
1

Lecture 6: Nonlinear transformations & Function repre-
sentation

6.1 Nonlinear transformations

• Nonlinearities are common in the nervous system, as we know from examining
neuron responses. However, these are generally ‘small’ nonlinearities.

• ‘Big’ nonlinearities are essential for useful information processing.

• Evidence of such nonlinearities in single neurons (e.g. locust visual system) and
in networks (e.g. gain fields)

• The existence of single cell nonlinearities is not yet considered indisputable (and
their precise form is clearly not well understood). Nevertheless, let’s consider
them first.

6.1.1 Nonlinearities in single cells

• If we simply follow our ‘recipe’ for constructing networks that perform func-
tions, we get something like this for the representations:

ai(x) = Gi

[
αi

〈
φ̃ix

〉
+ Jbias

i

]
(6.1)

x̂ =
∑

i

ai(x)φx
i . (6.2)

• And this for the transformation:

ck(x · y) = Gk

[
αkφ̃k(x · y) + Jbias

k

]

= Gk


αkφ̃k


∑

i

ai(x)φx
i ·

∑

j

bj(y)φy
j


 + Jbias

k




= Gk


∑

ij

ωkijai(x)bj(y) + Jbias
k


 , (6.3)

where the weightsωkij = αkφ̃kφx
i φy

j are needed.

• Here, we have a clear nonlinearity needed in our individual neurons, since their
response depends on the product of the response of the incoming neurons.

• One proposed mechanism for implementing this kind of multiplication in neu-
rons is ‘coincidence detection’ (see slide).



2

• We can examine this by looking at the PSCs. For mathematical simplicity let
theh(t) filters be narrow Gaussians (instead of the standard PSCs we use). This
givesFrom section??, we begin with

ai(x)bj(y) =
∑
n,m

hi(t− tin)hj(t− tjm).

• Using narrow Gaussians:

ai(x)bj(y) =
∑
n,m

e−(t−tin)2/2∆2
e−(t−tjm)2/2∆2

(6.4)

=
∑
n,m

e−[(t−tin)2+(t−tjm)2]/2∆2
. (6.5)

• Now re-writing the term in the square brackets
[
(t− tin)2 + (t− tjm)2

]
= 2t2 − 2t (tin + tjm) + t2in + t2jm,

into which we substitute the equivalence

t2in + t2jm =
(tin + tjm)2

2
+

(tin − tjm)2

2
,

which gives

[
(t− tin)2 + (t− tjm)2

]

= 2t2 − 2t (tin + tjm) +
(tin + tjm)2

2
+

(tin − tjm)2

2

= 2

[
t2 − t (tin + tjm) +

(tin + tjm)2

4

]
+

(tin − tjm)2

2

= 2

[(
t− tin + tjm

2

)2
]

+
(tin − tjm)2

2
.

• Substituting this back into (6.5) gives the desired result:

ai(x)bj(y) =
∑
n,m

e
−
[
2
(
t− tin+tjm

2

)2
+ 1

2 (tin−tjm)2
]

/2∆2

=
∑
n,m

e
−2

(
t− tin+tjm

2

)2
/2∆2

e−
1
2 (tin−tjm)2/2∆2

.

• This means that we can simply multiply the PSCs currents to do give a good
approximation to coincidence detection results.

• However, the big draw back is that every spike in populationa must be com-
pared to every spike in populationb at the synapses ofc. This connectivity is
plainly ridiculous. So, although it might be useful in some circuits, coincidence
detection (whatever the biophysical details) doesn’t seem like a general solution
to the problem of multiplying two higher-level signals (e.g,x andy).



3

6.1.2 Nonlinearities in networks

• Luckily, we can implement nonlinearities at the network level in a way that
doesn’t rely on biophysically implausible connectivity.

• Nonlinearities in networks are common. Gain fields are one example (see slide)
– of course, this could be a result of a better cellular implementation too.

• Again, consider multiplying two variables. This time, however, rather than mul-
tiplying the activities of the variables, let us use our definition of representation
to some advantage.

• In particular, we form an intermediate representation in a ‘middle layer’ of neu-
rons (see slide). This will have the dimensionalityDm = Dx + Dy.

• We can then extract a transformation for this space by finding optimal decoders
for the productm1m2. That is, let

f̂(m) =
∑

l

dl(m)φf
l , (6.6)

and solve

Ef =
〈[

f(m)− f̂(m)
]2

〉

m

as usual.

• Now we find the appropriate weights in the network. So substituting the decod-
ing rules into the encoding rules as before. First, the middle layer:

dl(m = [x y]) = Gl

[
αl

〈
φ̃lm

〉
+ Jb

l

]

= Gl

[
αl

(
φ̃m1

l x̂ + φ̃m2
l ŷ

)
+ Jb

l

]

= Gl


∑

i

ωm1
li ai(x) +

∑

j

ωm2
lj bj(y) + Jb

l


 ,

whereωm1
li = αlφ

x
i φ̃m1

l andωm2
lj = αlφ

y
j φ̃m2

l .

• Next, to find the weights for the second step, the real transformation, we use the
transformation decoders we found in (6.6):

ck(f(m)) = Gk

[
αk

(
φ̃kf(m)

)
+ Jb

k

]

= Gk

[
αk

(
φ̃k

∑

l

dl(m)φf
l

)
+ Jb

k

]

= Gk

[∑

l

ωkldl(m) + Jb
k

]
,

whereωkl = αkφ̃kφf
l .



4

• As usual, this transformation can be directly implemented in a noisy spiking
network (see slides)

• Essentially, we have derived the ‘hidden layer’ typical in ANNs. It’s well known
in ANNs that with such a layer you can compute any function of the input (i.e.,
it’s a general function estimator).

• Note also that this suggests a way of understanding nonlinearities in dendrites:
we can embed them layer into the dendrites. Then some of the nonlinearities
would be internal to the cell (but this is physiologically plausible), and we need
far fewer cells to do multiplication.

6.2 Negative weights

• I’ll skip this, but it’s actually quite important to the field, I think.

6.3 Function representation

• We’ve seen examples of scalar and vector representation (and you’ve imple-
mented these too; see slides).

• This suggests a ‘representational hierarchy’ of sorts (ordered by dimensionality).

• Function representation is probably one of the more common kinds of repre-
sentation because it is so general. If there are reasons to think that the relation
between two continuous variables (e.g. light intensity and space, pitch and time,
etc.) is represented in part of the brain, then function representation might be
most appropriate.

• We’ll talk about encoding in lateral intraparietal cortex. Here, there is evidence
that objects at the same location cause different firing patterns, so it seems that
space and some other variable(s) is (are) related by firing in this area. Letν be
space, andy be the ‘other variable’. The we can write

y = x(ν)

for our representation.

• Since we presume that our representation has a domain of representation, we
need to specify asetof x(ν) that can be represented by a neural population.

• We can proceed as we did when thinking about temporal decoding. There we
defined a set of functions to get an estimate of the optimal temporal filter over
that set. Similarly we want to define a set of functions to get an estimate of the
optimal population decoder over that set. So, let’s parameterize the set onA
(over some basis):

x(ν;A) =
∑
m

AmΦm(ν) forA ∈ ρ(A)



5

• Definingρ(A) is a way of limiting the space spanned byΦ to some subspace of
particular interest (just like putting boundaries[−1, 1] on a scalar representation).
You can pretend this is a Fourier representation as an example, definingρ(A) in
different ways can get you high, low, or band-pass functions.

• Practically, it’s often difficult to define the probability distributionρ(A). Instead,
however, we can take the set of functions that we know to be represented in
the system and then determine what vectors,A, can be used to represent these
functions. We can then use that set of vectors rather thanρ(A). (Effectively, we
are constructing a Monte Carlo estimate ofρ(A)).

• The encoding of this space will look familiar:

ai(x(ν;A)) = ai(A) = Gi

[
αi

〈
x(ν;A)φ̃i(ν)

〉
ν

+ Jbias
i

]

• The decoding will too:

x̂(ν;A) =
∑

i

ai(A)φi(ν).

• The means of finding the optimal decoders will also be familiar:

E =

〈[
x(ν;A)−

∑

i

(ai(A) + ηi)φi(ν)

]2〉

A,η

. (6.7)

Minimizing this error gives, as before,

φ(ν) = Γ−1Υ(ν), (6.8)

where

Γij = 〈ai(A)aj(A)〉A + σ2
ηδij (6.9)

Υi(ν) = 〈x(ν;A)ai(A)〉A . (6.10)

• Notes:

– we writeai(A) because theν parameter gets integrated out. This is because
it is theA that really determine which function is being represented by the
population

– this characterization shows that the ‘tuning curve’ typically measured by
neuroscientists will change depending on the input (!) — so it is a warning
that we must be very prudent in our choice of ‘test’ functions for deter-
mining the ‘real’ tuning curve of a cell (we want to choose the appropriate
delta function, whatever that is!? — lots of work on neural coding is of this
sort. Basically, you show the cell everything you can (white noise), and
somehow begin to narrow down the elements of the stimlus set that the cell
actually responds to).



6

– we have encoding functions rather than encoding vectors, but they behave
the same way (and if you write them in theA space, then they are encoding
vectors too)

– More specifically, define:

φi(ν) =
M∑
m

qimΦm(ν). (6.11)

and

φ̃i(ν) =
M∑
m

q̃imΦm(ν). (6.12)

We can now use these as follows:

ai(A) = Gi


αi

〈∑
n,m

AmΦm(ν)q̃inΦn(ν)

〉

ν

+ Jbias
i




= Gi

[
αi

(∑
n,m

Amq̃inδnm

)
+ Jbias

i

]

= Gi

[
αi

(∑
m

Amq̃im

)
+ Jbias

i

]

= Gi

[
αi 〈Aq̃i〉m + Jbias

i

]
.

– We have thus expressed the problem offunction encodingas one ofvec-
tor encoding, given an orthonormal basis. Similarly, we can express the
problem offunction decodingas one ofvector decoding:

Âm =
∑

i

ai(A)qim,

or
Â =

∑

i

ai(A)qi.

– So why bother with function representation? 1. Some neural systems are
more naturally thought of this way. 2. It clarifies how treating different
vector elements different ways maps to neural processing.

6.4 Representational considerations

• Let’s reconsider the formulation we have of what a representation is: this is a
philosophy class, after all.

• Representation≡ {encoding, decoding}.



7

• This has its own important implications - you don’t know a representation until
you know how it’s used (i.e. decoded). There has been a lot of ink spilled in
philosophy regarding that particular issue.

• I think this has the desirable consequence that just because a population may
carry information about something (i.e. be effected by it - e.g., bumps to the
head) doesn’t mean that itrepresentsthat thing. Representation, then, can only
be determined by looking at both inputandoutput of a system.

• More specifically, when we look at a particular neural population, what do we
know about it’s decoders? There are more than one. e.g.φx

i andφ
f(x)
i - how do

we know which is the ‘representational’ decoder? (sincex = f−1(f(x)))

• Here’s what, I think, we can most justifiably stipulate: The represented variable
is that variable that all of the other actual decodings can be written as a function
of.

• That’s a good start, but it doesn’t solve thex = f−1(f(x)) problem. For this,
we have to make an appeal to coherence/consistency: In order for this theory to
be consistent with other scientific theories, weprefer variables that are part of
other theories.

• This would cause us to write things as functions ofvelocityrather thanvelocity
squared plus two.


