
1

Lecture 9: Dynamic transformations (cont.)

9.1 Controlled integrator

• Let’s quickly reconsider the controlled integrator (or more accurately controlled
filter that becomes an integrator as a special case; see slide).

• To be more careful about our analysis, let’s work with the same diagram, but
explicitly write out the synaptic filters at each step. We know:

x(t) = hu(t) ∗ u(t)B′ + hp(t) ∗ f(p1, p2)
p1(t) = hA′(t) ∗A′

p2(t) = hx(t) ∗ x(t)
f(p1, p2) = p1(t)p2(t) (9.1)

• we know that each of the filters is of the form:

hα(s) =
gα

1 + sτα

• Solving equation (9.1) gives:

x(s) =
hu(s)u(s)B′

1− hp(s)hA′(s)hx(s)A′

so, the network temporal filter is given by

hnet(s) =
hu(s)B′

1− hp(s)hA′(s)hx(s)A′

=
guB′(1 + sτx)(1 + sτA′)(1 + sτp)

(1 + sτu) [(1 + sτx)(1 + sτA′)(1 + sτp)− gpgA′gxA′]

• That’s pretty ugly, so let’s assume that the recurrent time constantτx is much
longer than all the rest (so it dominates). This gives

hnet(s) ≈ guB′(1 + sτx)
(1 + sτx)− gpgA′gxA′

=
gnet(1 + sτx)

1 + sτ ′net

where

gnet =
guB′

1− gpgA′gxA′

τnet =
τx

1− gpgA′gxA′
.



2

As usual, we expect the denominator to be less than one so the network time
constant is much longer than that of any of the populations. We can see that this
becomes an integrator as−gpgA′gxA′ goes to one, as expected. (We also know,
given the derivation from last time, that this will operate best whenτu = τx +τp,
although this is lost here.)

• Writing these equations out explicitly shows what kind of assumptions must be
made when constructing such networks. Also notice that it makes clearer that the
high-level translation between standard and neural control theory assumes that
theτ used effectively summarizes all of the time constants in the neural network.

• Also note that there are at least two possible implementations of this network in
a neural system. The first would be as discussed, where you construct a middle
layer that multiplies the recurrent andA′ signals. The second doesn’t repeat the
x(t) representation in the middle layer, but rather has that representation bex(t)
(we’d have to rederive the dynamics eqns above to know how this will act; this
works better).

9.2 Attractor networks

9.2.1 Introduction

• In dynamical systems theory, an attractor is a point towards which a system tends
over time (see slide).

• The standard analogy is to imagine that the system is a ball on a hilly surface (the
state space). When there is a large dent in the surface, the ball will tend towards
the bottom of that dent, or basin. The point at the bottom of the basin is thus a
point attractor

• In neural modeling, attractor networks (networks with attractors) have long been
thought relevant for understanding certain behavior (e.g., memory, integration,
off-line updating of representations, repetitive pattern generation, noise reduc-
tion, etc.)

• The neural integrator and working memory are both examples of attractor net-
works.

• The first can be thought of as aline attractor. Though it’s really only an approx-
imation to one (see slide).

• The second can be thought of as aplane attractor(similarly an approximation)
– the 2D analog (see slide).

• Similarly we can construct aring attractor. It can be thought of as a line attractor
that’s wrapped in a circle. This kind of attractor is a natural way to describe
systems that can encode and hold positions over a repeating axis (e.g., directional
heading in hippocampus).



3

• Attractor networks were first extensively examined in the ANN community (e.g.
Hopfield nets). Amit suggested that observed persistent neural activity could
be associated with recurrent biological networks as well. Persistent activity is
common, it’s found in motor, premotor, posterior parietal, prefrontal, frontal,
hippocampal, and inferotemporal cortex, as well as the basal ganglia, midbrain,
superior colliculus, and brainstem.

• However, work so far has focussed on simple attractors (namely the line and
ring). But the concept seems easily generalizable – and we now have techniques
to build arbitrary, complex attractors.

9.2.2 Generalization

• We can generalize attractors in two ways

• Representationally, we know that any attractor we can define for a scalar, we can
define for functions and vectors as well. This is what the working memory model
does. This is straightforward.

• We can use the means of quantifying representation discussed earlier to see what
effect they have on dynamics. As expected, heterogeneity seems to make a
system have more fixed points than the other (non-even) distributions – again
this distribution provides for a nice trade off between useful properties (dynamic
fixed points) and expense (i.e. you don’t have to precisely space the intercepts;
see slide).

• More interestingly, we can also generalize the dynamics. Because we can relate
our neural systems to the standard state equations:

ẋ = Ax + Bu,

knowing how to pick interesting values forA, can help us build biologically
plausible networks with interesting dynamics.

• One important case is the simple harmonic oscillator. Here,A is given by:

A =
[

0 ω
−ω 0

]
.

• This gives rise to acyclic (or periodic) attractor (see slide: note, can’t use the
‘ball’ analogy any more).

• Technically, this isn’t a simple cyclic attractor, since the amplitude depends on
the initial conditions. As a result, just as we can control the stable point of the
line attractor by adjustingu(t), so we can control the cycle (i.e., amplitude) at
which the oscillator attractor operates by adjustingu(t).

• One notable difference between the oscillator and the line attractor is that the
oscillator also includes the variableω which controls the speed with which the
system traverses the attractor.



4

• This kind of attractor is useful for describing repetitive behaviours (as in the
lamprey model below).

• Notes:

– Attractors can be subsystems of a system being modeled (e.g., there is an
integrator that is a part of the otolith model)

– Dynamic stability is important for a number of reasons.

∗ it provides a kind of short-term memory that can aid in the processing
of complex problems.

∗ it allows the system to react to environmental changes on multiple
time scales (stability permits systems to act on longer time scales than
it might otherwise, which is important for certain kinds of behaviors
such as prediction, navigation, hunting, etc.)

∗ stability can make the system more robust (i.e., more resistant to un-
desirable perturbations.) This makes such networks good at noise re-
duction. Because

∗ the same mechanisms that support noise reduction make attractor net-
works suitable for categorization tasks, as has been emphasized by
Hopfield (note: we can construct networks with stable states non-
evenly distributed around the space, just as we may have category
clusters).

– there are kinds of attractors we haven’t examined yet, but could (chaotic
(done Lorenz elsewhere), torus, etc.)

– Attractors themselves can be thought of as dynamic. E.g., perhaps reaching
for a target location is equivalent to forming an attractor point at that loca-
tion in motor space. Then unexpected perturbations could be easily over
come.

9.3 Lamprey model

• The lamprey example implements a cyclic attractor (simple harmonic oscillator).

• There are two techniques of interest in this example.

• The first is that we assure the stability of the function representation over the
lamprey by explicitly damping out higher-order terms (high-frequencies) in the
dynamics matrix.

• The second is that we introduce an intermediate level of representation between
the ‘higher’ function representation and ‘lower’ neural representation.

• First, we have the observed swimming motions:

s(z, t) = A sin(ωt− kz). (9.2)



5

• This gives an expression that describes the muscle tensions that are needed to
give rise to these observed swimming motions:

T (z, t) = κ(sin(ωt− kz)− sin(ωt)), (9.3)

• We then define a representation of the dynamic pattern of tensions in terms of
the coefficientsxn(t) and the orthonormal spatial harmonic functionsΦn(z):

T (z, t;x) = κ
(
x0 +

∑N
n=1 x2n−1(t) sin(2πnz) + x2n(t) cos(2πnz)

)
. (9.4)

• Let’s write the error

E =
〈
[T (z, t)− T̂ (z, t;x)]2

〉
t,z

, (9.5)

Solving (9.5) results in the expression:

E =
〈

1
2
(x1 + cos(ωt))2 +

1
2
(sin(ωt) + x0)2

+
(

x0 + x2

2

)2

+
(

x0 − x2

2
+ sin(ωt)

)2

+
∑
n=3

x2
n(t)t

〉

t

.(9.6)

• To ensure that this error goes to zero over time, each of the terms in this expres-
sion must also go to zero.

– The third term suggests that we need to damp the sum ofx0 andx2 over
time to keep the error small.

– Together with the fourth term, it also suggests that we must enforce the
constraintx0 = −x2 = − sin(ωt).

– The last term suggests all higher order coefficients must go to zero too.

• We can see that the first and second terms together identify an oscillator since

x1 = − cos(ωt)
x0 = − sin(ωt).

• These dynamics can be written in standard control theory form as

ẋ0 = −ωx1

ẋ1 = ωx0

or,
ẋ = Ax,

where

A =
[

0 ω
−ω 0

]
.

i.e., a cyclic attractor.



6

• Skipping a number of important steps... (see the text)

• As mentioned, the final term tells us that we must damp the higher-order terms
in the orthogonal representation. We can combine these damping terms in a
single matrix. This matrix then damps all sources of error introduced by our
representation:

Adamp =




−α0 0 −α0 0 0
0 0 0 0 0
−α0 0 −α0 0 0

0 0 0 −α 0

0 0 0 0
.. .




.

• We have now effectively defined the dynamics matrix,AD, so let us turn to the
input matrix,AI . This matrix is essential for starting the swimming motion, and
could also be used to increase or decrease the amplitude of the swimming wave.
For convenience, we have chosen startup dynamics defined by the startup matrix
AI :

AI =




1
2 0 − 1

2
0 1 0
− 1

2 0 1
2


 .

Substituting this matrix into (9.7) and allowingu = x shows that the resulting
equation isẋ = x, giving an exponential startup while satisfying the constraints
imposed by (9.6).

• Putting these matrices together, we can create a set of dynamical equations that
result in the desired behavior:

ẋ = ADx + AIu = [Ax + Adamp]x + AIu(t− ts), (9.7)

• The second insight to be gained from this model is that we define the model over
an ‘intermediate’ representation. This representation lies between the function
representation and the neural representation. Essentialy it is like a population-
level representation (where each tuning curve represents the activity of the neu-
rons at one vertebrae). This is very useful for simulations, as it is significantly
cheaper than a full neuron simulation by more realistic than simulating the func-
tions directly.

• A simple choice for this intermediate level representation is to use one Gaussian
encoding function for each vertebrae segment. We can then proceed as usual:

T (t, z) =
∑

i

ai(t)φi(z), (9.8)

where we can find the decoding functions by minimizing the error as before. The
ai(t) is a scalar that can be thought of as the ‘segment activity’, defined by

ai(t) =
〈
φ̃i(z)T (t, z)

〉
z
. (9.9)

Together, (9.8) and (9.9) form an overcomplete representation ofT (z, t).



7

• To use this representation, while preserving the higher-level dynamics, we can
construct a projection operator between the higher-order orthogonal space and
this space. This operator effectively allows us to move between these spaces:

Θ =
[
φ̃Φ

]−1

.

• We can useΘ to transform the dynamical equations for the Fourier amplitudes,
x, given by (9.7), to dynamical equations in the intermediate space,a:

ȧ = Aa
Da + Aa

Ia(t− ts), (9.10)

where

Aa
D = Θ−1ADΘ

Aa
I = Θ−1AIΘ.

We can now simulate the lamprey’s swimming in the intermediate space using
this equation. Not surprisingly, the lamprey swims as expected.

• Note that NESim doesn’t support this kind of intermediate representation.


