y) =
�

ρ(x,y) dx

ρ(x) =
�

ρ(x,y) dy

S t a t i s t i c a l i n f e r e n c e

Consider the example of vision

Take p(x) as how likely each image is

This estimate is made in the context of some
data provided by the environment (the image
falling on the retina, corrupted by noise).

Thus we need the PDF p(x|d), the true image
given the measured image

S t a t i s t i c a l i n f e r e n c e
We want properties of the image that are not
directly captured by the retinal image (e.g.
objecthood). Let y be such properties.

The PDF for y given the image is thus:

Tells us how to determine the probability of all
possible objects given image (over-simplified)

This is simply a linear transform into the new
space p(y) & includes y = f(x) as a subset

ρ(y|d) =
�

ρ(y|x)ρ(x|d) dx

S t a t i s t i c a l i n f e r e n c e

There is no assumption of Gaussian statistics
(multi-modal distributions in either space, or the
conditional (so unimodal inputs support
multiple hypotheses))

Being able to implement these transformations
results in computationally powerful systems (e.g.
ANN models)

Real neurobiological networks are also ideally
suited to implementing these transformations

S t a t i s t i c a l i n f e r e n c e

To see why, notice that p(x|d) is a function
parameterized by the variables d.

Need neurons to encode these (volunteer):

With decoders:

ai(d) = Gi

�
αi

�
φ̃i(x)ρ(x|d)

�

x
+ Jbias

i

�

bj(d) = Gj

�
αj

�
φ̃j(y)ρ(y|d)

�

y
+ Jbias

j

�

ρ̂(x|d) =
�

i

φi(x)ai(d)

ρ̂(y|d) =
�

j

φj(y)bj(d)

S t a t i s t i c a l i n f e r e n c e

Given the need transformation, we have

where

bj(d) = Gj

�
αj

�
φ̃j(y)ρ(y|x)ρ(x|d)

�

x,y
+ Jbias

j

�

= Gj

αj

�
φ̃j(y)ρ(y|x)

�

i

φi(x)ai(d)

�

x,y

+ Jbias
j

= Gj

�
�

i

ωjiai(d) + Jbias
j

�

ωji = αj

�
φ̃j(y)ρ(y|x)φi(x)

�

x,y

S t a t i s t i c a l i n f e r e n c e
So feedforward inference in the NEF gives
connection weights between neurons that are the
projection of the encoding functions of the
output neurons, on the conditional, weighted by
the decoders of each input neuron

Some general consequences of this example:

SI in high-D spaces requires estimating high-D
integrals. The high degree of convergence in
neural networks, makes them ideally suited
for performing these kinds of transformations

S t a t i s t i c a l i n f e r e n c e

The form of these equations is identical to those
for a simple feed-forward ANN, and there is no
clear advantage gained by introducing the
nonlinearity Gi (implementation?
dimensionality?)

The conditional is a `look-up table' that specifies
the value of y for each x. Clearly a limited
approach (all possibilities pre-computed; curse of
dimensionality (CoD))

S t a t i s t i c a l i n f e r e n c e

To address the CoD we divide high-D spaces into
independent subspaces: i.e., p(x,z) = p(x)p(z)

Implementation would be

where

ρ(y|dx,dz) =
�

ρ(y|x, z)ρ(x|dx)ρ(z|dz) dx dz

bj(y) = Gj

�
�

ik

ωjikai(dx)ck(dz) + Jbias
j

�

ωjik =
�
φ̃j(y)ρ(y|x, z)φi(x)φk(z)

�

x,y,z

S t a t i s t i c a l i n f e r e n c e
Realize that the number of dimensions that must be
stored when x and a are independent is D1=Dx+Dz. When
they aren't Dx × Dz >> D1

Rich set of computations:

Take z to change the connection weights between y
and x (i.e. provide a context), dynamically

Take x and z could represent evidence from two-
different modes (vision and audition; feedforward)

Or, z could represent variables in a higher order (`top-
down') model and x could provide the feed-forward
(`bottom-up') evidence.

S t a t i s t i c a l i n f e r e n c e

The cost of these computations is multiplicative
interactions between the activities of the z and x

The ubiquitous need for performing this kind of
context dependent statistical inference is one
more reason that we might expect to find such
nonlinearities in dendrites.

Others have made similar suggestions

A m b i g u o u s i n p u t
Inference depends critically on the system's
assumptions (`top-down' information) about the
structure of the environment

Functionally and anatomically evident

Functional: concave faces look convex from a
meter or more away, unless upside-down

Anatomical: massive reciprocal projections

A m b i g u o u s i n p u t
Toy problem: object location

Animal's `guess' as to where the object is: p(y)

Based on info from sensory system: p(x|d) (sensory
system's assignment of the probability that the object is at x, given noisy
measurements, d; suppose it’s bimodal)

Suppose there is an ‘expectation’ or ‘model’ of
location: p(z|m)

m summarizes past experience with object
positions

A m b i g u o u s i n p u t

To determine a best guess for some particular p
(x|d) and p(z|m), construct the joint p(x,y,z|
d,m), which captures all of the relations between
p(x|d), p(y|d,m), and p(z|m)

Assume that the input d and model m are
independent, then marginalize to find p(y|d,m)

ρ(y|d,m) =
��

ρ(y|x, z)ρ(x|d)ρ(z|m) dx dz

A m b i g u o u s i n p u t
We need to know p(y|x,z), let’s choose

This emphasizes where data and model agree,
and de-emphasizes where they don’t

It takes the average value of x and z and
constructs a distribution around that mean
whose variance depends on how similar x and z
are (β gives non-zero variance, α controls how
much the emphasis relies on this difference)

ρ(y|x, z) =
1�

2π(α(x− z)2 + β)
e−(y− 1

2 (x+z))2/(α(x−z)2+β)

R e c a l l t h e i m p l e m e n t a t i o n

Suppose events are independent as before, i.e., p
(x,z) = p(x)p(z)

Implementation would again be

where

ρ(y|dx,dz) =
�

ρ(y|x, z)ρ(x|dx)ρ(z|dz) dx dz

bj(y) = Gj

�
�

ik

ωjikai(dx)ck(dz) + Jbias
j

�

ωjik =
�
φ̃j(y)ρ(y|x, z)φi(x)φk(z)

�

x,y,z

To p - d o w n i n f e r e n c e
a) ideal, b) neural implementation

Pa r a m e t e r e s t i m a t i o n

Toy problem of finding m, under constraint

Suppose the system gets a stream of values, xn,
`measurements' of a statistical process.

Assume that the values are generated by a
Gaussian process, mean x and variance σ2.

 The system must estimate the mean and
variance from the measurements

Pa r a m e t e r e s t i m a t i o n

Define the conditional probability of obtaining
the value of x given x and σ as a Gaussian

Assume that x and σ are drawn from a broad
distribution, p0(x, σ), the marginal for x is

So, x and σ have been drawn from p0(x, σ) to
generate a signal we want to characterize

ρ(x|x̄, σ) =
1√

2πσ2
e−(x−x̄)2/2σ2

ρ(x) =
��

ρ(x|x̄, σ)ρ0(x̄, σ) dx̄ dσ

Pa r a m e t e r e s t i m a t i o n

Goal is have a network that represents a PDF
over x and σ that starts with the prior, and is
updated appropriately as the signal arrives

Representation of input

bj(x1, . . . , xn) = Gj

�
αj

�
φ̃j(x̄, σ)ρ(x̄, σ|x1, . . . , xn)

�

x̄,σ

�

ρ̂(x̄, σ|x1, . . . xn) =
�

j

bj(x1, . . . , xn)φj(x̄, σ)

Pa r a m e t e r e s t i m a t i o n

The measurements themselves are uncertain, so
we will take them to be PDFs as well

Each measurement xn is thus taken as the mean
of some Gaussian (width=noise).

This 1D function (of x) is represented as usual

ai(xn) = Gi

�
αi

�
φ̃i(x)ρ(x|xn)

�

x
+ Jbias

i

�

ρ̂(x|xn) =
�

i

φi(x)ai(xn)

Pa r a m e t e r e s t i m a t i o n

As before, we need an update rule to relate these,
for each new xn+1 measurement

Step 1 is Bayes rule

Step 2 is the assumption that the prior is broad

ρ(x̄, σ|x1, . . . xn+1) =
�

ρ(x̄, σ|x)ρ(x|xn+1) dx

=
�

ρ(x|x̄, σ)
ρ(x)

ρ(x|xn+1) dx ρ(x̄, σ|xn)

≈
�

ρ(x|x̄, σ)ρ(x|xn+1) dx ρ(x̄, σ|xn)

Pa r a m e t e r e s t i m a t i o n

We can thus substitute our b repn. of p(x,σ|xn)
and a repn of p(x|xn+1) into this repn, to get

where

bj(xn+1) = Gj

�
�

il

ωjilai(xn+1)bl(xn) + Jbias
j

�

ωjil = αj

�
φ̃j(x̄, σ)ρ(x|x̄, σ)φi(x)φl(x̄, σ)

�

x,x̄,σ

Pa r a m e t e r e s t i m a t i o n
Run mplayer (parmest, parmest2.avi)

Pa r a m e t e r e s t i m a t i o n

This derivation holds regardless of our explicit
restrictions on the shape of p(x,σ|xn) or p(x|xn)

Just one of many ways of doing this kind of
estimation

Notice that there is no explicit learning/change
in weights, yet the system is adaptive

S u m m a r y

Learning and statistical inference are both about
‘modeling’ the (messy, uncertain) world

There are a variety of ways of constructing such
models, each with different resource constraints/
assumptions, etc.

A huge challenge to figure out what the ‘best’
assumptions are -- looking to the brain should
help

