Lecture 7: Analyzing representations and transforma-
tions

7.1

Basis vectors and basis functions

7.1.1 Definitions

A representational space is a specific kind of vector space.

Vectorsare simply collections of mathematical objects, be they numbers, func-
tions, or other vectors.

A vectorspaceis a set of vectors that is closed under addition and multiplication
(meaning that a sum or multiple of any two vectors in the set is also in the set).

A basisis anindependenset of vectors thagpanthe vector space.

A set of vectorsg,, is independenif
a1X1 + asxXg + ... +apx, =0
only when
ag=as=...=a, =0,

wherea,, are scalars. As a resuit,must be equal to the dimension of the vectors
in V in order forx,, to be independent.

A set of vectorspansa vector space if any vector in that space can be written as
a linear sum of those vectors. That is, if for =l V there are some,,,

a1X1 + agXg + ... + apXy = X,
then the set of vectors,, span the vector spadé.

Example: The standard Cartesian basis in any number of dimensions is com-
prised of the unit vectors along the principle axes. All the vectors in the standard
bases are orthogonal (meaning that the dot product of any two will be zero; i.e.,

if all the vectors in a basis are orthogonal, it is callecbathogonalbasis

if the length of all the vectors in an orthogonal basis is equal to one (i.e., if they
are all unit vectors) then it is asrthonormalbasis (e.g., the standard Cartesian
basis).

If we relax the constraint that the vectors have to be independent, we have what
is called arovercompletédasis (or sometimes ‘frame’).

— Overcomplete bases are (strictly speaking) redundant for defining the vec-
tor space.



— descriptions employing overcomplete bases are are not as succinct as those
employing complete, or orthogonal bases

— But in the noisy world of physical systems, this redundancy can prove in-
valuable for error correction and the efficient use of available resources

7.1.2 Anexample
7.1.2.1 Orthogonal representation

e (see slide) Let the vector be written in a standard Cartesian basis (e.g., in two
dimensionsx = [z, x2] = 211 + z2)).

o If we have a system that uses a different basis, say one in which both basis
vectors (i.e.i andj) are rotated by 45 degrees (call theseand ¢,), we need
to re-writex in this basis in order to relate it to other objects in that system.

o We write theencodingof x into this basis as

a; = (x¢,),, (7.1)
which is simply the dot product projection of the vector onto the new basis.

¢ To find out where the poirh = [a1,a2] = a1¢; + a2, lies in the original
space, we cadecodex from this new basis using

X = Z a; ;. (7.2)
This way, we can move back and forth between orthonormal bases (see figure
?7a).

e Notice that if we substitute (7.1) into (7.2), we recover the same vector we orig-
inally encoded.

e Thus we can think of the coefficients as ‘representing’, or ‘carrying the same
information’, or ‘encoding’ the original coefficients
7.1.2.2 Overcomplete representation

e Suppose that we do not know what the decoding basis is, but we do know what
the encoding basis is

e We can guarantee that the encoding basis is overcomplete by using redundant,
non-orthogonal encoders (see slide)

e Let us choose the encoding basis that consistthife vectors in the Carte-
sian plane, equally spaced at 120 degree intervals 6.1e.,: [§7 %], q~52 =
(%3 11 andé; = [0, —1]).



e Since these encoders are not independent, (7.1) and (7.2) do not hold as they did
before (which can be easily verified by substitution).

e So, we need to identify the set of vectors that span the space into which our
vectorx is being encoded (i.e., the decoding basis). To find this basis, we first
assume, as before, that

x = Z ai;, (7.3)

and

a; = <x$i>n. (7.4)
e We can now substitute (7.4) into (7.3) to give
X = Z <Xq~5i>n ?;-
Writing the dot product explicitly, we get
zlm] = ) x[n]di[n]gi[m]

i,m

= Y aln) Y dilnlofml

n

Since

x[m] = Z Z[n]Onm,

we know that

Onm = Z Gi[n)gi[m];

or, in matrix notation, _
I=¢9, (7.5)

wherel is the identity matrix, the columns @f are theg,, and the rows ot
are theg,. We can thus solve for the decoders

I = ¢¢
~T ~T ~
= ¢ 99,
~T ~\"L -1
¢ = (60) .
providing the desired vectoks,. Performing the calculations for this example

givesg, = [*2, 3], ¢, = [, 1], andg, = [0, —2], i.e.,

9 -
o= 5% (7.6)



These are the vectors that form the overcomplete basis for the vector space in
which thea; are coordinates. Thus, they are also the decoding vectors which
help define the representation-oby the coefficients;.

Vectors like these are calldrlorthogonalbecause togethes and¢ act like an
orthogonal basis.

notably, the and¢ we use do not, technically, satisfy the definitions provide
here (because the encoding goes through a neural nonlinediiyever they
nearly satisfy these definitions, and the definitions provide a useful way of un-
derstanding what the relation between our encoders and decoders is.

7.1.3 Basis functions

7.2

this discussion applies equally to bakiactions

Just as basis vectors define a vector space, so basis functions define a function
space.

Perhaps the most widely known basis functions are the sines and cosines. The
Fourier decomposition is one that defines some funcfi@n in terms of coef-
ficients, A;, times a basissos(w;z) andsin(w;x) (see equatior??). This is an
orthonormal basis.

just as in the vector case there are overcomplete basis functions as well. These
are like theg; (v) and¢, () we encountered in our characterization of function
representation. Recall that these were used to characterize the tuning curve.

So, the tuning curves are like a set of overcomplete basis functions for the space
they represent.

Decomposing®

7.2.1 Matrix notation

consider just the noise freg; = (a;(x)a;(x)),.

This is the Gram matrix (sometimes called a correlation matrix, but not really one

- a correlation matrix should be a covariance matrix normalized by the standard
deviations; a covariance matrixis; = (x; — p;)(z; — p;)). That being said,

we can think of it as measuring the similarity/overlap between the response of all

neurons in the population. So, it tells us about the structure of the representation
of the relevant vector space by the neurons.



e To rewrite our representation in vector notation, we assume tisadiscretized
by some steg\x. Then the responses are:

ay (anin) ai (anin + Ax) e al(xmam - Ax) al(xma.r)
as (szn) as (Xmam)
AT = :
aN—l(Xm,in) aN—l(Xmaz)
an (szn) ay (X7nin + Ax) e al(xmax - Ax) aN(Xmax)

e This means we can write the estimatexads:
XNaxN, = ANsxNPN N, >

where theA matrix is the transpose of the neuron tuning curdéss a matrix
in which each row is the estimate ®fat the corresponding discretized value of
x, and¢ is a matrix in which each row is a decoding vector.

e we need the optimap given a set of vectorsX. So, takeX as given and solve
for ¢ as follows:

X = A¢
ATX = ATA¢
(ATA)TIATX = o. (7.7)

e Presuming we take the inverse Af” A in the right way, this is the same as

minimizing the mean square error between the originally encoded value and our

estimate. That is, we find

~ = ATA (7.8)
T = ATX,
SO,
¢ = 77T (7.9)
(ATA)"TATX.

e \We can now rewritethe estimate Xfin matrix notation as

X = A¢
= AATA)TTATX.

7.2.2 SVD om

¢ the major assumption we have made is that we can take the invefsénathe
right way'.



because this matrix has no noise term, and becsursetuning curves are likely
to be similar for a large population, the matsxs likely to be singular, or nearly
singular so it imotinvertible

There exists a general, and very powerful, technique for analyzing singular ma-
trices called singular value decomposition (SVD).

SVD decomposition of ad/ x N matrix, B, results in three matrices whose
product givesB, i.e.,

T
Buxny = UnunSnxvDyyn-

The matrixS is a diagonal matrix whose entries are calledsimgular valueof
B.

In the case wheB is square and symmetrical (as wih, this simplifies to
~ = USuU7l,
or equivalently, in summation notation,

Yij = Z Uim SmUjm.-

m

In the case where is singular (or nearly so), some elementsScére zero (or
very small), so the inverse & includes infinite (or very large) terms, meaning
the inverse ofy is ill-defined (as expected for singular or near singular matrices).
In this case, the SVD ‘pseudo-inverse’ is defined wheresSfoe= 0, the inverse

is set to0.

Even in the case when a matrix is singular (or nearly so), SVD can be very
informative. the columns otJ whose corresponding singular values are non-
zero form an orthonormal basis that spans the range and the corresponding zero
elements form an orthonormal basis that spans the null space.

This decomposition is useful for characterizing representation and transforma-
tion for a number of reasons.

— First, as already mentioned, the relev@htnatrix provides an orthogonal
basis for both the range and nullity 9f Becausey tends to be singular,
both bases are important.

— Second, when a vector ifi lies in the range ofy, the SVD pseudo-inverse
guarantees that the corresponding vector friprfound from (7.9)mini-
mizesthe length of thatp vector. This is important because given thas
singular, there are an infinite number of solutions¢gorThe solution that
provides the shortest vector is a natural and compact choice from the set.



— Third, when a vector if(" lies in the nullity of A, the SVD pseudo-inverse
guarantees that the best (in the least squares sgmgedn Y will be found.
In other words, this ‘pseudo-inverse’ minimizes the error. Thus, we can use
SVD to find the optimal decoding functions, which we can now write as

¢ =US'UTATX. (7.10)
Given the properties of SVD, we know that this is the same solution we
12
would find by constructing the error explicitly (i.e%, = < {X — X} > ),
X

taking the derivative, and setting it to zero, as we have previously done.

7.3 Possible transformations
7.3.1 Theory

e let's do a similar analysis to find an expression for the decoding vectors needed
to decode anyransformationof x:

fX) = Ag¢’
ATFX) = ATA¢/
¢! = (ATA)TTATF(X)
= ")lilT

Performing SVD onAT A to find the inverse, as before, gives
¢! = UsTIUTAT f(X), (7.11)
whereg/ are the linear decoders for estimating the transformafia).

e So, the representational decodgr,is found in the special case wheféX) =
X.

o Notice that regardless of which transformation we need decoders for, we always
perform SVD on the same matrix,= AT A. This suggests that understanding
the properties ofy can provide general insight into all possible decodings of the
populationa;.

e The singular values are useful because they tell usnipertanceof the corre-
spondingU vector. There are a number of ways of thinking about ‘importance’
in this case.

— related to the error that would result if we left a particular vector out of the
mapping.

— related to the variance of population firing along the vectors irnytimatrix.

— being the amount of (independent) information about changes in popula-

tion firing that can be extracted by looking only at data projected onto the
correspondindJ vector.



— In general, we can think of the magnitude of the singular value as telling
us how relevant the dimension defined by the corresporidingctor is to
the identity of the matrix we have decomposed. Since the matrix we have
decomposed is like the correlation matrix of the neuron tuning curves, the
large singular values are most important for accounting for the structure of
those correlations.

Notice also that the vectors d are orthogonal: they provide an (ordered) or-
thogonalbasisfor that matrix. This is very useful because the origiathatrix
was generated by a non-ordered non-orthogonal basis; the neuron tuning curves.

to understand this, define a point in the ‘neuron space’ (i.e., the space spanned
by the overcomplete neuron tuning curves) as

a=aie; +azey+ ... +aneyn.

In this notation, the vectors; serve as axes for the state space of the neural
population. A point in this space is defined by the neuron firing rates from each
neuron in the population (which, taken together, form the vextor

Because the neural responses are non-independently driven by some variable,
only asubspacef the space spanned by thgvectors is eveactuallyoccupied
by the population.

The~ matrix, because it tells us the correlations between all neurons in the popu-
lation, provides us with the information we need to determine what that subspace
is. When we find thdJ vectors in the SVD decomposition, we have character-
ized that subspace because those are the orthogonal vectors that span it.

Let's see how we can use this to determine what functions can be computed by
the particular encoding of found in thea,; population:

X = AUST'UTATX,

or, more simply

X = v, (7.12)
where
x =AU,
SO
Xm(X) = Z a;(X)Uim, (7.13)
[
and
® = ST'UTATX
= UTUus'UuTATX
U”g,
SO

(I)m = Z Umi¢i-



e Notice thaty and ® in (7.12) are rotated versions & and ¢ respectively.
Specifically, they are rotated into the coordinate system defined.bgo we
can think ofU as the rotation matrix that aligns the first axis of the coordinate
system along the dimension with the greatest variance in the encodinglo#
second axis along the dimension with the second greatest variance, and so on.
As a result, and as shown in appen@iX the

e the x vectors also end up being orthogonal and ordered by importance. That is,
they tell us what can be extracted, and how well it can be extracted, from the
neural population.

e (see slide) We can think of the componentsiadsbasis function®f the space
that includes the ensemble of transformations definabbe wsing the encoding
in the populatiorw;. This is more evident in (7.13) where we wrifdn summa-
tion notation. There it is quite obvious that,(x) at a particular value of is
the neuron firing rates at that valuexoprojected onto thenth orthonormalU
vector (see figur@?).

¢ Whichevery(x) functions have reasonably large associated singular values, are
exactly the functions that we can do a good job of extracting from our encoding
of the input spacex. Of course, we can also extract any linear combinations of
thosex(x) functions quite well. But, because these functions are ordered, the
more useful the ‘first’y(x) function is for reconstructing some transformation,
f(x), the better we can extract that transformatiffx ).

e In practice, we can look at the resultiggx) functions and determine what sort
of basis we seem to have. For example, if fli&) look like sines and cosines,
we have a Fourier basis.

7.3.2 Real populations
7.3.2.1 Linear population

e S0, let’s do this to a population encoding a scalar with broad functions (see slides)

e the result? a standard basis: One of the most common polynomial bases used
in mathematics is the Legendre basi$z), which is defined over the interval
[-1,1] and results from the orthogonalizationadf.! Scaled versions of the first
five elements of this basis are plotted in fig@mb.

e the similarity betweerny,,(x) andl;(x) means that this neural population sup-
ports the extraction of functions that can be well-estimated using the standard
Legendre basis. But the,,(x) functions are ordered by their singular values.
Thus, the higher-order polynomial terms are not as well encoded by our popu-
lation as the lower-order ones. So, computing functions that depend strongly on
precise high-order terms will be prone to error.

10ne way of expressing the basisis(z) = (;112 dd;,, [(1 - xz)z}
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e This is a natural basis to be found from the tuning curves in the linear popula-
tion. The tuning curves are very broad, and the polynomial basis is also very
broad. These tuning curves are approximately linear, and the more linear basis
functions are also the first ones. The Legendre polynomial basis is ordered by de-
creasing linearity so it should not be too surprising that this population supports
the functions in precisely that order.

e However, none of this would be true if the population did not do a good job of
evenly tiling the input space. If, for example, there were only high gain neurons,
whose slopes were the same sign as théitercepts (i.e., if the ‘on’ and ‘off’
sub-populations were ‘clumped’ neay,,, andz,,;, respectively), we would
not expect the linear term to be better supported than the quadratic term. In
this sense, the heterogeneity of the population helps it support the more natural
ordering of the polynomial basis; clumping would defeat this ordering. Thus, this
particular set ofy,,, (x) functions does not just depend on the general ‘shape’ of
the neuron tuning curves, but also on which neurons are included in a population,
i.e., the degree of heterogeneity.

e Vectors: there are additional analyses we can perform for vectors of two or more
dimensions.

e When computing transformations of populations encodirdjmensional vec-
tors, we must realize that there are additional cross terms (g.g;) that in-
troduce variations in the encoding that are not present in scalar transformations.
The expansions are now of the form

2 2
f(x) = co+ w4+ corg + c3x] + cqxs + s + ..
Norder 1
E E n, l—n
- Cn,l—nT1 Ty
1=0 n=0

whereN,,.q. IS the highest order term in the transformation aimdlexes théth

order terms in the expansion (all terms whose expor&nto [ are considered

Ith order terms). As we can see, the cross terms ;(j;lez;l{") are quite common.

In order to characterize how well an arbitrary function can be decoded from a
representation af, we need to know how big the singular values of these cross
terms are as well.

e A quick inspection of the singular values of the population reveals that all terms
of a given order have singular values of approximately the same magnitude (see
slide).

e But there is an exponential decay in the magnitude of the singular values as a
function of the order of the polynomial. This means that lower-order functions
aresignificantlybetter supported by these kinds of broadly tuned neural popu-
lations. That is, the ability to extract higher-order functions drops more quickly
with an increase in the order of the function than compared to the scalar case.
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e In fact, we can determine exactly how many singular valiés, there should
be for each ordet, in the polynomial for a input space of siZe by using the
equation for determininggcombinations of a multi-set (See slide):

(1+D—1)

Ns(l, D) = ND-1) "

(7.14)

7.3.2.2 Gaussian population
e Now we can do the same on a gaussian population (See slide)
o we find some differences:

— the basis looks like a fourier basis, but only over [-1,1]

— the basis is better for encoding localized functions, and not good a broad
ones - we can see this by looking at the singular values (see slide)

¢ In general, then, we can examine tRg (x) functions, which span the active
state space of a population, to determine what kinds of transformations are and
are not well-supported by that population. This can be extremely useful for con-
straining hypotheses about the kinds of transformations we expect to semin a
neural population once we have a sense of what kind of encoding is being used.
7.3.3 Noise

e we've been ignoring noise. but most everything stays the same. Rather than the
encoding defining a precise subspace (the black line in the projection slide), we
can think of it as defining a cloud (e.g. a tube in the projection slide).

e However, the noise doesn’t scale with the singular values, it is isometric in the
vector space. This means that small singular values are more greatly affected by
noise. We can derive this.

e \We know the error with noise can be written in the vector case as

(- o]
i , x,n
([r-ewse] sier)

We can now use our expression SVD expressions to give

< lx — Z qu)m + 072] Z ¢16U ¢J>
m 4,7

E

(7.15)

X

2

E

X
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2
m ) 2,7 m x
<lxzxmq>m +03,Z<I>$n> . (7.16)

e \We minimize this error by taking the derivative of (7.16) and setting it to zero to
get an expression for the optim@lfunctions under noise:

dE 9
1o, <2 lx — ;qu)m} (=xn) + 20n<1>n>

0 = —2(xnX),+2 <Z Xanq)n> +20727<I>n
<X”X>x = 5,0, + U%(I)n
<an>
b, = 7.17
o (7.17)

e We can use this expression to determine what the residual error will be (i.e., the
expected error using thedefunctions).

e \We can now determine the residual error as follows:

E, = <[x f fc]2>xm

(-],

2
<x2>x,n—2<xzxmq>m> +<2qu>m> |
m x,n m x,m
Substituting the expression in (7.17) by, gives
2
2 XmX me
=
x,n

(XmX)a
(S + 02)2

E,

- <x2>x_225m+02+zs +07)

2
_ <x2> _ (XmX)5
* m STY}, + O.%
e We can see this how much theth basis functiony.,,, reduces the error in our
estimate under the influence of noise.
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Specifically, we know that as the singular vali,, approaches the value of
the variance of the noise,,%, the correspondingnth element does not usefully
contribute to the representation. This is becausestheéerm acts to normalize
the effects of the projection onto the non-normalized bagsis,

When the noise becomes near the magnitude of that normalization term (i.e.,
SNR =1 or less), the projection onto the relevgpt becomes ‘mis-normalized’

and thus contributes incorrectly to the representation. That is, iintibduce

error into the representation.

This tells us thathose basis functions whose corresponding singular value is
equal to or smaller than the noise, should not be used if we want a good repre-
sentation

So, the useful representational space is that space spanned by the basis functions,
Xm, Whose corresponding singular valugs,, are greater than the variance of
the noisea?], affecting a single neuron.

So, we can simply ‘lop off’ some of the singular values when doing the inverse
to get the same result as including a certain amount of noise in our calculation
of I'. This is approximately true, but we haven't done a careful analysis of this
relation (between the amount of noise and the number of SVs perserved when
inverting-y).

Heterogeneity

One thing that becomes clearly important when doing these kinds of analysis is
the precise nature of the tuning curves. In the book we show that heterogeneity
is a useful balance between usefully tiling a space and ease of construction.

Specifically, heterogeneity provides good reduction of error under noise (see
slide). And, it is easy to construct compared to a perfect, lattice-like spacing
of intercepts. (i.e., it's evolutionarily cheap).

| haven't discussed representational capacity above, but both it and ‘usefulness’
(measured by resistance to noise) are good for heterogeneous populations. This
is probably why real neural systems tend to have such tuning curves.



