
Statistical Inference 
and Learning



L e a r n i n g

The NEF gives analytic weights, so why learn?

fine-tuning (NEF weights are based on rate 
model approximations; NEF weights are “first 
guesses” at desired weights; see later)

we can compare learned with analytically 
found weights giving us insight into learning

highlight both new challenges, and the 
inherent strengths of this approach



L e a r n i n g  a  c o m m  c h a n n e l

Simplest circuit to consider, just reproduction

Maximizing the variance of the responses in the 
receiving pop. allows it to carry the most info it 
can about incoming signals; e.g. all of it

I.e. maximize:
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We know :

Take the derivative of E with respect to weights
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L e a r n i n g  a  c o m m  c h a n n e l

The Gj term means that the rate of change of the 
activity of the neuron for input x matters

We can replace it with the simpler term bj(x) > 0 
as an approximation. This evaluates to 1 when 
the neuron is active and 0 when it is not

Finally, the mean can be found as

b̄j(x; t + dt) = (1− �)b̄j(x; t) + �bj(x; t)



L e a r n i n g  a  c o m m  c h a n n e l

Now use the standard ‘delta rule’ approach:

Where κ is the learning rate

Note this is a local Hebbian rule

∆ωij = −κ
dE

δωji

= −κ (bj(x) > 0) ai(x)
�
bj(x)− b̄j(x)

�



E r r o r  b e f o r e / a f t e r  l e a r n i n g



L e a r n i n g  a  c o m m  c h a n n e l

Natural to ask if we can decompose this learned 
matrix into its components

Recall the general form of weights is

The encoders are ±1 and we know the gains, so 
we can use SVD to ‘recover’ the decoders

Given this approximation, we then reconstruct 
the original weight matrix to compare

ωji = αj φ̃jφi



W e i g h t  r e c o n s t r u c t i o n
a) learned b) analytic c) reconstructed



W e i g h t  r e c o n s t r u c t i o n

Similar performance emphasizes that there are 
many solutions to such problems given the high-
dimensionality of weight space

Here, the pattern of connectivity is similar: 
oppositely tuned neurons tend to have negative 
weights; the strength of weights depends on the 
similarity of the neurons' tuning curves. 



W e i g h t  r e c o n s t r u c t i o n

Note that even the reconstructed matrix is good 
at preserving the information in the signal 

Decomposition may be useful for analyzing the 
results of employing a learning rule 

Derived decoders can be used to determine what 
function those weights compute (given the 
encoding assumptions) by using them to decode 
the incoming signal



A s s o c i a t i v e  m e m o r y

Demonstrates a means of relating 'high-level' 
learning to neural connection weights

Associate C with Y given the ‘answer’ R (next 
slide)

Let the representations be as usual, e.g.
E =

1
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L e a r n i n g  t r a n s f o r m a t i o n s
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A s s o c i a t i v e  m e m o r y

Substitute into E and find learning for C

As before, use (yj>0) for the derivative of Gj:

E =
1
2




�

k

φkrk −
�

j

φjGj

�
�

l

ωjlcl +
�

k

ωjkrk + Jj

�


2

dE

dωjl
= −




�

k

φkrk −
�

j

φjyj




�

d

dωjl

�

i

φiGi

�
�

l

ωilcl +
�

k

ωikrk + Jj

��

dE

dωjl
= −

�
�

k

φkrk −
�

i

φiyi

�
(yj > 0)φjcl



A s s o c i a t i v e  m e m o r y

Standard delta rule: 

Gives a biologically implausible rule, so multiply 
by the encoders and gains:

Do it again (notice norm = 1; enc*dec ≈ K)
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L e a r n i n g  r e s u l t s



T h o u g h t s

Learning literature is enormous, we’ve barely 
scratched the surface, nevertheless:

The NEF can help us gain new insights 
regarding standard learning rules, because of 
the analysis (e.g., reconstruction)

The representational hierarchy lets us 
generalize rules and analyses to systems 
trafficking in more complex representations



T h o u g h t s

Because an attractor is a ‘self-communication 
channel’ & the hierarchy, we can find an attractor 
learning rule (see text)

Since we have a general means of incorporating 
input signals and transformations, accounting 
for learning in systems with explicit error 
signals, like the neural integrator (retinal slip), is 
straightforward 



T h o u g h t s
Importantly, the NEF gives us a means of 
constructing complex, functional systems, 
independent of learning

This is essential for modeling complex systems 
because, at the moment, it is not clear how to 
learn many of the complex behaviors exhibited 
by neurobiological systems

Suggests NEF and learning approaches are 
powerfully complimentary



C h a l l e n g e s
Can we generate learning rules that give rise to 
the systems we construct analytically? 

Kinda, but for complex transformations and 
complex control structures, it is not clear what 
the answer will be. 

Notice that maximizing the variance between 
two populations, only constrains one degree of 
freedom in the network's representations. 

For arbitrary transformations, we will need to 
constrain many degrees of freedom



C h a l l e n g e s

Suppose that we have a population from which 
we can encode the lower-order polynomials, xn 

We can find decoders

Now suppose we want to compute some 
function, f(x), that is a sum of these polynomials

The weights will be

So a learning rule will have to constraint M 
degrees of freedom independently  

ωji = φ̃j

�

m

Amφ(xn)
i



C h a l l e n g e s
Worse, there needs to be a mechanism such that 
the desired values for the coefficients are applied 
consistently across the population. 

But, to remain biologically plausible we have to 
impose these constraints using local rules 

Such rules will need to be highly sophisticated 
(they need to be controlled by a set of M-
dimensional signals in a neurally plausible way)



C h a l l e n g e s
Learning also highlights the ambiguity of 
connection weights: there is no isolated `right' 
decomposition of a weight matrix

Any ambiguity can only be overcome in the 
context of a larger understanding of the system 

For the comm. chan., finding decoders depends 
on our assumptions about the encoders. 

This is like the representational ambiguity we 
discussed earlier



C h a l l e n g e s
Finally, how can we use the framework itself to 
generate novel learning rules?

It would be very useful to be able to have a 
means of determining plausible learning rules 
that would give rise to the kinds of high-level 
structure that the NEF can build into models 

These challenges can be summarized by noting 
that we have not provided a systematic way to 
relate learning to the NEF



O n e  s o l u t i o n
Exploit error signals

Error signals are common:

dopamine/serotonin

ERN (error related negativity)

ACC (anterior cingulate cortex)

Need biological rules that exploit error 
information



F i n e - t u n i n g

Stability can only be achieved by tuning weights to 
within 1% of the theoretical ideal

But there’s lots of noise!

Try some other approaches (e.g., Koulakov et al, 
2002; Goldman 2009)

But, no strong evidence for these mechanisms



F i n e - t u n i n g

How about in vivo fine-tuning?

Past rules (e.g. Arnold and Robinson, 1992, 1997; Turaga et al., 2006; Renart 
et al, 2003) 

aren’t local

assume retinal slip is available (it’s not (Collewijn, 

1977))

can’t learn in the dark (Harris and Cynader, 1981)

can’t detune the integrator (Major et al, 2004) 



L e t ’s  t r y  a g a i n

Build a model with the appropriate input

Corrective saccades drive adaptation (Park & Shimojo, 
2007)

Take the input from Dell’Osso and Wang’s OMS 
model

Derive a learning rule to exploit that input



Neural 
Integrator

O M S  M o d e l
Feedback

Dell’Osso and Wang (2008)



L e a r n i n g

Minimize

Gives

Delta rule

Multiply both sides by encoder and gain

E =
1
2
(x− x̂)2

=
1
2
(x−

�

i

aidi)2

∆diejαj = καjejvcai = ∆ωij

∆di = κvcai

dE

ddi
= vcai

 Current from velocity command

Presynaptic activity



E x p e r i m e n t s

Benchmarks

1.  Optimal

2.  Noised (30% Gaussian on weights)

3.  Learned after noised

4.  Learned after continuous noise (10%)

5.  Learned after continuous (5%) and noised (30%)



R e s u l t s

Case Mean CI

1 Optimal (+) 41.4 31.2 - 55.6

2 Noisy (+) 10.6 5.85 - 18.2
3 Learned1 (+) 98.7 58.5 - 153
4 Learned2 ( -) 31.6 13.5 - 60.1
5 Learned3 (+) 41.4 18.9 - 78.8

1 After an initial disturbance (30%) to connection weights.
2 With continuous noise (10%) added to connection weights.
3 After an initial disturbance (30%) and continuous noise (5%).

Goldfish range between 29 and 95s (Mensh et al., 
2004)



E x p e r i m e n t s

Oculomotor integrator manipulations

1.  Unstable (Major et al. 2004)

2.  Damped (Major et al. 2004)

3.  Lesioned (Arnold & Robinson 1991)

4.  Recovery (Arnold & Robinson 1991)

5.  Dark (Harris & Cynander 1981)



R e s u l t s  s u m m a r y
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G e n e r a l i z i n g

Introduce preferred vectors and generalized ‘error’
∆ωij = καjejEai
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L e a r n i n g  ‘ a n y t h i n g ’
∆ωij = καjejEai



L e a r n i n g  ‘ a n y t h i n g ’

Obviously, you need to have the error signal.

How are these generated?

How are they transmitted (dopamine? other 
neuromodulators? directly?)

How are they encoded? (must multiply the 
neuron’s encoder by the E)



G e n e r a l i z i n g

Past work has shown how to model any attractor 
network (ring, plane, cyclic, and chaotic attractors; 
Eliasmith, 2005)

Are the stabilizing errors available?

Head direction: yes

Working mem? others?



T h o u g h t s . . .
Learning is often considered supervised or 
unsupervised

Unsupervised is often called self-organization

Captures statistics of the input stream

This seems an intermediate case:

‘Supervision’ is internally generated

Self-directed organization(?) (a kind of RL?)



S t a t i s t i c a l  i n f e r e n c e

What is statistical inference?

Rather than consider the truth and falsity of 
sentences (logic), probability theory considers 
the likelihood of events or states of the world.

Statistical inference uses such representations 
to determine an appropriate behaviour



S t a t i s t i c a l  i n f e r e n c e
Why statistical inference?

Our focus is neurobiological systems in 
general (most with no language) all of which 
must reason about states of a noisy, uncertain 
physical world.  

Probability theory (PT) is an appropriate tool 
for characterizing such systems

PT describes how to use multiple uncertain 
sources of information to increase certainty; and, 
how to update a current `take' on the world



S t a t i s t i c a l  i n f e r e n c e

PT is the best available quantitative tool for 
describing the relevant kinds of reasoning

There are already sophisticated probabilistic 
formalisms for modeling ‘reasoning’ as SI

E.g. pattern theory (Grenander):

Bayesian inference defines transformations 
that work with the complex representations 
defined in pattern theory



S t a t i s t i c a l  i n f e r e n c e

Why for neurobiology?

Consider the joint distribution of two variables, p
(x,y). We can write this joint in terms of the 
individual distributions p(x) and p(y):

(Bayes' rule consists of equating the two right 
hand sides ... but we don’t need that yet)

ρ(x,y) = ρ(y|x)ρ(x)
= ρ(x|y)ρ(y)

ρ(x|y) =
ρ(y|x)ρ(x)

ρ(y)



S t a t i s t i c a l  i n f e r e n c e

To determine the probability density function 
(PDF) for either parameter alone, we 
`marginalize' (i.e., integrate) the joint:

In the NEF, these are represented in a neural 
population

ρ(y) =
�

ρ(x,y) dx

ρ(x) =
�

ρ(x,y) dy



S t a t i s t i c a l  i n f e r e n c e

Consider the example of vision

Take p(x) as how likely each image is

This estimate is made in the context of some 
data provided by the environment (the image 
falling on the retina, corrupted by noise). 

Thus we need the PDF p(x|d), the true image 
given the measured image



S t a t i s t i c a l  i n f e r e n c e
We want properties of the image that are not 
directly captured by the retinal image  (e.g. 
objecthood). Let y be such properties. 

The PDF for y given the image is thus:

Tells us how to determine the probability of all 
possible objects given image (over-simplified)

This is simply a linear transform into the new 
space p(y) & includes y = f(x) as a subset

ρ(y|d) =
�

ρ(y|x)ρ(x|d) dx



S t a t i s t i c a l  i n f e r e n c e

There is no assumption of Gaussian statistics 
(multi-modal distributions in either space, or the 
conditional (so unimodal inputs support 
multiple hypotheses))

Being able to implement these transformations 
results in computationally powerful systems (e.g. 
ANN models)

Real neurobiological networks are also ideally 
suited to implementing these transformations



S t a t i s t i c a l  i n f e r e n c e

To see why, notice that p(x|d)  is a function 
parameterized by the variables d. 

Need neurons to encode these (volunteer):

With decoders:

ai(d) = Gi

�
αi

�
φ̃i(x)ρ(x|d)

�

x
+ Jbias

i

�

bj(d) = Gj

�
αj

�
φ̃j(y)ρ(y|d)

�

y
+ Jbias

j

�

ρ̂(x|d) =
�

i

φi(x)ai(d)

ρ̂(y|d) =
�

j

φj(y)bj(d)



S t a t i s t i c a l  i n f e r e n c e

Given the need transformation, we have

where

bj(d) = Gj

�
αj

�
φ̃j(y)ρ(y|x)ρ(x|d)

�

x,y
+ Jbias

j

�

= Gj



αj

�
φ̃j(y)ρ(y|x)

�

i

φi(x)ai(d)

�

x,y

+ Jbias
j





= Gj

�
�

i

ωjiai(d) + Jbias
j
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ωji = αj

�
φ̃j(y)ρ(y|x)φi(x)

�

x,y



S t a t i s t i c a l  i n f e r e n c e
So feedforward inference in the NEF gives 
connection weights between neurons that are the 
projection of the encoding functions of the 
output neurons, on the conditional, weighted by 
the decoders of each input neuron

Some general consequences of this example:

SI in high-D spaces requires estimating high-D 
integrals. The high degree of convergence in 
neural networks, makes them ideally suited 
for performing these kinds of transformations



S t a t i s t i c a l  i n f e r e n c e

The form of these equations is identical to those 
for a simple feed-forward ANN, and there is no 
clear advantage gained by introducing the 
nonlinearity Gi (implementation? 
dimensionality?)

The conditional is a `look-up table' that specifies 
the value of y for each x. Clearly a limited 
approach (all possibilities pre-computed; curse of 
dimensionality (CoD))



S t a t i s t i c a l  i n f e r e n c e

To address the CoD we divide high-D spaces into 
independent subspaces: i.e., p(x,z) = p(x)p(z)

Implementation would be

where

ρ(y|dx,dz) =
�

ρ(y|x, z)ρ(x|dx)ρ(z|dz) dx dz

bj(y) = Gj

�
�

ik

ωjikai(dx)ck(dz) + Jbias
j

�

ωjik =
�
φ̃j(y)ρ(y|x, z)φi(x)φk(z)

�

x,y,z



S t a t i s t i c a l  i n f e r e n c e
Realize that the number of dimensions that must be 
stored when x and a are independent is D1=Dx+Dz. When 
they aren't Dx × Dz >> D1 

Rich set of computations:

Take z to change the connection weights between y 
and x (i.e. provide a context), dynamically 

Take x and z could represent evidence from two-
different modes (vision and audition; feedforward)

Or, z could represent variables in a higher order (`top-
down') model and x could provide the feed-forward 
(`bottom-up') evidence.



S t a t i s t i c a l  i n f e r e n c e

The cost of these computations is multiplicative 
interactions between the activities of the z and x

The ubiquitous need for performing this kind of 
context dependent statistical inference is one 
more reason that we might expect to find such 
nonlinearities in dendrites. 

Others have made similar suggestions



A m b i g u o u s  i n p u t
Inference depends critically on the system's 
assumptions (`top-down'  information) about the 
structure of the environment

Functionally and anatomically evident

Functional: concave faces look convex from a 
meter or more away, unless upside-down

Anatomical: massive reciprocal projections



A m b i g u o u s  i n p u t
Toy problem: object location

Animal's `guess' as to where the object is: p(y) 

Based on info from sensory system: p(x|d) (sensory 
system's assignment of the probability that the object is at x, given noisy 
measurements, d; suppose it’s bimodal)

Suppose there is an ‘expectation’ or ‘model’ of 
location:  p(z|m)  

m summarizes past experience with object 
positions



A m b i g u o u s  i n p u t

To determine a best guess for some particular p
(x|d) and p(z|m), construct the joint p(x,y,z|
d,m),  which captures all of the relations between 
p(x|d), p(y|d,m), and p(z|m)

Assume that the input d and model m are 
independent, then marginalize to find p(y|d,m)

ρ(y|d,m) =
��

ρ(y|x, z)ρ(x|d)ρ(z|m) dx dz



A m b i g u o u s  i n p u t
We need to know p(y|x,z), let’s choose

This emphasizes where data and model agree, 
and de-emphasizes where they don’t

It takes the average value of x and z and 
constructs a distribution around that mean 
whose variance depends on how similar x and z 
are (β gives non-zero variance, α controls how 
much the emphasis relies on this difference)

ρ(y|x, z) =
1�

2π(α(x− z)2 + β)
e−(y− 1

2 (x+z))2/(α(x−z)2+β)



R e c a l l  t h e  i m p l e m e n t a t i o n

Suppose events are independent as before, i.e., p
(x,z) = p(x)p(z)

Implementation would again be

where

ρ(y|dx,dz) =
�

ρ(y|x, z)ρ(x|dx)ρ(z|dz) dx dz

bj(y) = Gj

�
�

ik

ωjikai(dx)ck(dz) + Jbias
j

�

ωjik =
�
φ̃j(y)ρ(y|x, z)φi(x)φk(z)

�

x,y,z



To p - d o w n  i n f e r e n c e
a) ideal, b) neural implementation



Pa r a m e t e r  e s t i m a t i o n

Toy problem of finding m, under constraint

Suppose the system gets a stream of values, xn, 
`measurements' of a statistical process. 

Assume that the values are generated by a 
Gaussian process, mean x and variance σ2.

 The system must estimate the mean and 
variance from the measurements 



Pa r a m e t e r  e s t i m a t i o n

Define the conditional probability of obtaining 
the value of x given x and σ as a Gaussian

Assume that x and σ are drawn from a broad 
distribution, p0(x, σ), the marginal for x is

So, x and σ have been drawn from p0(x, σ) to 
generate a signal we want to characterize

ρ(x|x̄, σ) =
1√

2πσ2
e−(x−x̄)2/2σ2

ρ(x) =
��

ρ(x|x̄, σ)ρ0(x̄, σ) dx̄ dσ



Pa r a m e t e r  e s t i m a t i o n

Goal is have a network that represents a PDF 
over x and σ that starts with the prior, and is 
updated appropriately as the signal arrives

Representation of input

bj(x1, . . . , xn) = Gj

�
αj

�
φ̃j(x̄, σ)ρ(x̄, σ|x1, . . . , xn)

�

x̄,σ

�

ρ̂(x̄, σ|x1, . . . xn) =
�

j

bj(x1, . . . , xn)φj(x̄, σ)



Pa r a m e t e r  e s t i m a t i o n

The measurements themselves are uncertain, so 
we will take them to be PDFs as well

Each measurement xn is thus taken as the mean 
of some Gaussian (width=noise).

This 1D function (of x) is represented as usual

ai(xn) = Gi

�
αi

�
φ̃i(x)ρ(x|xn)

�

x
+ Jbias

i

�

ρ̂(x|xn) =
�

i

φi(x)ai(xn)



Pa r a m e t e r  e s t i m a t i o n

As before, we need an update rule to relate these, 
for each new xn+1 measurement

Step 1 is Bayes rule

Step 2 is the assumption that the prior is broad

ρ(x̄, σ|x1, . . . xn+1) =
�

ρ(x̄, σ|x)ρ(x|xn+1) dx

=
�

ρ(x|x̄, σ)
ρ(x)

ρ(x|xn+1) dx ρ(x̄, σ|xn)

≈
�

ρ(x|x̄, σ)ρ(x|xn+1) dx ρ(x̄, σ|xn)



Pa r a m e t e r  e s t i m a t i o n

We can thus substitute our b repn. of p(x,σ|xn) 
and a repn of p(x|xn+1) into this repn, to get

where

bj(xn+1) = Gj

�
�

il

ωjilai(xn+1)bl(xn) + Jbias
j

�

ωjil = αj

�
φ̃j(x̄, σ)ρ(x|x̄, σ)φi(x)φl(x̄, σ)

�

x,x̄,σ



Pa r a m e t e r  e s t i m a t i o n
Run mplayer (parmest, parmest2.avi)



Pa r a m e t e r  e s t i m a t i o n

This derivation holds regardless of our explicit 
restrictions on the shape of p(x,σ|xn) or p(x|xn)

Just one of many ways of doing this kind of 
estimation

Notice that there is no explicit learning/change 
in weights, yet the system is adaptive



S u m m a r y

Learning and statistical inference are both about 
‘modeling’ the (messy, uncertain) world

There are a variety of ways of constructing such 
models, each with different resource constraints/
assumptions, etc.

A huge challenge to figure out what the ‘best’ 
assumptions are -- looking to the brain should 
help


