Lecture 2: Representation in populations of neurons

2.1 Engineered vs. Biological Representation

2.1.1 Engineered Repn.
Codes in information theory are defined by:
1. An encoding procedure: = f(x)

2. Adecoding procedure: = f~1(a)
N.B.:

e Botha andz have their own ‘alphabets’, or 'units’.

e This is for an ideal, or ‘lossless’ code, otherwise= g(a) ~ f~!(a), which is
far more common

One example of such a code is Morse Code whésa set of numbers whose units are
dashes and dots, andis a set of numbers whose units are the Roman alphabet (plus
punctuation).

Another very familiar example is the A/D converters found in many consumer elec-
tronics. These convert voltage changes intdbit words. More precisely, we can
identify the encoder

1, ifzmod?2 > 2i-1
ai(x) = { 0, otherwise 21)
and decoder
N
&= a;(x), (2.2)
=1

where _
¢ =21

In this example; indexes a bit number; is the temperature code, agdis the
decoding rule, or weight.
N.B.:

e The encoding is highly nonlinear.

e The decoding is linear.

This is a distributed representation (at the level of bits). Unlike a photograph (at
the level of pixels).

e Side note: Consumer A/D often don't use a temperature code. The above is an
example of a ‘flash’ ADC.



2.1.2 Biological repn.

We can define this in a similar way. Here, the encoders are neurons (which are highly
nonlinear), and the decoding weights are unknown. From neuroscience we know that
an injected current will cause the cell to fire at a given rate. We then have an encoder:

N.B.:

e This characterizes a cefidependentlyf its being in a neural system.

¢ Plotting this function by varying/ outside of a system gives the neurars
sponse function

To relate this current to its role in a behaving neurobiological system, we need to write
it as a function of some external signal, Again turning to neuroscience, we notice
that cells don't spike outside of a system with no input, but they do inside the system.
This suggests that there is a ‘background’ or bias current stimulating the cell. As well,
the current to different cells is changed in different ways in response to changing
depending on the physiological characteristics of the cell. As a result, we canfwrite
above as:

J(z) = ax + J¥s.

Here,ax, is the ‘driving’ current is the gain that helps determine how the neuron’s
response changes to changes:iand J”** accounts for the background firing rate.
Now our encoder is:

ai(z) = G; [ax + mes]
which directly relates an external signal, to neural reponses, We can determine
how well the signal is encoded by finding the decoders:

N.B.:
e The second function;(x) is called thetuning curve.

e The functionG; [-] can be defined in any number of ways. Obviously a definition
that matches known response functions is best. Two useful starting choices are
for it to be: 1) simple rectification (computationally cheap); 2) a leaky integrate-
and-fire (LIF) response curve (more neurally plausible, and still fairly cheap).

e The choice of7; [] will affect what the determined; are.



2.1.3 Biological decoders

To find decoders that support a good representation afe want the error between
and the estimate;, to be small over the range of the signal. To enforce this constraint,
we want to minimize:

e al ’
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with respect tap;.

To do so, we can take the derivative 87 with respect tap; as follows:
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Setting the derivative to zero and finding the minimum ovei glves

N

/11 ai(x)wde = (/11 a;(x)a; () dm) b;, (2.5)

J

which can be written using matrix-vector notation as

T =T4¢. (2.6)
Solving for ¢ gives
o=T"17, (2.7)
where
Lij = lai(w)a; (@),
T, = (wa;i(x)),.

Equivalently, we can write

N
0= T35 Ty
J

z)w(x) dx
IMost generally(f(z)), = f}()(sd)wherew(z) is a weighting factor. For instance, if we let

w(x) = ﬁ then the precision of the resulting representation varies as the distance from the origin.
This reflects the well-known Weber-Fechner law from psychophysics.



Minimizing the ‘mean square error’ (MSE) and thus finding the (mean square)
optimal¢; ensures that our representation:@fncoded withu; () can be well-decoded
over the relevant interval.

N.B.:

Unlike engineered representations, biological ones:

e Result in analog quantities (output signals as rates or time between spikes)
¢ Need to have the decoders determined in order for us to analyze them as repn.

e Are ‘more distributed,” meaning: 1) the failure of an arbitrary neuron will affect
the repn by about the same amount regardless of the neuron failing (the effect of
a failing bit depends on the order of the bit); 2) the neuron encoding is highly
redundant (not so for standard binary codes).

Like engineered representations, biological ones:
e Have encoders that are similar but non-identical
e Are distributed
e Have increasing precision with more encoders

e Have nonlinear encoders and linear decoders

2.2 Adding Noise

Neural systems are noisy (which is good because this lets us use information theory).
Noise stems from:

. Axonal jitter
. Neurotransmitter vesicle release failures
. Different amount of transmitter in each vesicle

1
2
3
4. Thermal noise (minor)
5. lon channel noise (tye number of channels open or closed fluctuates)
6

. Network effects.

See also http://diwww.epfl.ch/~gerstner/SPNM/node33.html

Nevertheless, there is good evidence that neurons can pass signals of interest very
well (i.e., quite robustly and reproducibly).

N.B.

e Noise is engineered not to be a concern for digital repn, but is a concern for
neural repn.



To include noise, we can introduce a noise tef,which is added to the neuron
activity, a;. This makes our estimate of the signal:

N
=2 @)+ o (2.8)

To find the decoding weights);, construct and minimize the mean square error as
before, averaging over the expected noises well
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To perform the minimization, assume that the noise is Gaussian, independent, has a
mean of zero, and has the same variance for each neuron. The result is:

1 N
E= 3 < [93 Zai(x)@

i=1

2 N
> + D did; (ning), - (2.10)

ij=1

Because the noise is independent on each neuron, the noise averagesepiwhen
i = j. So, the average of thgn; noise is equal to the variance?, of the noise on the
neurons. Thus, the error with noise becomes

1 N 2 N
_ , ) ) 2 2
=3 <[x§al(x)¢l > +o ;sz (2.11)
So, in matrix form, the only change is

Iy = <ai(x)aj($)>m + 025ij

N.B.:
o the first squared term in (2.11) is teeror due to static distortion
e the second term is therror due to noise

Note that determining representation in this way relies heavily on considerations of im-
plementational constraints (e.g., noise, number of neurons, range). This is one central
themes of the course.

In this week’s exercises, you will be examining the relation between the number
of neurons in a representation, the noise, and the precision of the representation for a
scalar variable. This highlights the difference between neural representation:

e about 100 neurons are needed for a SNR of 100:1

e only 7 bits are needed for the same SNR



2.3 Horizontal eye position

Sections 2.2.1 and 2.2.3, the system description and design specification in the book
outline the basic anatomy and response characteristics of neurons in this area.
N.B.:

e neurons in these areas are very well-modeled by LIF neurons

e be sure not to confuse the reponse curves and tuning curves, since they ‘look’
the same in this example

2.4 \ector Representation

Vectors are far more commonly represented in the nervous system than scalars. Even
the neural integrator cells actually represent vectors (the example above is just simpli-
fied). Perhaps the best know representation of vectors in the cortex is in primary motor
cortex. Apostolos Georgopoulos and his collaborators provided very good evidence
that understanding arm movement commands as vectors encoded in a population of
neurons in primary motor cortex provided a powerful characterization of this cortical
area.

A standard feature of neurons in this area is that they have ‘preferred’ directions
of arm movement. So, a cell will fire most rapidly if the monkey moves its arm in
the cell's preferred direction, and less rapidly as the arm movement diverges from the
preferred direction. The result is that the tuning curve of these neurons look vaguely
like Gaussians or cosines (see slide).

This notion of a ‘preferred’ vector is thus important for defining the encoding pro-
cedure for vector representation. Note that the preferred scalar in the scalar case was
simply ‘left’ and ‘right’ or ‘on’ and ‘off’ and so could be included in the definition of
the gain.

So, a vector representation can be defined as an encoding:

ai(x) = Gi [ai (&) + 0] (212)
and decoding,

X=>"ai(x)¢;. (2.13)

i=1

The distribution of the ‘preferred’ (or better yet, ‘encoding’) vectdsg,are found
by looking at the neural system of interest. In the case of arm movements, these ap-
proximately evenly spaced around the unit circle. The magnitude of these vectors is
always one, because the gain and other neuron parameters (défipidgtermine the
sensitivity of the neuron to changes in magnituded along this direction.

To find the decoding vectors),, we can perform the same least squares minimiza-
tion (with noise, which is still scalar) discussed earlier.



2.5 Semicircular canals

| won't discuss the semicircular canal example in much detail. The main point of this
section is to highligh the fact that the theory presented here isn't sufficient to determine
how to set up a good simulation:

You must look at the empirical details of the system you are interested in.

The methodology discussed earlier emphasizes this as well. The graph of axis vs.
evenly distributed 2D vectors demonstrates this fact quite clearly. The motor cortex
seems to be like the former and the semicircular canals like the latter.



