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Lecture 7: Analyzing representations and transforma-
tions

7.1 Basis vectors and basis functions

7.1.1 Definitions

• A representational space is a specific kind of vector space.

• Vectorsare simply collections of mathematical objects, be they numbers, func-
tions, or other vectors.

• A vectorspaceis a set of vectors that is closed under addition and multiplication
(meaning that a sum or multiple of any two vectors in the set is also in the set).

• A basisis anindependentset of vectors thatspanthe vector space.

• A set of vectorsxn is independentif

a1x1 + a2x2 + . . . + anxn = 0

only when
a1 = a2 = . . . = an = 0,

wherean are scalars. As a result,n must be equal to the dimension of the vectors
in V in order forxn to be independent.

• A set of vectorsspansa vector space if any vector in that space can be written as
a linear sum of those vectors. That is, if for allx ∈ V there are somean,

a1x1 + a2x2 + . . . + anxn = x,

then the set of vectorsxn span the vector spaceV.

• Example: The standard Cartesian basis in any number of dimensions is com-
prised of the unit vectors along the principle axes. All the vectors in the standard
bases are orthogonal (meaning that the dot product of any two will be zero; i.e.,
x · y = 〈xy〉n =

∑
n x[n]y[n] = 0.

• if all the vectors in a basis are orthogonal, it is called anorthogonalbasis

• if the length of all the vectors in an orthogonal basis is equal to one (i.e., if they
are all unit vectors) then it is anorthonormalbasis (e.g., the standard Cartesian
basis).

• If we relax the constraint that the vectors have to be independent, we have what
is called anovercompletebasis (or sometimes ‘frame’).

– Overcomplete bases are (strictly speaking) redundant for defining the vec-
tor space.
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– descriptions employing overcomplete bases are are not as succinct as those
employing complete, or orthogonal bases

– But in the noisy world of physical systems, this redundancy can prove in-
valuable for error correction and the efficient use of available resources

7.1.2 An example

7.1.2.1 Orthogonal representation

• (see slide) Let the vectorx be written in a standard Cartesian basis (e.g., in two
dimensions,x = [x1, x2] = x1i + x2j).

• If we have a system that uses a different basis, say one in which both basis
vectors (i.e.,i andj) are rotated by 45 degrees (call theseφ1 andφ2), we need
to re-writex in this basis in order to relate it to other objects in that system.

• We write theencodingof x into this basis as

ai = 〈xφi〉n , (7.1)

which is simply the dot product projection of the vector onto the new basis.

• To find out where the pointa = [a1, a2] = a1φ1 + a2φ2 lies in the original
space, we candecodex from this new basis using

x =
∑

i

aiφi. (7.2)

This way, we can move back and forth between orthonormal bases (see figure
??a).

• Notice that if we substitute (7.1) into (7.2), we recover the same vector we orig-
inally encoded.

• Thus we can think of the coefficientsai as ‘representing’, or ‘carrying the same
information’, or ‘encoding’ the original coefficientsxi

7.1.2.2 Overcomplete representation

• Suppose that we do not know what the decoding basis is, but we do know what
the encoding basis is

• We can guarantee that the encoding basis is overcomplete by using redundant,
non-orthogonal encoders (see slide)

• Let us choose the encoding basis that consists ofthree vectors in the Carte-
sian plane, equally spaced at 120 degree intervals (i.e.,φ̃1 = [

√
3

2 , 1
2 ], φ̃2 =

[−
√

3
2 , 1

2 ], andφ̃3 = [0, −1]).
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• Since these encoders are not independent, (7.1) and (7.2) do not hold as they did
before (which can be easily verified by substitution).

• So, we need to identify the set of vectors that span the space into which our
vectorx is being encoded (i.e., the decoding basis). To find this basis, we first
assume, as before, that

x =
∑

i

aiφi, (7.3)

and
ai =

〈
xφ̃i

〉
n

. (7.4)

• We can now substitute (7.4) into (7.3) to give

x =
∑

i

〈
xφ̃i

〉
n

φi.

Writing the dot product explicitly, we get

x[m] =
∑

i,n

x[n]φ̃i[n]φi[m]

=
∑

n

x[n]
∑

i

φ̃i[n]φi[m].

Since
x[m] =

∑
n

x[n]δnm,

we know that
δnm =

∑

i

φ̃i[n]φi[m]i

or, in matrix notation,
I = φ̃φ, (7.5)

whereI is the identity matrix, the columns ofφ are theφi, and the rows of̃φ
are theφ̃i. We can thus solve for the decoders

I = φ̃φ

φ̃
T

= φ̃
T
φ̃φ,

φ =
(
φ̃

T
φ̃

)−1

φ̃
T
,

providing the desired vectorsφi. Performing the calculations for this example
givesφ1 = [

√
3

3 , 1
3 ], φ2 = [−

√
3

3 , 1
3 ], andφ3 = [0, − 2

3 ], i.e.,

φi =
2
3
φ̃i. (7.6)
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• These are the vectors that form the overcomplete basis for the vector space in
which theai are coordinates. Thus, they are also the decoding vectors which
help define the representation ofx by the coefficientsai.

• Vectors like these are calledbiorthogonalbecause togetherφ andφ̃ act like an
orthogonal basis.

• notably, theφ andφ̃ we use do not, technically, satisfy the definitions provide
here (because the encoding goes through a neural nonlinearity).However, they
nearly satisfy these definitions, and the definitions provide a useful way of un-
derstanding what the relation between our encoders and decoders is.

7.1.3 Basis functions

• this discussion applies equally to basisfunctions

• Just as basis vectors define a vector space, so basis functions define a function
space.

• Perhaps the most widely known basis functions are the sines and cosines. The
Fourier decomposition is one that defines some functionf(x) in terms of coef-
ficients,Ai, times a basis,cos(ωix) andsin(ωix) (see equation??). This is an
orthonormal basis.

• just as in the vector case there are overcomplete basis functions as well. These
are like theφ̃i(ν) andφi(ν) we encountered in our characterization of function
representation. Recall that these were used to characterize the tuning curve.

• So, the tuning curves are like a set of overcomplete basis functions for the space
they represent.

7.2 DecomposingΓ

7.2.1 Matrix notation

• consider just the noise freeγij = 〈ai(x)aj(x)〉x.

• This is the Gram matrix (sometimes called a correlation matrix, but not really one
- a correlation matrix should be a covariance matrix normalized by the standard
deviations; a covariance matrix isxij = (xi − µi)(xj − µj)). That being said,
we can think of it as measuring the similarity/overlap between the response of all
neurons in the population. So, it tells us about the structure of the representation
of the relevant vector space by the neurons.
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• To rewrite our representation in vector notation, we assume thex is discretized
by some step∆x. Then the responses are:

AT =




a1(xmin) a1(xmin + ∆x) · · · a1(xmax −∆x) a1(xmax)
a2(xmin) a2(xmax)

...
... · · · ...

...
aN−1(xmin) aN−1(xmax)
aN (xmin) a1(xmin + ∆x) · · · a1(xmax −∆x) aN (xmax)




.

• This means we can write the estimate ofx as:

X̂N∆×Nv
= AN∆×NφN×Nv

,

where theA matrix is the transpose of the neuron tuning curves,X̂ is a matrix
in which each row is the estimate ofx at the corresponding discretized value of
x, andφ is a matrix in which each row is a decoding vector.

• we need the optimalφ given a set of vectors,X. So, takeX as given and solve
for φ as follows:

X = Aφ

AT X = AT Aφ

(AT A)−1AT X = φ. (7.7)

• Presuming we take the inverse ofAT A in the right way, this is the same as
minimizing the mean square error between the originally encoded value and our
estimate. That is, we find

γ = AT A (7.8)

Υ = AT X,

so,

φ = γ−1Υ (7.9)

= (AT A)−1AT X.

• We can now rewritethe estimate ofX in matrix notation as

X̂ = Aφ

= A(AT A)−1AT X.

7.2.2 SVD onγ

• the major assumption we have made is that we can take the inverse ofγ ‘in the
right way’.
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• because this matrix has no noise term, and becausesometuning curves are likely
to be similar for a large population, the matrixγ is likely to be singular, or nearly
singular so it isnot invertible

• There exists a general, and very powerful, technique for analyzing singular ma-
trices called singular value decomposition (SVD).

• SVD decomposition of anM × N matrix, B, results in three matrices whose
product givesB, i.e.,

BM×N = UM×NSN×NDT
N×N .

The matrixS is a diagonal matrix whose entries are called thesingular valuesof
B.

• In the case whenB is square and symmetrical (as withγ), this simplifies to

γ = USUT ,

or equivalently, in summation notation,

γij =
∑
m

UimSmUjm.

• In the case whereγ is singular (or nearly so), some elements ofS are zero (or
very small), so the inverse ofS includes infinite (or very large) terms, meaning
the inverse ofγ is ill-defined (as expected for singular or near singular matrices).
In this case, the SVD ‘pseudo-inverse’ is defined where forSi = 0, the inverse
is set to0.

• Even in the case when a matrix is singular (or nearly so), SVD can be very
informative. the columns ofU whose corresponding singular values are non-
zero form an orthonormal basis that spans the range and the corresponding zero
elements form an orthonormal basis that spans the null space.

• This decomposition is useful for characterizing representation and transforma-
tion for a number of reasons.

– First, as already mentioned, the relevantU matrix provides an orthogonal
basis for both the range and nullity ofγ. Becauseγ tends to be singular,
both bases are important.

– Second, when a vector inΥ lies in the range ofγ, the SVD pseudo-inverse
guarantees that the corresponding vector fromφ found from (7.9)mini-
mizesthe length of thatφ vector. This is important because given thatγ is
singular, there are an infinite number of solutions forφ. The solution that
provides the shortest vector is a natural and compact choice from the set.
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– Third, when a vector inΥ lies in the nullity ofA, the SVD pseudo-inverse
guarantees that the best (in the least squares sense)φ givenΥ will be found.
In other words, this ‘pseudo-inverse’ minimizes the error. Thus, we can use
SVD to find the optimal decoding functions, which we can now write as

φ = US−1UT AT X. (7.10)

Given the properties of SVD, we know that this is the same solution we

would find by constructing the error explicitly (i.e.,E =
〈[

X− X̂
]2

〉

X

),

taking the derivative, and setting it to zero, as we have previously done.

7.3 Possible transformations

7.3.1 Theory

• let’s do a similar analysis to find an expression for the decoding vectors needed
to decode anytransformationof x:

f(X) = Aφf

AT f(X) = AT Aφf

φf = (AT A)−1AT f(X)
= γ−1Υ

Performing SVD onAT A to find the inverse, as before, gives

φf = US−1UT AT f(X), (7.11)

whereφf are the linear decoders for estimating the transformationf(X).

• So, the representational decoder,φ, is found in the special case wheref(X) =
X.

• Notice that regardless of which transformation we need decoders for, we always
perform SVD on the same matrix,γ = AT A. This suggests that understanding
the properties ofγ can provide general insight into all possible decodings of the
population,ai.

• The singular values are useful because they tell us theimportanceof the corre-
spondingU vector. There are a number of ways of thinking about ‘importance’
in this case.

– related to the error that would result if we left a particular vector out of the
mapping.

– related to the variance of population firing along the vectors in theγ matrix.

– being the amount of (independent) information about changes in popula-
tion firing that can be extracted by looking only at data projected onto the
correspondingU vector.
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– In general, we can think of the magnitude of the singular value as telling
us how relevant the dimension defined by the correspondingU vector is to
the identity of the matrix we have decomposed. Since the matrix we have
decomposed is like the correlation matrix of the neuron tuning curves, the
large singular values are most important for accounting for the structure of
those correlations.

• Notice also that the vectors inU are orthogonal: they provide an (ordered) or-
thogonalbasisfor that matrix. This is very useful because the originalγ matrix
was generated by a non-ordered non-orthogonal basis; the neuron tuning curves.

• to understand this, define a point in the ‘neuron space’ (i.e., the space spanned
by the overcomplete neuron tuning curves) as

a = a1e1 + a2e2 + . . . + aNeN .

In this notation, the vectorsei serve as axes for the state space of the neural
population. A point in this space is defined by the neuron firing rates from each
neuron in the population (which, taken together, form the vectora).

• Because the neural responses are non-independently driven by some variable,x,
only asubspaceof the space spanned by theei vectors is everactuallyoccupied
by the population.

• Theγ matrix, because it tells us the correlations between all neurons in the popu-
lation, provides us with the information we need to determine what that subspace
is. When we find theU vectors in the SVD decomposition, we have character-
ized that subspace because those are the orthogonal vectors that span it.

• Let’s see how we can use this to determine what functions can be computed by
the particular encoding ofx found in theai population:

X̂ = AUS−1UT AT X,

or, more simply
X̂ = χΦ, (7.12)

where
χ = AU,

so
χm(x) =

∑

i

ai(x)Uim, (7.13)

and

Φ = S−1UT AT X

= UT US−1UT AT X

= UT φ,

so
Φm =

∑

i

Umiφi.
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• Notice thatχ and Φ in (7.12) are rotated versions ofA and φ respectively.
Specifically, they are rotated into the coordinate system defined byU. So we
can think ofU as the rotation matrix that aligns the first axis of the coordinate
system along the dimension with the greatest variance in the encoding ofx, the
second axis along the dimension with the second greatest variance, and so on.
As a result, and as shown in appendix??, the

• theχ vectors also end up being orthogonal and ordered by importance. That is,
they tell us what can be extracted, and how well it can be extracted, from the
neural population.

• (see slide) We can think of the components ofχ asbasis functionsof the space
that includes the ensemble of transformations definable onx using the encoding
in the populationai. This is more evident in (7.13) where we writeχ in summa-
tion notation. There it is quite obvious thatχm(x) at a particular value ofx is
the neuron firing rates at that value ofx projected onto themth orthonormalU
vector (see figure??).

• Whicheverχ(x) functions have reasonably large associated singular values, are
exactly the functions that we can do a good job of extracting from our encoding
of the input space,x. Of course, we can also extract any linear combinations of
thoseχ(x) functions quite well. But, because these functions are ordered, the
more useful the ‘first’χ(x) function is for reconstructing some transformation,
f(x), the better we can extract that transformation,f(x).

• In practice, we can look at the resultingχ(x) functions and determine what sort
of basis we seem to have. For example, if theχ(x) look like sines and cosines,
we have a Fourier basis.

7.3.2 Real populations

7.3.2.1 Linear population

• so, let’s do this to a population encoding a scalar with broad functions (see slides)

• the result? a standard basis: One of the most common polynomial bases used
in mathematics is the Legendre basis,li(x), which is defined over the interval
[-1,1] and results from the orthogonalization ofxn.1 Scaled versions of the first
five elements of this basis are plotted in figure??b.

• the similarity betweenχm(x) and li(x) means that this neural population sup-
ports the extraction of functions that can be well-estimated using the standard
Legendre basis. But theχm(x) functions are ordered by their singular values.
Thus, the higher-order polynomial terms are not as well encoded by our popu-
lation as the lower-order ones. So, computing functions that depend strongly on
precise high-order terms will be prone to error.

1One way of expressing the basis is:li(x) =
(−1)i

2ii!
di

dxi

[(
1− x2

)i
]

.
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• This is a natural basis to be found from the tuning curves in the linear popula-
tion. The tuning curves are very broad, and the polynomial basis is also very
broad. These tuning curves are approximately linear, and the more linear basis
functions are also the first ones. The Legendre polynomial basis is ordered by de-
creasing linearity so it should not be too surprising that this population supports
the functions in precisely that order.

• However, none of this would be true if the population did not do a good job of
evenly tiling the input space. If, for example, there were only high gain neurons,
whose slopes were the same sign as theirx-intercepts (i.e., if the ‘on’ and ‘off’
sub-populations were ‘clumped’ nearxmax andxmin respectively), we would
not expect the linear term to be better supported than the quadratic term. In
this sense, the heterogeneity of the population helps it support the more natural
ordering of the polynomial basis; clumping would defeat this ordering. Thus, this
particular set ofχm(x) functions does not just depend on the general ‘shape’ of
the neuron tuning curves, but also on which neurons are included in a population,
i.e., the degree of heterogeneity.

• Vectors: there are additional analyses we can perform for vectors of two or more
dimensions.

• When computing transformations of populations encodingn-dimensional vec-
tors, we must realize that there are additional cross terms (e.g.,x1x2) that in-
troduce variations in the encoding that are not present in scalar transformations.
The expansions are now of the form

f(x) = c0 + c1x1 + c2x2 + c3x
2
1 + c4x

2
2 + c5x1x2 + . . .

=
Norder∑

l=0

l∑
n=0

cn,l−nxn
1xl−n

2 ,

whereNorder is the highest order term in the transformation andl indexes thelth
order terms in the expansion (all terms whose exponentssumto l are considered
lth order terms). As we can see, the cross terms (i.e.,xn

1xl−n
2 ) are quite common.

In order to characterize how well an arbitrary function can be decoded from a
representation ofx, we need to know how big the singular values of these cross
terms are as well.

• A quick inspection of the singular values of the population reveals that all terms
of a given order have singular values of approximately the same magnitude (see
slide).

• But there is an exponential decay in the magnitude of the singular values as a
function of the order of the polynomial. This means that lower-order functions
aresignificantlybetter supported by these kinds of broadly tuned neural popu-
lations. That is, the ability to extract higher-order functions drops more quickly
with an increase in the order of the function than compared to the scalar case.
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• In fact, we can determine exactly how many singular values,NS , there should
be for each order,l, in the polynomial for a input space of sizeD by using the
equation for determiningl-combinations of a multi-set (See slide):

NS(l,D) =
(l + D − 1)!
l!(D − 1)!

. (7.14)

7.3.2.2 Gaussian population

• Now we can do the same on a gaussian population (See slide)

• we find some differences:

– the basis looks like a fourier basis, but only over [-1,1]

– the basis is better for encoding localized functions, and not good a broad
ones - we can see this by looking at the singular values (see slide)

• In general, then, we can examine theχm(x) functions, which span the active
state space of a population, to determine what kinds of transformations are and
are not well-supported by that population. This can be extremely useful for con-
straining hypotheses about the kinds of transformations we expect to see in areal
neural population once we have a sense of what kind of encoding is being used.

7.3.3 Noise

• we’ve been ignoring noise. but most everything stays the same. Rather than the
encoding defining a precise subspace (the black line in the projection slide), we
can think of it as defining a cloud (e.g. a tube in the projection slide).

• However, the noise doesn’t scale with the singular values, it is isometric in the
vector space. This means that small singular values are more greatly affected by
noise. We can derive this.

• We know the error with noise can be written in the vector case as

E =

〈[
x−

∑

i

(ai(x) + ηi)φi

]2〉

x,η

=

〈[
x−

∑

i

ai(x)φi

]2

+ σ2
η

∑

i

φ2
i

〉

x

. (7.15)

We can now use our expression SVD expressions to give

E =

〈[
x−

∑
m

χmΦm

]2

+ σ2
η

∑

i,j

φiδijφj

〉

x
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=

〈[
x−

∑
m

χmΦm

]2

+ σ2
η

∑

i,j

φi

∑
m

UimUmjφj

〉

x

=

〈[
x−

∑
m

χmΦm

]2

+ σ2
η

∑
m

Φ2
m

〉

x

. (7.16)

• We minimize this error by taking the derivative of (7.16) and setting it to zero to
get an expression for the optimalΦ functions under noise:

dE

dΦn
=

〈
2

[
x−

∑
m

χmΦm

]
(−χn) + 2σ2

ηΦn

〉

x

0 = −2 〈χnx〉x + 2

〈∑
m

χmχnΦn

〉

x

+ 2σ2
ηΦn

〈χnx〉x = SnΦn + σ2
ηΦn

Φn =
〈χnx〉x
Sn + σ2

η

. (7.17)

• We can use this expression to determine what the residual error will be (i.e., the
expected error using theseΦ functions).

• We can now determine the residual error as follows:

Er =
〈
[x− x̂]2

〉
x,η

=

〈[
x−

∑
m

χmΦm

]2〉

x,η

=
〈
x2

〉
x,η

− 2

〈
x

∑
m

χmΦm

〉

x,η

+

〈∑
m

χmΦm

〉2

x,η

.

Substituting the expression in (7.17) forΦm gives

Er =
〈
x2

〉
x,η

− 2

〈
x

∑
m

χm
〈χmx〉x
Sm + σ2

η

〉

x,η

+

〈∑
m

χm
〈χmx〉x
Sm + σ2

η

〉2

x,η

=
〈
x2

〉
x
− 2

∑
m

〈χmx〉2x
Sm + σ2

η

+
∑
m

(Sm + σ2
η)

〈χmx〉2x(
Sm + σ2

η

)2

=
〈
x2

〉
x
−

∑
m

〈χmx〉2x
Sm + σ2

η

.

• We can see this how much themth basis function,χm, reduces the error in our
estimate under the influence of noise.
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• Specifically, we know that as the singular value,Sm, approaches the value of
the variance of the noise,σ2

η, the correspondingmth element does not usefully
contribute to the representation. This is because theSm term acts to normalize
the effects of the projection onto the non-normalized basis,χm.

• When the noise becomes near the magnitude of that normalization term (i.e.,
SNR = 1 or less), the projection onto the relevantχm becomes ‘mis-normalized’
and thus contributes incorrectly to the representation. That is, it willintroduce
error into the representation.

• This tells us thatthose basis functions whose corresponding singular value is
equal to or smaller than the noise, should not be used if we want a good repre-
sentation.

• So, the useful representational space is that space spanned by the basis functions,
χm, whose corresponding singular values,Sm, are greater than the variance of
the noise,σ2

η, affecting a single neuron.

• So, we can simply ‘lop off’ some of the singular values when doing the inverse
to get the same result as including a certain amount of noise in our calculation
of Γ. This is approximately true, but we haven’t done a careful analysis of this
relation (between the amount of noise and the number of SVs perserved when
invertingγ).

7.4 Heterogeneity

• One thing that becomes clearly important when doing these kinds of analysis is
the precise nature of the tuning curves. In the book we show that heterogeneity
is a useful balance between usefully tiling a space and ease of construction.

• Specifically, heterogeneity provides good reduction of error under noise (see
slide). And, it is easy to construct compared to a perfect, lattice-like spacing
of intercepts. (i.e., it’s evolutionarily cheap).

• I haven’t discussed representational capacity above, but both it and ‘usefulness’
(measured by resistance to noise) are good for heterogeneous populations. This
is probably why real neural systems tend to have such tuning curves.


