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Lecture 4: Temporal representation in spiking neurons
(cont.)

4.1 Using and analyzing temporal representation

4.1.1 Decoding signals in LIF neurons

Following the procedure outlined above for a typical pair of LIF neurons results in a
decoder as shown (see slides). Note:

¢ The filter was found for bandlimited (0-30Hz) Gaussian white noise on 4 s of
data.

e The filter is not symmetrical in time but skewed in the positive direction
e The filter has a negative time component (non-causal).

e The envelope of the decoder extends just over 5 ms or so.

Using this decoder as described above results in successful representation of signals in
the ensemble (see slides).

Looking at the power spectrum of the original signal compared to the LIF neuron
signal gives some hints about what is happening in the encoding/decoding process:

e The high frequency high-power components of the spiking neuron signals are
removed by the filter (low pass filter)

e Conversely, high frequency is introduced by the encoding process.

e Overall, the original signal bandwidth and power is well-preserved.
Two outstanding issues:
1. Correlation times (rate and timing codes)

(a) Correlation time is the maximum time window for which the autocorrela-
tion function is above half its maximum value. This means that the future
values of the signal are (somewhat) predictable out to that window (i.e. the
signal past that window is statistically independent of the current value of
the signal). So generally, a wider bandwidth means a shorter correlation
time.

Autocorrelation(r) = /_OO f@O)ft+7)dt

Note: Fourier transform of the autocorrelation function is the power spec-
trum. (Matlab: x=fft(s); Power=fftshift(x.*conj(x)); or x=fft(xcorr(s)); Power=fftshift(sqrt(real(x). 2+ime



(b) The same decoder can be used for high and low correlation times. In fact,
these make the signal look more like a rate and timing code respectively.
So, depending on the characteristics of the signal, the code will seem to
change (i.e. signals with high freq will demand a timing code).

(c) However, if the entire ensemble (not just one signal) tends to have a specific
kind of correlation time, then (not surprisingly) an optimal decoder for that
ensemble will do a better job than the optimal decoder for another ensemble
that this ensemble is a subset of (see slides).

(d) In any case, this result means that these methods are effective over regimes
typically called ‘rate’ and/or ‘timing’ codes. This is very useful, and shows
that the distinction can be ignored (more or less).

2. Neural plausibility: Post-synaptic currents (PSCs)

(@) PSCs are ellicited upon the reception of neurotransmitters by dendrites.
They can be mathematically described quite compactly (see slide).

(b) PSCslook surprisingly like optimal filters (although they are strictly causal).

(c) Decoding with PSCs instead of optimal filters results in only a small reduc-

tion in information transmission, but a huge gain in neural plausibility (see
slide).

(d) Reductions in coding accuracy using PSCs can be made up for by including
more neurons, as we learned from the section on population coding.
(e) Nevertheless, examing optimal filtering is useful because it provides:

i. a means of comparing information processing characteristics of mod-
els to real neurons

ii. bounds for non-optimal decoding (i.e. PSC decoding)

iii. similarity between the optimal linear decoder and the PSC decoder

suggests linear decoding is a good characterization of neural represen-
tation

iv. optimal filter is more amenable to certain analyses which may (or may
not) inform filtering in the non-optimal case.

(f) Given these considerations, all future models use PSC filtering instead of
optimal filtering.
4.1.2 Information transmission in real neurons
A brief summary of the information characteristics observed for real neurons:
e measures are surprisingly consistent across many different neural systems

e cricket cercal system (measures wind velocity), between about 150 and 300 b/s.
(between 1.1 and 3 bits per spike)

IMiller et al. calculate the rate to be about 40 bits per second, but they used a 100 ms binned rate code to
calculate information.



e bullfrog sacculus (senses ground-borne vibrations) rates of about 3 bits per spike
e motion-selective H1 neurons in the blowfly; about 3 bits per spike
e salamander retina, rate of about 3.4 bits/spike

e primate visual area V5 (aka MT, for sensing motion), information transmission
rates of 1-2 bits per spike

¢ highest transmission rates: bullfrog auditory neurons, rates as high as 7.8 bits
per spike (for natural stimuli, broadband stimuli had transmission rates of about
1.4 bits/spike)

e Sum: natural sensory systems are generally able to encode stimuli with between
about 1 and 3 bits of information per spike (Rieke, et al, ‘Spikes’ has a good
review)

Notice:

e these are impressively high transmission rates that approach the optimal possible
coding efficiencies

¢ in frog sacculus, cricket cercal system, bullfrog auditory system, and electric fish
electrosensory system, the codes are between 20 and 60% efficient

o efficiency significantly increases when stimuli are restricted to be more like nat-
urally occurring stimuli of interest to the organism

o the estimation of information transmission rates using this method pldcesa
bound on the amount of information transmitted by the code, efficiencies are
likely even higher.

4.1.3 Information transmission in model neurons

When looking at the LIF model (or any other deterministic model), we should realize
that technically, there is no noise in the system, so we can’t compute a signal to noise
ratio, and thus we can’t determine information transmission in these neurons. However,
there is a source of error that acts analogously to noise: our linear estimate. The linear
estimate is imperfect, so there will always be some deviation from the value being
represented. We can use this to determine an information transfer rate in these neurons.
Specifically, we know that information in a channel is (Hartley-Shannon law):

1
I= 5 logy(1+ SNR)
We can find the5 N R by comparing the variance explained by our decod{ﬁﬁ}m
(i.e., assuming zero mean of the estimate), to the error that remains unexplained by this

decoding. Recall that our decoder is

h:




whereRis the encoded signal. Recall that:
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Plugging this back into the information expression earlier gives two equivalent ex-
pressions, one with respect to the input
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and the other with respect to the response
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This expression has been derived assuming that we are working in the frequency do-
main (hencet = hR), so to get an information rate (i.e., bits/s) we need to sum the
information per frequency channel and convert it to time

1 Aw
InfoRate = 39m ZI"'

n

2We know this first expression is true because
2
<[:c - :?:]2>$m = <:c2> —2h{zR), + <h2R2>m, which, subbing in foh = 2;1;;: gives this result.




(Recall that the sampling time stéy = % and the Nyquist limit states that the max
frequency is twice that step).
Note:

e Now we have a means of calculating information transmission rates (and bits per
spike) to allow us to compare model neurons to real neurons.

4.2 More realistic neural models

4.2.1 Adapting LIF neuron

Let’s begin to look at trying to model other important properties of neural action po-
tential generation. Simplest is to add adaptation to the LIF neuron.

e The most common cortical neurons are called ‘regular spiking’

e Regular spiking cells have adaptation, that is, their spike rate slows down as they
continue to spike (see slide)

e This happens because of a slow hyperpolarizing K current in these cells

e The effects of this current are captured by adding a variable resi&{@f,:, to
the model (see slide)

e Equations:
dav 1 R
= = ——(v(1 — JuR 4.1
i e (Vi) ) e
dRadapt _ Radapt
dt Tadapt

e The channels that account for this conductance stay closed until an action poten-
tial is fired, and then they slowly open (with time constani,,:), essentially
lowering the reset voltage of the cell, making it more difficult for the next spike
to be fired.

e When firing stops, the channels start to close, again rai8ifag,: .

e This simple addition is very good at approximating full conductance models (see
slide)

¢ Also, it significantly improves information transmission efficiency with out loss
of accuracy (see slide)



4.2.2 Brief overview of neural firing

Recall that LIF doesn’t model the action potential at all, just pre-threshold voltage
changes due to input. It ‘sticks on’ a spike when the threshold is crossed. To understand
the action potential dynamics, we have to look at the biophysical processes.

Resting state (see slide):

Resting potential is about -70mV
This is the state at which all of the ions are in equilibrium

Forces moving ions: electrostatic gradient, concentration gradient, sodium-potassium
pump (K in, Na out)

Na+ and CI- are concentrated outside the cell, K+ and Anions (A-) are more
concentrated inside

The membrane is permeable to everything but A- (though more to K+ than Na+)

The Na—K pump ensures that the cell doesn't deplete K and fill up with Na (if
this happened, the resting potential would shift).

If the potential is moved away from the resting state, these passive ion move-
ments cause the potential to move back to the resting state. This is where the
leak potential in the LIF model comes from.

Action potential generation:

The potential is driven away from the resting state by input from dendrites (de-
polarizing or hyperpolarizing)

when the neuron is depolarized to it’s threshold, voltage-gated channels for Na
open. These allow Na to rush in, depolarizing the cell.

shortly thereafter, voltage-gated K channels open (and the Na channels slowly
start to close) allowing K to rush out and rapidly repolarize the cell

there are other channels in cells that open on different time scales, allowing for
slight changes in this typical firing of an action potential (e.g. hyperpolarizing
adapting currents, see below).

The first quantitative model of this was the Hodgkin-Huxley model (giant squid
axon). This is a ‘class II' neuron (Hopf bifurcation, jump in firing rates).

(See slides) HH model is a 4D nonlinear system. The dynamics of the parameters
governing activations@, n) and inactivation ) have eqns of the same form,

but are all different functions of membrane potentidl, These functions are
empirically determined (i.e. fit to data from squid axon; see slide). The dynamics
are that these variables approach some asymptotic valueXg1g),) with some

time constant (e.gz, (V)).



4.2.3 6H-neuron

Notice that during neuronal firing, there is a membrane potential that depends on
the dynamics of ion channels that open and close depending on the membrane
potential. That is, there is a dynamic system of coupled parameters. For this
reason, dynamic systems theory is often used to understand neuronal dynamics.

‘class I' neurons have a zero minimum spiking frequency and increase monoton-
ically (like the LIF) - these are the most common in cortex.

To get this extra behavior, we need to add another fast (though slower than Na)
K current (the ‘A-current’) (see slide).

The circuit now includes the Na current, the K current, the A-current, and the
leak current but has no delta function generator. This is because the dynamics of
Na and K take care of the spike generation.

The A-current has a near-rest threshold (for both activiation and inactivation),
which means that weak, sustained input slowly inactivates the channels until a
spike is fired, which rapidly activates the channels, bringing the cell back to rest,
where slow inactivation begins again (hence very slow firing rates are possible).

In DST, the addition of this current changes the bifurcation from a Hopf (in
Hodgkin-Huxley/class Il neurons) to a saddle-node bifurcation (in class | neu-
rons).

Thef-neuron models this kind of bifurcation (see slide)

— In (a) and (c) the upper diagram shows the location of critical points on the
invariant circle, the middle graph shows the behaviof ofnd the lower
graph is the trace aofl — cos 8) showing the spikes. (a) Excitable regime
with 6 + ¢ = —0.3. The stable state is the node on the right. The single
spike is evoked by a pulse stimulus (marked by the triangle) that férces
past the saddle fixed point on the right. (b) Meeting of the saddle and node
points with + o = 0. The trajectory has an infinite period. (c) Oscillatory
regime where the stable state is now a limit cycle with- o = 0.3. Pe-
riodic behavior of the phase variable and spikeélir- cos §) are present.

(d) Phase evolution and its analog to membrane voltage states. Note that
the spike occupies a small region near A strong enough stimulus will
pushé past the threshold and into the excited region. Here the regenerative
dynamics that summarize active conductances carry the phase through the
spike.

This model is canonical (i.e. it represents the class of models with a similar
bifurcation).

It also has good/similar decoding compared to LIF neurons. This suggests LIF
neurons are reasonably good appriximations to these dynamics (without actually
having the dynamics explicitly).

e LIF neurons run 100 times faster.



4.2.4 Wilson neuron

e This is the most realistic of the neurons we have seen so far, even though it is
a ‘reduced model’; i.e., there are direct mappings between neurophysiology and
model parameters.

e it'saclass |, adapting neuron with spike dynamics; captures spike height changes,
spike shape, and after-hyperpolarizations (overshoot of the resting value after a
spike).

e To understand the reduction, start with a Hodgkin-Huxley (HH) neuron model.
This is the first (and most famous) quantitative neural model, and is based on the
giant squid axon (it’s class Il (hopf bifurcation)).

¢ Rinzel simplifications:

1. Na activation is very fast\{ (V) is really small), so we can eliminate the
dynamics and allown = M (V') (see slide)

2. Na inactivation is about equal and opposite to K activation, so we can let
h =1 — n (see slide), again removing a differential equation (we combine
h andn into one variableR)

e This is a 2D model of a class Il neuron. We need the A-current

e Rose and Hindmarsh simplification: A-current inclusion can be approximated
by making the dynamics foR a quadratic (see slide). So we have a 2D model
of a class | neuron.

e We can include adaptation by putting in another variable with slow dynamics
that acts likeR,qqp: in the adapting LIF (see slide).

e The result is the Wilson model with adaptation. This compares favourable over
a wide range of stimulation to real cortical data (see slide).

e Again, decoding this gives good info transfer (2 bits/spike).

e BUT: Takes 600 times longer to run than the LIF

4.2.5 Summary

e We have progressed from simple, ‘phenomenological’ models through to more
complete models that include adaptation, spike dynamics, and ion channel dy-
namics. This gives a good overview of available models in computational neu-
roscience.

e The main class we haven't discussed are compartmental models. These are much
the same, but model spatial distribution of the neurons (we have considered
‘point’ neurons only), by using Rall’s cable equations (see here: http://diwww.epfl.ch/~gerstner/SPNM/noc



As for information transmission, all of the models have info rates between 1-3
bits/spike, comparable to real neurons (see slide).

Adaptation seems to help improve efficiency without adversely affecting accu-
racy.

Keep in mind we are always using Gaussian white noise here. Real neurons often
seemed tuned to natural signals (i.e., with more specific spectra). To model this,
we’d have to know how to tune model parameters to increase efficiency.

In conclusion, we'll use LIF neurons because they are very computationally ef-
ficient and have reasonable info transmission efficiency and accuracy.



