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Lecture 10: Statistical inference and learning

10.1 Learning

• We’ll do learning first, just for fun: Both use past information to affect future
performance.

• What role there could be for learning given our approach since we find weights
analytically? Possibilities:

1. learning can help fine-tune models generated this way;

2. we can compare and contrast learned with analytically found weights to see
if they are the same or different, possibly giving us insight into the nature
of learning; and

3. examining the role of learning helps highlight both new challenges for, and
the inherent strengths of, this approach.

• Comments on 1.: the weights found using the techniques presented in the part
two of this book are typically based on rate model approximations to spiking
neurons. How accurate these approximations are depends on the spiking model
being used. While there is significant leeway in the framework for making the
rate model approximations more or less accurate, there will always be some de-
gree of inaccuracy in the approximation. Thus, the connection weights found
using the framework are probably best considered to be good first guesses at a
set of weights that perform the desired function. Learning can thus be used to
subsequently fine-tune these weights. This would be particularly true in cases
like the neural integrator, where there is evidence that an explicit error signal is
available to the system for updating subsequent behavior [?].

• Let’s consider the other possibilities by example.

10.1.1 Learning a communication channel

• Recall that in this networkai(x) simply drivesbj(y), with no transformation
taking place. The purpose of the network is to simply communicate the signal,
x, in the original population to the subsequent one; i.e., we wantbj(y = x̂) to
represent just whatai(x) does.

• A way to formalize this as learning is to note that maximizing the variance of
the responses in the receiving population allows it to carry the most information
it can about incoming signals. If it carries exactly the same information as is
available from the sending population, we have a communication channel. To
maximize the variance, we need to maximize

E =
1
2

∑

j

〈(
bj(x)− b̄j(x)

)2
〉

x
. (10.1)
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• Noting thatbj(x) = Gj

[∑
i ωjiai(x) + Jbias

j

]
as usual, and taking the deriva-

tive of (??) with respect toωji gives

dE

δωji
=

dGj [ξ]
dξ

dξ

dωij

(
bj(x)− b̄j(x)

)

dE

δωji
=

dGj [ξ]
dξ

ai(x)
(
bj(x)− b̄j(x)

)

whereξ =
∑

i ωjiai(x) + Jbias
j .

• The Gj term means that the rate of change of the activity of the neuron for
input x is important. We can replace it with the simpler term(bj(x) > 0) as an
approximation. This evaluates to 1 when the neuron is active and 0 when it is
not. (This does not affect the final results of learning, although it can slightly
slow down the learning process.)

• b̄j(x) is found by keeping a running mean, i.e.,

b̄j(x; t + dt) = (1− ε)b̄j(x; t) + εbj(x; t)

• We use the standard ‘delta rule’ approach to write the learning rule explicitly:

∆ωij = −κ
dE

δωji
(10.2)

= −κ (bj(x) > 0) ai(x)
(
bj(x)− b̄j(x)

)
, (10.3)

whereκ is the learning rate.

• This is a typical Hebbian learning rule. That is, it is alocal learning rule that will
construct the expected representation in thebj population. (see slide)

• Given our previous analyses, it is natural to ask if we can decompose them into
their encoding and decoding components. Recall that the general form of the
weights we find is

ωji = φ̃iφj

or, in matrix form,
ω = φ̃¯ φ

where¯ indicates theouterproduct.

• In the communication channel the encoding weights are±1. Given the learned
weights,ωlearn, and the encoding weight vector,̃φ, we can find the decoders,
φ.

• Because the encoding weight vector is not a square matrix, we must take the
pseudo-inverse (that is, use SVD) to find the decoders. As a result, the weight
matrix we reconstruct using the extracted decoders,ωrecon, is different than the
original learned matrix (see slide).
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• We can compare these matrices based on learning with the matrix we originally
found analytically,ωanalytic. The fact that these three matrices all perform sim-
ilarly emphasizes that there are many solutions to problems like constructing a
communication channel, given the high-dimensionality of weight space.

– Looking at the commonalities amongst these three solutions also provides
us with some clues as to what properties of the weights may be essential
for a good communication channel. Here, all of these approaches find a so-
lution that divides the population about equally into ‘on’ and ‘off’ neurons.
And, the pattern of connectivity is similar in that oppositely tuned neurons
tend to have negative weights and the strength of positive weights depends
on the similarity of the neurons’ tuning curves. So, there is a general struc-
ture to these matrices that becomes apparent and understandable once we
have a variety of tools for both analyzing and synthesizing weight matrices.

• However, the reconstructed matrix is good at preserving the information in the
incoming signal (see slide). So, this kind of decomposition may be useful for
analyzing the often mysterious results of employing a learning rule in a given
network.

– What we’ve done is to take a set of weights generated in any particular way
and then derive a set of decoders given encoding assumptions. These de-
coders can then be used to determine what function those weights compute
(given the encoding assumptions) by using the to decode the incoming sig-
nal. So, we can use this approach to make a principled guess at the function
of a set of learned weights. In this case it’s fairly obvious since the function
is simple.

• I’ve used a similar approach to generate a learning rule for associative memory.
It’s good for heteroassociative and autoassociative memory, and is Hebbian in
form. It demonstrates a means of relating ’high-level’ learning to neural connec-
tion weights as well.

– Start at the high level by noting that we want to minimize:

E =
1
2

[R− T ]2

where
T =

∑

j

yjφj

yj = Gj

[
αj

〈
φ̃j

[
Ĉ + R̂

]
+ Jj

〉]

and the representatio of R and C (the two signals being associated) are as usual. No-
tably, we only want an update rule for one set of weights, so lets find the rule for C. We
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have to take the derivative of the high-level error wrt the weights:

E =
1
2


∑

k

φkrk −
∑

j

φjGj

[∑

l

ωjlcl +
∑

k

ωjkrk + Jj

]


2

dE

dωjl
= −


∑

k

φkrk −
∑

j

φjyj




[
d

dωjl

∑

i

φiGi

[∑

l

ωilcl +
∑

k

ωikrk + Jj

]]

we can approximate theGj nonlinearity as(yj > 0) giving:

dE

dωjl
= −


∑

k

φkrk −
∑

j

φjyj


 (yj > 0)φjcl

and for the standard delta rule:

∆ωjl = −κ
dE

dωjl

however, the derivative is biologically implausible as it stands, since it isn’t local. So,
let’s multiply byαj φ̃j :

∆ωjlαj φ̃j = κ


∑

k

ωikrk −
∑

j

ωijyj


 (yj > 0)φjcl

multiply by φjagain:

∆ωjlαj

∥∥∥φ̃j

∥∥∥ = κ


∑

k

ωikrk −
∑

j

ωijyj


 (yj > 0)cl

∆ωjl =
κ

αj


∑

k

ωikrk −
∑

j

ωijyj


 (yj > 0)cl

because we know that the norm of the encoders is 1 andφj φ̃j ≈ δ. Note also that
the i index is really an index into the same population so some of these are recurrent
weights.

10.1.2 More thoughts on learning

• The literature on learning in neural systems is enormous. The previous consider-
ations merely scratch the surface of the subject. Nevertheless, here are some of
the lessons supportive of this approach:
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– Because this framework is essentially analytic, it can help us gain new in-
sights regarding standard learning rules. We can apply such rules and then
analyze the resulting weight matrices in a way that may give us a new or
better functional characterization

– Given the representational hierarchy we can be confident that such rules
and analyses will generalize to systems trafficking in more complex repre-
sentations.

– This is true both for analyzing the static transformations in a network, as we
have done above, and for learning dynamic transformations. For instance,
to learn an attractor, regardless of the complexity of the representation, we
can minimize the energy that enforcesJ̇i = 0, i.e.,

Ei =
1
2

〈
[Ji(t)− 〈Ji(t)〉t]2

〉
t
,

– Because we have a general means of incorporating input signals and trans-
formations via control theory, accounting for learning in systems with ex-
plicit error signals, like the neural integrator, should be straightforward.

– Most importantly, this approach gives us a means of constructing complex,
functional systems,independentof learning. This is essential for model-
ing complex systems because, at the moment, it is not clear how to learn
many of the complex behaviors exhibited by neurobiological systems. Such
considerations do not make this approach a competitor to a learning-based
approach, but rather show ways in which both can contribute to our under-
standing of complex neural systems.

• Here are some of the challenges highlighted by learning:

– Can we generate learning rules that give rise to the systems we construct
analytically? The superficial answer is ‘yes’, as the communication channel
shows. But, for more complex transformations and more complex control
structures, it is not clear what the answer will be. Notice that minimiz-
ing the variance between two populations, only constrains one degree of
freedom in the network’s representations. However, if we want to learn
arbitrary transformations, we will need to constrain multiple degrees of
freedom.

∗ Let’s consider this in more detail. Suppose that we have a population,
ai, from which we can encode the lower-order polynomials,xn. We
can thus find decoders,φ

(xn)
i , such that

x̂n =
∑

i

ai(x)φ(xn)
i .

Now suppose we want to compute some function,f(x), such that

f(x) =
M∑
m

Amxn.
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We know we can compute this function in somebj population using

the connection weightsωji = φ̃j

∑
m Amφ

(xn)
i as we have in the past.

Notice that these weights are now a function of the coefficientsAm.
This means that any learning rule must be able to adjust the weights by
systemmatically varying theseM degrees of freedomindependently.

∗ Furthermore, there needs to be a mechanism such that the desired val-
ues for theAm are applied consistently across the population. But,
to remain biologically plausible we have to impose these constraints
usinglocal learning rules. Applying such global constraints does not
mean local rules are impossible to derive, just that they need to be
highly sophisticated. In particular, they need to be controlled by a set
of M -dimensional signals in a neurobiologically plausible way. These
important challenges currently remain unresolved.

– Learning also highlights the ambiguity of connection weights. Because
this framework analyzes weights as the projection between encoding and
decoding vectors, and because projections of different sets of encoding and
decoding vectors can result in the same matrix, there is no isolated ‘right’
decomposition of a weight matrix. This ambiguity can only be overcome in
the context of a larger understanding of the system in which the weights are
found. As in the case of the communication channel, finding the decoders
for a system depends on our assumptions about the encoders. In order
for these assumptions to be reasonable ones, and constrained in some way,
they need to be made in the context of a larger system. So, just as justifying
claims about what is represented by a system depend on the coherence of
our overall story about brain function, so does justifying claims about what
functions the weights instantiate. This parallel should not be surprising
since representations and transformations are characterized in similar ways.
The challenge lies in determining methods that are better able to extract all
of the structure of a weight matrix consistent with this approach.

– A final challenge lies in trying to find ways to use the framework itself
to generate novel learning rules. While this approach seems useful for
analyzing the results of typical learning rules (like the Hebbian rule), it
would be very useful to be able to have a means of determining plausible
learning rules that would give rise to the kinds of high-level structure that
the framework can build into models. It is a challenge, in other words,
to not only build complex models like those we have discussed but to also
explain how they may have come about given the kinds of synaptic changes
observed in neurobiological systems.

– All of the preceding challenges can be summarized by noting that we have
not provided a systematic way to relate learning to this approach.
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10.2 Statistical inference

10.2.1 Introduction

• Why statistical inference? Here are some general reasons

– Rather than consider thetruth and falsity of sentences, probability theory
considers thelikelihood of events or statesof the world. Because we are
interested in neurobiological systemsin general—nearly all of which do
not have significant linguistic abilities, but all of which must reason about
states of the physical world—it is reasonable to suspect that probability
theory is the more appropriate tool for understanding such systems.

– natural systems most often confront partial, noisy, uncertain information
that they must use to make decisions; failure to use this information, no
matter how degraded, may mean certain death. Again, probability theory
and statistical inference naturally deal with cases in which information is
partial.

– Furthermore, probability theory describes how to incorporate multiple un-
certain sources of information to get a more certain result. And, similarly,
it describes how to update a current ‘take’ on the world given novel infor-
mation; this, of course, is learning.

– In general, then, probability theory is the best available quantitative tool for
describing the kinds of reasoning evident in neurobiological systems.

– There are already sophisticated probabilistic formalisms for modeling cog-
nitive function (e.g., in computer vision), and for modeling neurobiological
function as statistical inference [?, ?]. One of the more general approaches
to statistical modeling ispattern theory. The main purpose of this approach
is to generate general models of complex, real-world patterns—like those
encountered by biological systems.

– Pattern theory incorporates Bayesian inference for describing pattern analy-
sis and recognition. In our terminology, Bayesian inference defines trans-
formations that are useful for working with the complex representations
defined in pattern theory.

• Here is a reason specific to neural systems

– To see why neural systems should be good at performing the relevant calcu-
lations, consider the joint distribution of two variables,ρ(x,y). Probability
theory tells us how to write this joint distribution in terms of a relation be-
tween the individual distributions,ρ(x) andρ(y):

ρ(x,y) = ρ(y|x)ρ(x) (10.4)

= ρ(x|y)ρ(y). (10.5)

– (Bayes’ rule consists of equating the two right hand sides of the following
equations and solving for eitherρ(x) or ρ(y) as needed.)
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– To determine the probability density function (PDF) for either parameter
alone, we ‘marginalize’ (i.e., integrating) the joint:

ρ(y) =
∫

ρ(x,y) dx (10.6)

ρ(x) =
∫

ρ(x,y) dy. (10.7)

– Of course, each of these PDFs would be represented in a neural population.

– To proceed, consider the example of vision. We can think ofρ(x) as repre-
senting how likely each image is in the environment. More precisely, this
estimate is made in the context of some data provided by the environment.
Let this data be the image falling on the retina (corrupted by noise). We
would thus construct theconditionalPDF,ρ(x|d), that corresponds to the
probability density function for the true image given the measured image,
d.

– Now we want to extract certain properties of the image that are not directly
captured by the image falling on the retina (i.e.,d), such as objects in the
visual field. Let the variabley correspond to such properties. Generaliz-
ing (??), the probability density function for the variabley is a weighted
average of the conditionalρ(y|x):

ρ(y|d) =
∫

ρ(y|x)ρ(x|d) dx. (10.8)

– This equation tells us, for instance, how to determine the probability of the
existence of all possible objects in the field of view given the input image,
d. (Note: this particular example is oversimplified but serves to demon-
strate the potential power of this kind of formulation). Notably, equation
(??) is simply a linear transform, or projection ofρ(x|d) into the new space
ρ(y). It includes the transformations we have talked about to this point, i.e.,
y = f(x), as a subset (e.g, letρ(y|x) = δ(y − f(x)), and solving (??)).

– Importantly, (??) frees us from the assumption of Gaussian statistics. For
example, it allows multi-modal distributions inρ(x) andρ(y) (see section
??). As well, the conditional connecting the two spaces,ρ(y|x), can also be
multi-modal, allowing unimodal inputs to support multiple hypotheses. As
a result, being able to implement transformations defined by (??) results
in computationally powerful systems. This is demonstrated by the many
successes of artificial neural network (ANN) models, which can implement
precisely these transformations. It should come as no surprise that real
neurobiological networks are also ideally suited to implementing equation
(??).

– To see why they are so suited, notice thatρ(x|d) is simply a function pa-
rameterized by the variablesd (just asx(ν;A) is parameterized byA).
Hence we can create ensembles of neurons to encodeρ(x|d) andρ(y|d)
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as

ai(d) = Gi

[
αi

〈
φ̃i(x)ρ(x|d)

〉
x

+ Jbias
i

]

bj(d) = Gj

[
αj

〈
φ̃j(y)ρ(y|d)

〉
y

+ Jbias
j

]
, (10.9)

with the corresponding decoding rules

ρ̂(x|d) =
∑

i

φi(x)ai(d)

ρ̂(y|d) =
∑

j

φj(y)bj(d). (10.10)

Using equation (??) to define the transformation between these two func-
tion ensembles, we find that the neuronal variables are related by

bj(d) = Gj

[
αj

〈
φ̃j(y)ρ(y|x)ρ(x|d)

〉
x,y

+ Jbias
j

]

= Gj


αj

〈
φ̃j(y)ρ(y|x)

∑

i

φi(x)ai(d)

〉

x,y

+ Jbias
j




= Gj

[∑

i

ωjiai(d) + Jbias
j

]
, (10.11)

where
ωji = αj

〈
φ̃j(y)ρ(y|x)φi(x)

〉
x,y

. (10.12)

Within this framework, equations (??) and (??) tell us how to implement
simple feed-forward statistical inference in a neurobiologically plausible
network. In particular, the connection weights between neurons in these
networks can be understood as the projection of the encoding functions
of the output neurons,̃φj(y), on the conditional,ρ(y|x), weighted by the
decoding function,φi(x), of each input neuron.

– Examining these equations more closely reveals a number of important
consequences.

1. Statistical inference in high-dimensional spaces requires estimating
high-dimensional integrals. Because of the high degree of conver-
gence on each neuron in typical neural networks, such networks are
ideally suited for performing these kinds of transformations.

2. The form of these equations is identical to those for a simple feed-
forward ANN. Furthermore, given our past analysis of neurobiological
representation, we can see that there is no particular advantage gained
by introducing the nonlinearityGi [·] (especially on the higher-level
variables). The nonlinearity is simply due to the nature of the repre-
sentation found in neurobiologically plausible networks. Perhaps the
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nonlinearity is more the result of an implementational constraint on
low-power, low-precision physical devices like neurons.

3. This formulation of statistical inference using PDFs represented by a
set of basis functions is more general than one that assumes Gaussian
statistics.

4. Equation (??) can be understood by taking the conditionalρ(y|x) to
be a ‘look-up table’ (LUT) that specifies the value ofy for every value
of x. When viewed in this way, the limitations of (??) become clear—
every possible consequence given the inputx must be pre-computed
(i.e., embedded inωji). This is why we referred to our previous
example in the visual system as oversimplified; that kind of simple
feed-forward formulation of the problem would require astronomically
high amounts of resources to representρ(y|d). Also, the conditional,
ρ(y|x), would have to relate every possible image (a high-dimensional
space) to every possible object (another very high-dimensional space).
As a result, the addition of one new object (i.e., increasing the dimen-
sion of the object space by one) requires enough resources to define
its relation to every possible image—this problem is commonly called
the ‘curse of dimensionality.’

• Let’s consider 4. in more detail. One way to begin to address the curse of dimen-
sionality is to recognize that it is often possible to divide such high-dimensional
spaces into statistically independent subspaces. Suppose thatx can be so divided
into ρ(x) andρ(z). Then, the joint densityρ(x, z) can be written asρ(x)ρ(z).
Now, the transformation for finding the PDF fory given those forx andz be-
comes

ρ(y|dx,dz) =
∫

ρ(y|x, z)ρ(x|dx)ρ(z|dz) dx dz. (10.13)

An implementation of (??) in a neural network has the form

bj(y) = Gj

[∑

ik

ωjikai(dx)ck(dz) + Jbias
j

]
, (10.14)

where
ωjik =

〈
φ̃j(y)ρ(y|x, z)φi(x)φk(z)

〉
x,y,z

. (10.15)

• This helps the problem because the spacesx andz have a smaller dimensionality
that the originalx. As a result, the LUT captured byρ(y|x, z) is smaller. To
see why, realize that the number of dimensions that must be stored whenx and
z are independent isD1 = Dx + Dz. When they aren’t independent, then
Dx ·Dz À D1 dimensions must be stored.

• Also note that equation (??) defines a much richer class of inference than that
supported by (??). In fact, there are a number of possible interpretations of (??)
in a neurobiological context. Most generally, we can think of the variablesz
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dynamically changing the connection weights betweeny andx such that the
inference between the latter two spaces is carried out in thecontextdefined by
the z space. But, notice that (??) does not make a distinction between which
space is providing the context and which is being modulated. This is what gives
rise to different interpretations. Thusx andz could represent evidence from two-
different modalities such as vision and audition, in which case the circuit is still
feed-forward. Alternatively,z could represent variables in a higher order (‘top-
down’) model andx could provide the feed-forward (‘bottom-up’) evidence.

• The powerful set of transformations that results from the generalization of equa-
tion (??) to (??) does not come for free, however. Most noticeably, (??) requires
multiplicative interactions between the activities of thez andx populations. The
ubiquitous need for performing this kind of context dependent statistical infer-
ence is one more reason that we might expect to find such nonlinearities in den-
drites. Others have made similar suggestions.

10.2.2 Interpreting ambiguous input

• The natural environment is often filled with irrelevant or partial information, so
there is good reason to expect that phenomena like object recognition do not
depend solely on information extracted from sensory signals. Rather, many
processes must depend critically on the system’s assumptions about the struc-
ture of the environment. In other words, ‘top-down’ information is essential for
the successful performance of many tasks.

• It has become clear, both functionally and anatomically, that top-down effects
are common. Functionally, top-down psychological effects in vision have been
extensively observed (one of the most striking is our inability to see concave
faces as anything but convex from about a meter or more away). Anatomically,
it is clear that there are massive reciprocal feedback projections from later to
earlier visual areas in the primate.

• Consider a ‘toy’ characterization of a problem faced by animals. Suppose an an-
imal is interested in determining the location of an object in the external world.
Since the actual location is a matter of some uncertainty, we can describe the
animal’s final ‘guess’ as to where the object is as a probability density function,
ρ(y). This guess will be partly based on information provided by the sensory
system,ρ(x|d). This PDF can be understood as the sensory system’s assign-
ment of the probability that the object is at each location,x, given the noisy
measurements,d. Let us suppose for this example that, under certain conditions,
this guess leads to a bimodal distribution that equally emphasizes two different
locations (see slide).

• Given only information from the sensory system, the final guess would be the
same as the best guess from the sensory system, sinceρ(x|d) incorporates all
of the information available about the position of the object. However, if there
is also a top-down ‘model’ of what positions to expect, then using information
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from that model may biasρ(y) towards one of the two modes inρ(x|d). We
can again consider such top-down information as a PDF,ρ(z|m). This PDF
captures the biaseda priori information about how likely the object is to be at
any given location in space,z, before any new data,d, is known. This PDF is
determined by the parameters,m, which we can think of as summarizing past
experience with object positions. The information inρ(z|m) can thus be used to
disambiguate the information available solely from the sensory system.

• In order to determine what final guess should be determined for some particular
ρ(x|d) andρ(z|m), we can look at the relevant joint distribution,ρ(x, y, z|d,m),
which capturesall of the relations betweenρ(x|d), ρ(y|d,m), andρ(z|m).

• Given how we have set up the example, we assume that the input data,d, and the
internal model parameters,m, are independent, which means thatρ(x, z|d,m) =
ρ(x|d)ρ(z|m). So we can expressρ(y|d,m) just as we did in the more general
case in (??) as

ρ(y|d,m) =
∫∫

ρ(y|x, z)ρ(x|d)ρ(z|m) dx dz. (10.16)

• From this expression it is clear that we need to know,ρ(y|x, z), the conditional
probability that the object is in some location given the top-down and bottom-up
information. If there was reason to think that either the top-down or bottom-up
information was more reliable, we could use our definition of this PDF to capture
that property of the system. In the absence of any such reason, as in this case,
we are free to choose this conditional probability. So, we presume thatρ(y|x, z)
is

ρ(y|x, z) =
1√

2π(α(x− z)2 + β)
e−(y− 1

2 (x+z))2/(α(x−z)2+β). (10.17)

• This conditional emphasizes those places in the multi-modal distribution (i.e.,
ρ(x|d)) where the data and model agree, and de-emphasizes those places where
they significantly disagree (β ensures non-zero variance,α controls how much
the emphasis relies on this difference; this conditional takes the average value of
x andz and constructs a distribution around that mean whose variance depends
on how similarx andz are at that point.). Notably, this conditional would not
work very well with Gaussian statistics, but we have more freedom to choose the
conditional when working with general PDFs.

• We have now expressed a high-level formulation of the problem of how we
should use previous knowledge to interpret ambiguous sensory data. Recall that
this is the same as describing context-sensitive reasoning.

10.2.3 Parameter estimation

• The previous example assumed that there had already been a reasonably good
top-down model, parameterized bym, constructed before we attempted to dis-
ambiguate the bottom-up information. Ideally, we want a model that is generated
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based on the statistics of the environment the animal finds itself in. In order to
generate such a model, we can again use statistical inference. Here we consider
a toy parameter estimation problem to show how a neural system can extract the
relevant parameters governing a probability distribution of some property in the
environment.

• Suppose that the system receives a stream of values,xn, each of which can be
thought of as a ‘measurement’ of the underlying statistical process that is giving
rise to these values. In this example we assume that the set of valuesx1, . . . , xN

are generated by a Gaussian process with a meanx̄ and varianceσ2 that are
fixed for a finite period of time. The purpose of the neural system is to determine
estimates of the mean and variance from the measurementsxn signal.

• (If the mean and variance were truly static, there would be no need for any kind
of dynamic statistical inference mechanism. So, we can think of the mean and
variance as slowly changing or as being ‘reset’ occasionally.)

• To begin, let us define the conditional probability of obtaining the value ofx
givenx̄ andσ as a Gaussian:

ρ(x|x̄, σ) =
1√

2πσ2
e−(x−x̄)2/2σ2

. (10.18)

We now assume that the mean,x̄, and variance,σ2, themselves are drawn from
a broad distribution,ρ0(x̄, σ), whose precise form is not critical. We can express
the marginal forx, ρ(x), as

ρ(x) =
∫∫

ρ(x|x̄, σ)ρ0(x̄, σ) dx̄ dσ, (10.19)

which will also be very broad. We now suppose that a pair of valuesx̄ andσ
have been drawn fromρ0(x̄, σ) and are used to generate a signal,x1, . . . , xN , by
a random Gaussian process.

• Our goal is thus to design a network that represents a PDF overx̄ andσ that
starts with the prior,ρ0(x̄, σ), and is updated appropriately as the signal arrives.
We can define the representation of such a population as

bj(x1, . . . , xn) = Gj

[
αj

〈
φ̃j(x̄, σ)ρ(x̄, σ|x1, . . . , xn)

〉
x̄,σ

]

ρ̂(x̄, σ|x1, . . . xn) =
∑

j

bj(x1, . . . , xn)φj(x̄, σ).

To simplify the notation we subsequently usebj(xn) andρ(x̄, σ|xn) to indicate
the relevant encoding and decoding.

• Because the measurements of the true signal are subject to uncertainty, we take
the signal values,xn, to be the mean of a Gaussian PDF, whose variance,σ2

xn ,
is determined by the amount of noise in the measurement. Since only the mean,
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xn, will change, we write this as the conditional,ρ(x|xn), that is represented by
a neural population, where

ai(xn) = Gi

[
αi

〈
φ̃i(x)ρ(x|xn)

〉
x

+ Jbias
i

]

ρ̂(x|xn) =
∑

i

φi(x)ai(xn)

define the encoding and decoding.

• These two representations can be related through an update rule that tells us
how the densityρ(x̄, σ|xn) should be modified given the next data pointxn+1;
namely,

ρ(x̄, σ|x1, . . . xn+1) =
∫

ρ(x̄, σ|x)ρ(x|xn+1) dx

=
∫

ρ(x|x̄, σ)
ρ(x)

ρ(x|xn+1) dx ρ(x̄, σ|xn)

≈
∫

ρ(x|x̄, σ)ρ(x|xn+1) dx ρ(x̄, σ|xn),(10.20)

where we assumeρ(x) is very broad and hence approximated as a constant
whose value can be computed using (??) (the first step is a result of applying
Bayes’ rule). The coupling weights can be found in the usual fashion:

ωjil = αj

〈
φ̃j(x̄, σ)ρ(x|x̄, σ)φi(x)φl(x̄, σ)

〉
x,x̄,σ

. (10.21)

We can now write the firing rates of thebj population at timen + 1 as

bj(xn+1) = Gj

[∑

il

ωjilai(xn+1)bl(xn) + Jbias
j

]
.

• Note that this same derivation holds regardless of our explicit restrictions on
the shape ofρ(x|xn) or ρ(x̄, σ|xn). That is, the derivation is general enough
such that they need not be Gaussians. This is true despite the Gaussian form
for the conditional probability which relates theρ(x|xn) representation with the
ρ(x̄, σ|xn) representation, i.e., (??).

• The slides show an example time slice of the results of simulating this network
using 100 LIF neurons in each population. Though not evident here, as more data
is presented to the network, the estimate of the mean and variance,ρ(x̄, σ|xn),
becomes narrower. Eventually, the narrowness of the estimate, that is, the cer-
tainty of the best guess regarding the true values ofx̄ andσ of the underlying
process, is limited by the goodness of the neural representation in thebj popu-
lation. This again demonstrates the importance of accounting for resource con-
straints when modeling transformations in neurobiological systems.
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• This is just one of many ways to predict an unknown process under uncertainty.
We have taken an essentially Bayesian approach, but such approaches are closely
allied to others, like Kalman filtering )which we consider in more detail in the
book) and information optimization.


