
Exercise 2: Representation in populations of neurons

2.1 Representation of scalars

1. Write a Matlab program that implements the neural representation of a scalar using a rectified
neuron model with equal numbers of on and off neurons. Make the neuron x-intercepts drawn
from an even distribution over [-1,1], with a maximum firing rate evenly distributed between
100-200Hz. Generate figures that

(a) Display the neuronal responses ai(x) for N = 16 (i.e., 8 on and 8 off neurons).

(b) Show the optimal linear decoders, φi, as in equations (2.4-2.5) and Appendix A of the
textbook.

(c) Show x̂ = ∑
N
i=1 φiai(x). Overlay a plot of y = x to see the distortion errors. Overlay

another plot (with a different y-axis (matlab: ’plotyy’)) of just the error by plotting
x̂− x. Report the RMS error value.

(d) Show x̂− x = ∑
N
i=1 φi(ai(x)+ ηi)− x where ηi is Gaussian random noise with η̄ = 0

and σ = .2. Use the φi found in (c). Compare this plot to that in (c). Report the RMS
error value.

(e) Find the optimal linear decoders φi under noise as in equations (2.7-2.10) of the textbook.
Now plot (c) again (but using these new decoders). Finally, reproduce plot (d) exactly
as before (using the decoders found in (b)), but with an overlay of the same plot using
the φi found under noise in (e).

(f) Compare the respective RMS errors in a 2x2 table (φi found with and without noise;
decoding ai with and without noise), and comment briefly on them.

Hints:

• Use the rand function in Matlab for the even distribution for x-intercepts and max firing
rates.

• Evaluate the integrals as using dx = 0.05, certainly no smaller than 0.01.

• Implement the rectified neuron model function [ f (x)]+ as a(x) = ( f (x) > 0).∗ f (x) in
Matlab. For this model, f (x) = mx+b.

• Recall the Gaussian distribution, ρ(η)= 1
σ
√

2π
e−(η−η̄)2/(2σ2). Plot this if you are unfamil-

iar with it. Use the matlab randn function to generate Gaussian distributed noise (scale and
shift the results of randn to get the desired distribution).

• You can solve for the αi for the ‘on’ half of the population and then just negate them to
give the ‘off’ half.
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• Note that the standard deviation of 0.2 is relative to a normalized maximum firing rate
of 1 (i.e., possibility of about 10% error). So when you use use real firing rates, scale
the noise accordingly.

• Debug the program using N = 4, not N = 1000.

2. Use the previous program to examine the sources of error.

(a) Plot the error due to distortion, Edist , and the error due to noise, Enoise, as a function
of N. Use the loglog plot and run simulations for N = 4,8,16,32,64,128, . . . until you
run out of patience. Do about 5 runs at each population size and average the results.
Approximately fit (by shifting up or down) 1/N and 1/N2 to these lines, and plot them.
Use φi under noise, and σ = .1.

(b) On a different graph, examine the effects of the noise variable on Edist and Enoise by
using ση = 0.1 and 0.01, and regenerating some of the points in (a). Put all four plots
(i.e. each kind of error at both variances) on one graph. What do the graphs in (a) and
(b) tell you about sources of error in neural populations?

3. Change the program to run with the nonlinear neuronal response function that arises from
the leaky integrate and fire (LIF) model of neuron spike generation:

ai(x) = Gi [Ji(x)]

=


1

τ
re f
i −τRC

i ln
(

1− Jthreshold
i

Ji(x)

) , ifαix+ Jbias
i > Jthreshold

i

0, otherwise
(2.1)

where
Ji(x) = αix+ Jbias

i .

Again make sure the x-intercepts are evenly distributed, Jthreshold = 1, and that the firing
rates are evenly distributed between 100-200Hz. Typical values for τ

re f
i are between 0.5-

2ms and for τRC
i are between 5-50ms (pick some and leave them constant; note that the

equation is scaled to seconds). See figure 4.3 in the book for information on how changing
these variables affects the response functions. Generate the same plots as in 1.a and 1.d,
finding the optimal decoders under noise (don’t compare it to plot 1.c). Report the RMSE.

Suggestions:

• You have two unknowns and two points on the function (the x-intercept and the firing
rate at x=1 or -1). Solve the equation for one of the unknowns without substituting
the points in first. Then proceed as usual (i.e., substituting the points, solving for the
other unknown and then finding the first unknown). Recall that the firing rate is zero at
J(x) = Jthreshold .

• The LIF functions will look odd if you plot or keep the whole thing. Only keep the
part of the function that matters, i.e. x > xintercept (Matlab: ai.*(x>xintercept)) for ‘on’
neurons and x < xinterceptfor ‘off’ neurons.
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2.2 Representation of vectors

1. Vector tuning curves:

(a) Plot the tuning curve of a LIF neuron whose preferred direction vector is at -π/4 in the
x-y plane, with an intercept of 0, and a max firing rate of 100Hz (along the preferred
direction). This is a 3D plot.

(b) Plot the cosine tuning curve for this neuron over a range of [0,2π] centered on the
perferred direction. Fit this with a cosine and plot both. How good is the fit, why is it
good at all, and why does it deviate?

Notes:

• Do a least squares fit for (b). Either directly or using lsqcurvefit in Matlab. You can use
the form Acos(Bθ +C)+D.

• Other useful functions for both of these questions include: repmat, meshgrid, surf,
reshape

2. Vector representation:

(a) Plot a set of 100 unit vectors drawn from an even distribution (i.e. use rand) around the
unit circle (try using Matlab’s quiver function for plotting vectors).

(b) Find the optimal decoding vectors for LIF neurons under noise as before, and plot them.
How do they compare to the encoding vectors?

(c) Using 20 unit vectors distributed around the circle as the input, x (i.e. don’t worry about the
magnitude of the vectors), plot the decoded estimates and compare the mean square error
(MSE) for 1) the optimal decoders from (b) and 2) Georgopoulos’ preferred direction de-
coding (i.e. using the preferred direction encoders as decoders) for direction only.

(d) Using 20 vectors whose magnitude and direction are distributed within the unit circle,
plot the decoded estimates and compare the MSE between the two decodings for direction
and magnitude combined.

Notes:

• The 100 unit vectors are the prefered direction, or encoding, vectors for the neurons.

• The neurons should be chosen with parameters distributed as in 1. Each neuron chosen will
then be associated with a particular encoding vector (so those parameters are defining ac-
tivity along the encoding vector).

• Γ is the same form as before, but will take longer to compute (again, test with a few
neurons).
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• To compare direction only, decode the vectors as usual, and then compute the angle
around the circle. Use the actual and decoded angles to compute the MSE. Only plot
the decoded angle as a scalar.

• To compare magnitude and direction, encode and decode the vectors as normal and use
the actual original vector and it’s decoded version to compute MSE.
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