
1

Lecture 5: Population-temporal representation and lin-
ear transformations

5.1 Putting temporal and population representation to-
gether

• Until now we have talked about temporal representation (spikes) and population
(distributed) representation in neural systems as separate. Of course, they aren’t
in real systems.

• Given our definitions of these, constructing a unified ‘population-temporal’ code
is very easy.

• Both population and temporal representation have been defined by a nonlinear
encoding (neuron tuning curve) and linear decoding (optimal population de-
coders and PSCs).

• The encoding is as for the population code, but the nonlinearity,G [·], is a spiking
nonlinearity:

ai(x(t)) = Gi[Ji(x(t))]

Ji(x(t)) = αi

〈
φ̃ix(t)

〉
m

+ Jbias
i .

• Similarly, the form of the decoding will be just like that for temporal decoding:

x̂(t) =
∑

i,n

φih(t− tin), (5.1)

• The question is, what are the decoders when we have to think about the whole
population rather than just a pair of neurons?

• The answer is: The same as in the regular population case. This is because we
have used a LIF neuron to defineGi [·] in both cases. As a result,

arate
i (x) =

〈∑
n

hi(t) ∗ δ(t− tin)

〉

T

(5.2)

=

〈∑
n

hi(t− tin)

〉

T

(5.3)

=
〈
aspiking

i (x)
〉

T
(5.4)

• So, we are using results from the steady state rate model (this is how we derived
the response function, as you will recall) in conjunction with the non-steady state
(spiking) model. This is how rate models are always used, since neural signals
are dynamic.



2

• The most convincing demonstration that this is a good assumption is that we can
build good models when we make the assumption.

• One important note for implementation: theh(t) we find when determining op-
timal filters has to be normalized to have an area of 1. This is because both the
temporalh(t) and the populationφi are used to account for the amplitude of the
input. In physiological simulations, this means that the PSC is scaled to have an
area of 1 before being multiplied byφi.

• Combining the population and temporal decoders gives:

x̂(t) =
∑

i,n

φi(t− tin) (5.5)

• We can include noise in the population-temporal (PT) representation by intro-
ducing spike time jitter in the decoding process:

x̂(t) =
∑

i,n

φi(t− tin − ηin). (5.6)

• The error we must minimize to findφ is:

E =

〈
x(t;A)−

∑

i,n

φi(t− tin − ηin)




2〉

A,η

. (5.7)

• This can be solved either by determining the population and temporal decoders
separately, or by findingφ(t) directly using a Monte Carlo method.

• We use the separate approach because

1. we can then use a non-optimal, biologically plausibly temporal decoder
(the PSC)

2. we can find theφ analytically

3. we can easily appy other (as yet unseen) analyses which help us understand
population representation

5.2 Noise and precision

5.2.1 The effects of noise on the precision of temporal coding

• There are (at least) two ways to determine the effects of noise on optimal tempo-
ral filtering

1. Pre-noising: add noise to a spike train, find the optimal filter, then decode
the original (noiseless) spike train.



3

2. Post-noising: find the optimal filter using the (noiseless) spike train and
then add noise to the spike train and decode it.

• As you might expect, the second approach results in worse performance. Even
in this case, however, there is only a decrease of about 10% info transfer.

• This is expected because the noisy spike train is probably a lot like another ran-
dom signal drawn from the same distribution and will thus give a similar optimal
decoder. In contrast, post-noising compares a decoded noisy spike train to the
original signal, so the noise should have an effect on the estimate.

5.2.2 Fluctuations as noise

• Conveniently, the use of spikes for neural coding results in fluctuations in the es-
timate of the represented variable that are analogous to noise. This is convenient
because we’ve already analyzed the effects of noise on population representa-
tion. (Why have spikes if they just introduce noise? A: Communication over
long distances)

• I won’t go over the derivations in Appendix C.1 in detail, but let’s look at some
of the highlights of the derivation. Postsynaptic activity (i.e. the currents in the
dendrites) is:

αi(x, t) =
∑

n

hi (t− n∆i(x)− ti0) , (5.8)

whereti0 is the time of the first spike. Theseti0 are evenly distributed random
variables over∆i(x), where∆i(x) is the interspike interval (ISI) for neuroni
given the valuex. Note that even though the value ofx is constant, the estimate
of x will not be.

• The variance is:
σ2

x̂(t) =
〈
[x̂(t)− 〈x̂(t)〉T ]2

〉
T

.

Which gives:

σ2
x̂(t) =

∑

i

φ2
i ai(x)

[∑
m

gi (m∆i(x))− ai(x)

]
. (5.9)

where

gi(τ) =
∫ ∞

−∞
hi(t)hi(t− τ)dt.

• So, if the width ofh(t) is smaller than the ISI, there will be large fluctuations
in the estimate ofx because it’s unlikely that different neurons have overlapping
PSCs. As the width of the window increases, it’s more likely there will be overlap



4

and that the resulting total current will be smoothed. When there is lots of overlap
(i.e. ∆i

∑
g(m∆i) ≈ h ∗ h) then

∑
m

g(m∆i) → ai(x)

=
1
∆i

• The nice thing here, is thatσ2
x̂(t) is of the same form as the error due to noise,

i.e.,σ2
∑

i φ2
i . It may strike some as a bit odd thatσx̂ includes theφi but this is

just a matter of how we did the derivation. In any case, we can write the error as:

Etotal = Estatic + Enoise + Efluctuations

=
1
2

〈[
x−

∑

i

ai(x)φi

]2〉

x

+ σ2
η

∑

i

φ2
i + σ2

x̂(t).

or, better yet

Etotal = Estatic + (Enoise + Efluctuations)

=
1
2

〈[
x−

∑

i

ai(x)φi

]2〉

x

+ σ2
∑

i

φ2
i .

whereσ2 accounts for both noise and spiking fluctuations.

• This means that the analyses we did on noise before are true for the spiking
representation as well (i.e. error will decrease as1/N ). You’ll show this in the
exercises.

5.3 Feedforward transformations

5.3.1 The communication channel

• Communication channel: the simplest kind of linear, feed-forward transforma-
tion: none at all.

• That is, sending some signal from one population to another population. (see
slide)

• Begin constructing the model by writing down the representations in the two
neural populations:

ai(x) = Gi [Ji(x)] (5.10)

= Gi

[
αiφ̃ix + Jbias

i

]
(5.11)

x̂ =
∑

i

ai(x)φx
i , (5.12)



5

• There is a new notation with respect to the decoding weight,φx
i . I’ll write the

variable that the decoder isfor (i.e.,x) as a superscript on the decoder (i.e.,φi),
as this serves to disambiguate decoders. Disambiguation is important because
characterizing transformations often requires identifying multiple decoders.

• For populationb we have:

bj(y) = Gj [Jj(y)] (5.13)

= Gj

[
αj φ̃jy + Jbias

j

]
(5.14)

ŷ =
∑

j

bj(y)φy
j . (5.15)

• To implement a communication channel using these two populations, we need to
define the transformation: here, simplyy = x. That is, we want our population
y to represent whatever is represented byx.

• Now we can write the activities ofb in terms of those ofa by substitutingx for
y:

bj(x) = Gj

[
αj φ̃jx + Jbias

j

]
(5.16)

= Gj

[
αj φ̃j

∑

i

ai(x)φx
i + Jbias

j

]
(5.17)

= Gj

[∑

i

ωjiai(x) + Jbias
j

]
, (5.18)

whereωji = αj φ̃jφ
x
i . (note: We supposedx = x̂).

• Voila, we have a connection weight matrix that performs the defined transforma-
tion.

• In neurobiological terms this eqn says that the instantaneous firing rate of a neu-
ron in bj is a result of the response to the currentJj(x), which is determined by
the sum of the dendritic currents (i.e.,ωijai(x)) plus some biasing background
currentJbias

j . The dendritic currents (PSCs) are themselves determined by the
product of their synaptic efficacy (ωji) and the firing of the presynaptic neuron
ai(x).

• For the spiking model, we can write

x̂(t) =
∑

i

ai(x(t))φx
i

=
∑

i,n

hi(t− tin)φx
i .



6

• So, the spike trains of theb population are now determined as follows:

bj(x(t)) = Gj

[
αj φ̃jx(t) + Jbias

j

]
(5.19)

= Gj


αj φ̃j

∑

i,n

hi(t− tin)φx
i + Jbias

j


 (5.20)

= Gj


∑

i,n

ωjihi(t− tin) + Jbias
j


 , (5.21)

whereωji = αj φ̃jφ
x
i as for the rate model.

• Of course, if we can do this computation, we can perform any scaling ofx.
We just include the scaling factor in the weight matrix. As well, we can/should
include noise when finding the optimal decoders. If we don’t bad things happen.
The results of scaling by 1/2 (and ignoring noise) are as expected (see slide).

5.3.2 Adding scalar variables

• Let’s again start by considering the scalar case. We assume our 3 populations
are defined as before (see slide for connectivity). Now we perform a similar
substitution:

ck(x + y) = Gk

[
αkφ̃k(x + y) + Jbias

k

]

= Gk


αkφ̃k


∑

i

ai(x)φx
i +

∑

j

bj(y)φy
j


 + Jbias

k




= Gk


∑

i

ωkiai(x) +
∑

j

ωkjbj(y) + Jbias
k


 ,

where the weightsωki = αkφ̃kφx
i andωkj = αkφ̃kφy

j determine the two matri-
ces needed for addition.

• So, given the firing ratesck(z) we find our estimate ofz by usingφz
k.

• The results of adding two periodic functions is as expected (see slide).

• Now, we have scalar multiplication and addition, which means we can find the
weight matrices for any linear combination of scalars in a spiking network.

• Here’s the recipe for doing linear transformations:

1. Define the encoding and (representational) decoding rules for however many
variables are involved in the operation.



7

2. Write the transformation to be performed in terms of these variables, one
of which is the output variable (e.g.,z above).

3. Write the transformation using the decoding expressions for all variables
except the output variable.

4. Substitute this expression into the encoding expression of the output vari-
able.

• Note: Rather doing this consecutively, it makes sense to implement various parts
of a complex transformation in parallel.

5.3.3 Linear vector transformations

• Basically, there is nothing new here, but lets take a look. First, we define our
representations to be of the form:

ai(x) = Gi

[
αi

〈
φ̃ix

〉
m

+ Jbias
i

]
(5.22)

x̂ =
∑

i

ai(x)φx
i . (5.23)

• Note that the encoding (or ‘preferred direction’) vector,φ̃i, isn’t trivial as before.
This essentially converts a vector of some physical magnitude into a scalar, via
the dot product. In the scalar case, we did not need to explicitly denote this sort
of conversion (though we did).

• Next, we define the (generic linear) transformation we want to implement in the
network:

z = C1x + C2y.

• Finally, we write the transformation using the representations and substitute that
expression into the encoding rule for the output variable,z:

ck(C1x + C2y) = Gk

[
αk

〈
φ̃k(C1x + C2y)

〉
m

+ Jbias
k

]

= Gk


αk

〈
φ̃k


C1

∑

i

ai(x)φx
i + C2

∑

j

bj(y)φy
j




〉

m

+ Jbias
k




= Gk


∑

i

ωkiai(x) +
∑

j

ωkjbj(y) + Jbias
k


 ,

whereωki = αkC1

〈
φ̃kφx

i

〉
m

andωkj = αkC2

〈
φ̃kφy

j

〉
m

.



8

• More generally, we can allow the scalars,C1 andC2, to be the matrices,C1 and

C2. In this case, the resulting weights are of the formωki = αk

〈
φ̃kC1φ

x
i

〉
m

.

Using matrices rather than scalars permits the incorporation of various kinds of
linear operations such as rotation and scaling.

• As before, we can include spiking neurons in this transformation by allowing
ai(x) =

∑
n h(t− tin).

• This network does a good job of vector addition using the representations we
have defined (see slide). There is a bit of a transient when using spiking neurons
because of the dynamics ofτsyn.

• If we want to improve the network’s performance, we can simply add neurons.

• There are indications that this kind of network (doing vector addition/subtraction)
may be used in frontal eye fields for control of saccades.


