
1

Lecture 8: Dynamic transformations

8.1 ‘Neural’ control theory

• History:

– Cybernetics (40s) - neurophysiologists (Warren McCulloch and Arturo Rosen-
blueth), one a mathematicians (Norbert Weiner) and one an engineer (Julian
Forrester). Too behaviourist, classical control.

– GOFAI (60s-) - representation, and computation. Turing machines, von
Neumann architecture, etc. Ignores time

– Contemporary (90s-) - time is essential, obvious to neurophysiologists.
Idea: reintroduce modern control theory

8.1.1 Standard control theory

• There are two equations that effectively summarize linear control theory (See
slide):

ẋ(t) = Ax(t) + Bu(t) (8.1)

y(t) = Cx(t) + Du(t). (8.2)

• these are thestate equationsof a system because the vectorx(t) consists of
variables that together describe the (internal) state of the system.

• state vector, x(t), serves to summarize the effects of all past input

• A is the dynamics matrix

• B is the input matrix

• The transfer function,h(t) in standard control theory is integration.

• In the Laplace domain,h(s) = 1
s .

8.1.2 Neural control theory

• In neurons, the synaptic dynamics dominate the overall population dynamics.
So, we need to use the intrinsic synaptic dynamics to characterize ‘neural’ con-
trol theory.

• recall, PSCs are given by

h(t) =
1
τ

e−t/τ

• Laplace of this

h(s) =
1

1 + sτ



2

• we can now put this into a ‘neural’ control diagram, analogous to the stardard
one above (see slide).

• we leave out theC andD matrices because they are accounted for by input
matrices in populations this system is connected to.

• Now, we can rewrite the state equation with this new transfer function

x(s) =
1

1 + sτ
[A′x(s) + B′u(s)]

=
τ−1

τ−1 + s
[A′x(s) + B′u(s)] .

So,

(τ−1 + s)x(s) = τ−1 [A′x(s) + B′u(s)]
sx(s) = τ−1 [A′ − I]x(s) + τ−1B′u(s). (8.3)

• Noting, in addition,

sx(s) = Ax(s) + Bu(s)

for standard control theory, we can solve to findA′ andB′ as

A′ = τA + I (8.4)

B′ = τB, (8.5)

• Of course, this answer depends on our assumed model for PSCs, but the tech-
niques are the same for any model.

• This, then, is the desired ‘translation’ between standard and neural control theory

8.1.3 A generic neural subsystem

• we can use this derivation to describe a generic neural subsystem: i.e., a theoret-
ical subsystem that can be mapped to any spiking neural population involved in
some dynamic transformation.

• First, we can draw a subsystem that simply integrates the PSCs with some weights
to give rise to neural spiking (see slide). This is a standard, though control-like
description of neural population behavior. This is a description of ‘basic-level’
behaviour.

• However, we can also describe the behaviour of the population without worrying
about spikes, but just about the dynamics of state vector being represented (see
slide). This is a description of ‘higher-level’ behaviour.

• Now, of course, we can bring these two descriptions together in a ‘generic’ neural
subsystem description that includes both - plus our characterization of represen-
tation (see slide). In effect, this diagram summarizes our entire approach.



3

• We can see directly from this diagram that the standard form for connection
weights for a population implementing certain dynamics transformations is

ωαβ
ij =

〈
φ̃

α

i MαβφαFβ
j

〉
m

• As well, we can restate the three principles we saw at the very beginning of class
in a precise way (see slides)

• Principle 1: Neural representations are defined by the combination of nonlinear
encoding and weighted linear decoding.

• Neural encoding is defined by
∑

n

δ(t− tin) = Gi

[
αi

〈
φ̃ix(t)

〉
m

+ Jbias
i

]
.

Neural decoding is defined by

x̂(t) =
∑

i

ai(x(t))φx
i ,

where

ai(x(t)) =
∑

n

hi(t) ∗ δ(t− tin)

=
∑

n

hi(t− tin).

In both cases,i indexes neurons in population andn indexes spikes transmitted
from one population to another.

• Principle 2: Transformations of neural representations are functions of the vari-
able that is represented by the population. Transformations are determined using
an alternately weighted linear decoding.

• Assuming the encoding in principle 1, we can estimate a function ofx(t) as

f̂(x(t)) =
∑

i

ai(x(t))φf
i ,

where,ai(x(t)) is defined as before. The only difference between this decoding
and the representational decoding are the decoders themselves,φf

i .

• Principle 3: Neural dynamics are characterized by considering neural repre-
sentations as control theoretic state variables. Thus, the dynamics of neurobio-
logical systems can be analyzed using control theory.

• Allowing x(t) to be a state variable andu(t) to be the input, we have the follow-
ing general expression for the encoding:

∑
n

δ(t− tin) = Gi

[
αi

〈
φ̃i (hi(t) ∗ [A′x(t) + B′u(t)])

〉
m

+ Jbias
i

]
.



4

8.2 Controlling eye position

• There has been a lot of work done the the ‘neural integrator’, part of the brain that
controls eye position. There is part of the brain (NPH and vestibular nucleus),
that stores the current desired eye position in the absence of cues.

• This is a nice example because integration, in general is a useful and difficult
problem to solve. And, it’s simple to formulate.

• We can draw a block diagram for this control system (see slide)

• Let’s redo the derivation of what the behaviour of the system will be, this time
assuming that the input and recurrent time constants can be different:

sx(s) = Ax(s) + By(s)

and

x(s) =
1

1 + sτx
A′x̂ +

1
1 + sτy

B′ŷ

(1 + sτx)x(s) = A′x̂ +
1 + sτx

1 + sτy
B′ŷ

sx(s) =
1
τx

(A′x̂− x) +
1
τx

1 + sτx

1 + sτy
B′ŷ

now assumex = x̂, y = ŷ, A′ = 1 + Aτx andB′ = Bτx

sx(s) = Ax +
1 + sτx

1 + sτy
By

this is the same as the original dynamics equation ifτx = τy. This is important to
know since it tells us that having non-equal synpatic time constants on the input
and recurrence can significantly affect the system.

• Now we can solve for the two matrices for the integrator (actually just scalars in
this case) now:

B′ = τ

A′ = 1

• Now we can put this in a circuit:

aj(t) = Gj

[
αj

〈
x(t)φ̃j

〉
+ Jbias

j

]
.

Substituting forx(t), and leaving the higher-level representation of the input,
u(t), gives

aj(t) = Gj

[
αj

〈
h(t) ∗ φ̃j

[
A′

∑

i

ai(t)φx
i + B′u(t)

]〉
+ Jbias

j

]
(8.6)

= Gj

[
h(t) ∗

[∑

i

ωjiai(t) + B′φ̃ju(t)

]
+ Jbias

j

]
, (8.7)



5

whereωji = αjA
′φx

i φ̃j .

• That was easy... but, let’s think about the integrator for a minute. If we expect
any error at all in our representation ofx(t), we won’t be able to build a perfect
integrator (and of course, we expect error - from the repn, from spikes, and from
noise).

• Think of error in x̂ as being captured by some gain,kx. This gain is playing
the role ofA in the circuit. And we know the circuit will be sensitive to any
deviations ofA away from0 (or 1 in the neural version), because

x(s) =
1
s
(Ax(s) + Bu(s))

=
A

s
x(s) +

B

s
u(s).

• That is, if A is non-zero, we get moved away from the current value ofx even
with no input. So it acts like a rate constant, i.e.,:

A = − 1
τ

eff

.

Since we know the equivalent value ofA in the neural circuit, we know that

− 1
τ

eff

=
A′ − 1

τ

τ
eff

=
τ

1−A′
.

• So (see slide)

1. the synaptic time constant,τ , of constituent neurons affects the integration
abilities of the circuit of which they are a part;

2. that the goodness of thex(t) representation affects the integration abilities
of the circuit.

• a longerτ makes for a longer effective time constant (note that a perfect integra-
tor has an infinite effective time constant), so neurons with longer synaptic time
constants (e.g., neurons with NMDA receptors) are more suited to integration

• also, asA′ nears unity, the effective time constant becomes infinite. Thus, setting
A′ = 1 means that all of the integration error is a result of representation error.
So, the better our representation ofx(t) (and thus the closerA′x̂(t) matches
A′x(t)), the better job we can do of implementing stable dynamics

• So representation error is very important for dynamics.

• But note that error is a function ofx. This is why it’s often useful to graph (as
you have been doing)̂x− x.



6

• The standard linearity graph is useful for understanding dynamics (see slide).
You can trace the temporal evolution of the system on this graph.

• The ‘difference’ graph makes it easy to see stable points, and drift speeds. Note
that the drift velocity is proportional to the magnitude of this curve.

• Now we can measure drift velocity and look at these kinds of properties to under-
stand the behavior as we change network parameters. The slides show changing
the number of neurons and changing the RC time constants of neurons in the
population (see slide).

• Just for fun we can now build a network that dynamically changesA′, thereby
affecting the parameters that control the dynamics. This essentially makes the
integrator circuit into a tunable filter. (see slides):

• Let
A′(t) =

∑

l

bl(t)φA′
l ,

and substitute this into (8.6) to give

aj(t) = Gj

[
αj

(
h(t) ∗ φ̃j

[∑

l

bl(t)φA′
l

∑

i

ai(t)φx
i + B′u(t)

])
+ Jbias

j

]
(8.8)

We know that to perform a multiplication between the recurrent signal,x(t), and
the control signal,A′(t), we can introduce a new population whose dimension-
ality is the sum of those being multiplied (see section??). So let

p(t) =
∑
m

cm(t)φp
m

be such a population. So, we can write (8.8) as

aj(t) = Gj

[
αj

(
h(t) ∗ φ̃j

[∑
m

cm(t)φp
m + B′u(t)

])
+ Jbias

j

]
, (8.9)

where

cm(t) = Gm

[
αm

(
x(t)φ̃c1

m + A′(t)φ̃c2
m

)
+ Jbias

m

]
(8.10)

= Gm

[
αm

(∑

i

ai(t)φx
i φ̃c1

m +
∑

l

bl(t)φA′
l φ̃c2

m

)
+ Jbias

m

]
.(8.11)

• The nice thing here is that we can figure out exactly how single cell properties af-
fect network behavior. This has often been a point of contention in neuroscience
(is integration a network effect, or a cellular effect?). Using this approach we
can try to figure out what parts of each give rise to the observed behaviour.

• Also, (see slide) we can tune our model to match what is known about integrators
in real systems. E.g., we can incorporate centripetal only drift. And change
tuning curve distribution to match those systems.



7

8.3 Working memory

• I have essentially nothing new to say about this example, since it’s exactly the
same dynamics as the integrator, but over function representation. So, the deriva-
tion is the same, using vectors (the function coefficients) instead of scalars.

• Interestingly, this network works well, and exhibits behaviour that people haven’t
been able to incorporate in the past (See slides).


