

Modelling the Brain SYDE 556/750

Chris Eliasmith Centre for Theoretical Neuroscience

Brains

- Mass: 1-2 kg (2% body weight)
 25% energy (glucose)
- Power: ~20 Watts
- Area: 4 sheets of paper
- Neurons: 100 billion
 - 150,000 / mm²

Neurons

Kinds: 100s (perhaps/1000s)

Size: 10-4 to 5 m

Connections: 500-200,000 inputs/outputs km of fiber) post-synaptic current

Communication: 100s of neurotransmitters

axon

dendrites

cell body

axon

Theoretical Neuroscience

fMRI: Systems

Mothers and children

Surface Imaging: Maps/Networks

Single Cell Electrodes: Neurons

Current→

Cell Response

Cortical cell with injected current

Cool, but so what?

What can we do with all this data?
Neuroscience is "Data rich and theory poor"

 Unifying theories are essential for a deeper understanding of neural phenomena Theoretical Neuroscience → Models

A fertile analogy

	Theoretical physics	Theoretical neuroscience
Quantify phenomena	$\mathbf{F} = m\mathbf{a}$	$\hat{\mathbf{x}} = \phi \mathbf{a}$
Summarize lots of data	motion of objects	neural representation of information
Speculative (generate hypotheses)	true for all velocities	true for all stimuli

Outside the Neuron

Large-scale model

100 billion simulated neurons

1 s of real time took 50 days on a supercomputer

Randomly connected

time: t = 99 ms

Our work at the CNRG

Neural Engineering

COMPUTATION, REPRESENTATION, AND DYNAMICS IN NEUROBIOLOGICAL SYSTEMS

A theory, like Newton's theory of motion:

- Three basic principles
- General, unified approach
- Quantitative
- Wrong!

Principle 1: Representation

Need two procedures to define representation

- encoding (S O S \rightarrow . . . - . . .)
- decoding $(\ldots - \ldots \rightarrow S \circ S)$

Scalar Representation

Principle 1: Representation

• A 'population' representation (rat navigation)

neuron activity

position

Principle 2: Transformation

Principle 3: Dynamics

• There are general ways to write descriptions of time-varying phenomena

neural dynamics

neural transformation

 (\mathbf{x}, t)

neural representation

• All together: Biologically realistic models that *explains behaviour*

- this model: 11% error with 4000 cells
- best previous model: 100% error with 300 000 cells

Applications

Language-based reasoning

Working memory.

Vision

Hemineglect

Complex action (basal ganglia)

Navigation

Tower of Hanoi

± | .

15

 Classic AI problem: planning, goals, structure representation, memory

No psychologically plausible neural models

Tower of Hanoi

(Data from Anderson, et al., 1993)

Tower of Hanoi

• fMRI Data comparison 3 cortical areas:

SPA: Timing

 Ryan and Clark (1991): GPe stops 14-17ms after rapid utility change

SPA: Timing

 Timing predictions based on GABA neurotransmitter time constant (simple actions)

What's the payoff?

Explicit (quantitative) hypotheses

- New practical applications
 - Medicine
 - Parkinson's disease, addiction, etc.
 - Machine Intelligence
 - Text classification

Aren't you in philosophy?

Architecture of the mindIs the mind like a computer?

Mental representation
Are mental representations symbolic?

So, who are we?

We are this person <

At the very beginning of a long climb...

...but at least we now have a few footholds

More about brains...

Centre for Theoretical Neuroscience

• http://ctn.uwaterloo.ca

• Mailing list for CTN seminars: <u>celiasmith@uwaterloo.ca</u>

Brain day April 4th, 2012
SYDE 556 - Sim. Neur. Sys.