
2D Working Memory

A Report Submitted in Partial Fulfillment

of the Requirements for SYDE 556

Dane Corneil, 20169089, 4B

Tim Gevaert, 20171060, 4B

Faculty of Engineering

Department of Systems Design Engineering

April 27, 2009.

Course Instructor: Professor C. Eliasmith



1

System Description

As this project is an extension of the dynamic working memory example presented in

section 8.3 of Neural Engineering [1], much of the system description overlaps. The

subpopulation under consideration in that case was the Lateral Intraparietal Area

(LIP) of the neocortex of macaque monkeys. This population exhibits the behaviour

of storing memories of salient stimuli, and has been studied extensively by researchers.

The results of these studies indicate that multiple bumps of varying heights can be

encoded by the LIP to represent multiple stimuli in the spatial field (represented by

ν), as well as a non-spatial characteristic of each stimulus f(ν). Research by Colby

and Goldberg[2] suggests that f(ν) represents the attentional resources given to the

stimuli, while research by Andersen et al.[3] suggests that it represents intention to

move to the object.

In Neural Engineering, a working memory population was built which encoded a

single non-spatial parameter in response to a spatial parameter. This representation

was done in function space rather than vector space, significantly reducing the neural

resources required (that is, by storing a limited number of function co-efficients rather

than the value of the non-spatial parameter at every point in the range). This report

extends that representation using two independent dimensions, and examines the

resulting error in comparison to 1D representation.

Other neural populations have been found which exhibit similar activity bumps[4].

It would seem reasonable that populations could represent non-spatial characteristics

1



based on two varying spatial field dimensions f(x1, x2) as well. Many other indepen-

dent dimensions could also be accounted for in populations (e.g. colour), leading to

activation levels which vary from neuron to neuron for no apparent reason.

For the case of 1D function representation[1], the function is represented through

a basis decomposition.

x(ν;A) =
∑
m

AmΦm(ν) for A ∈ ρ(A), and m ∈ {1, · · · , M} (1)

Where the coefficients of A are stored in the integrating neural population.

Note that for the case of 2D function representation, the equivalent relation is in

fact,

x(x1, x2;A) =
∑
m

AmΦm(x1, x2) for A ∈ ρ(A), and m ∈ {1, · · · , M} (2)

The distribution ρ(A) is not known, so suitable values for A to define the extents

of the function space were found by projecting exemplar memories onto the basis

functions Φ. The extents of ν and x1, x2 were normalized to [−1, 1].

To simulate the dynamics of the system, a modified integrator was implemented.

ẋ = Ax(t) + Bu(t) (3)

Here, the standard implementation sets A = I and B = τPSCI. However, the

value of B was set to I, allowing the integrator to charge fully within τPSC seconds

(0.1s in this model). Thus, memories were presented to the integrator for only 0.1s,

preventing error from accumulating while the memory was being stored.

2



2

Design Specification

Neural population simulation was done using the Nengo environment, available freely

online. Basis function decomposition and examination of results was performed in

MatLabTM.

In order to compare 1D and 2D models accurately, the neural population size was

held constant at 1089 neurons. In both 1D and 2D cases, the preferred directions for

these neurons were represented by Gaussians of width σ = 0.02, spaced evenly across

the input space. Thus, the encoding vectors were spread much more widely in the

2D case.

Gaussians significantly below width 0.02 could not be modeled accurately in 2D

without increasing the resolution (set to dx = 0.05 on [−1, 1]), which in turn proved

too computationally expensive. Thus, this encoding vector width was used and held

constant across the 1D and 2D case. Exemplar memories were twice this width.

Memories were represented with function space constants by projecting them onto

an orthonormal function basis. This basis was found by performing Singular Value

Decomposition on a set of Gaussians, thus representing a basis which spanned the

possible memories. However, not all constants could be represented in the system

accurately, so a given number had to be selected. The singular values of the possible

1D and 2D memories were examined to determine an adequate functional space to

use. Figure 2.1 shows the first 40 singular values in 1D and 2D.

In comparing 1D and 2D, a common number of dimensions was required in order

3



Figure 2.1: Singular Value Comparison

to avoid the effects of covering differently-sized function spaces. Based on the singular

values, the first 20 dimensions were used, as they provided complete representation

of the 1D memory space and adequate representation fo the 2D space. However,

error was expected due to the fact that 2D memories cover a wider subspace of the

functional space than 1D memories (most of the 1D constants were near zero).

Additionally, error was expected due to significant singular value representation

beyond 20 dimensions in 2D. To examine this, 20 dimensional and 40 dimensional

representations were compared within the 2D space.

Unlike the brain, modelling was not subject to spiking fluctuations (i.e. a rate

model was used rather than a spiking model). This was done because spiking-induced

fluctuations made it more difficult to visualize temporal changes in the signals due to

fixed points, which was the focus of the comparison between 1D and 2D. If spiking

fluctuations are used, they should be corrected for by a reasonable filter.

An example of a 2D memory being stored with a spiking model is shown in the

attached file spikemovie.avi (with a filter size of 0.1, in a 2029-neuron, 40-dimensional

network).

The integrator network included gaussian noise of 0.1 variance. Since the encoded

4



memories (Gaussians of width 0.04) could be encoded accurately with far fewer than

20 vectors dimensions in 1D, many of the first 20 singular values were less than the

noise variance. Thus, some high frequency noise was introduced into the representa-

tion by using 20 constants in 1D.

Finally, the evaluation points used by Nengo in order to determine the optimal

decoders covered the entire 20-dimensional space. As the possible constants for these

values exist in a small subspace of the hypersphere, these decoders would be inad-

equate. Thus, evaluation points were used which only took on values within the

possible subspace. These evaluation points were generated using the values taken by

all possible memories, and adding points generated randomly within the maximum

range of each constant. The additional points were necessary in order to represent

values produced while the integrator was charging, and after error was introduced

due to fixed points. In both 1D and 2D cases, 10,000 additional points were used.

5



3

Implementation

3.1 Comparison of error between a 1D and 2D

function space

In order to examine how the representation error changes as the number of dimensions

increase, a sequence of simulations were performed, where only the dimension of the

represented function space is varied. In each case, a 20 dimensional neural integrator

made up of a population of 1089 neurons was used to store the first 20 coefficients of

the associated one or two dimensional basis functions. Standard values for the neuron

LIF characteristics were used: τRC = 200ms, τRef = 1ms, τPSC = 100ms, maximum

firing rates of [200Hz−500Hz], and intercepts along the full range of [−1, 1]. In each

case, each memory bump is of height of 1.

1 Bump

When holding a Gaussian of height 1 in the centre of the function space, each simu-

lation produced similar results. Each bump reduced in height slightly, and some high

frequency information was lost, causing negative bumps on either side of the memo-

rized bump. Interestingly, the 1D representation results in a higher RMS error than

the 2D representation (Figure 3.1). This is reasonable after observing the Figures

3.2 and 3.3, which depict the final memory after 1s. The 1D representation includes

6



negative values on either side of the bump. The 2D representation shows these same

cavities, however there is some surface area which remains quite flat at the value of

0, thus improving the overall average representation error of the surface.

Figure 3.1: RMS of 1 Gaussian Bump representation over time

Figure 3.2: 1D, 1 Bump memory after 1s

7



Figure 3.3: 2D, 1 Bump memory after 1s

8



2 Bumps

When representing two bumps, the RMS error of each simulation increased as ex-

pected (Figure 3.1). Again, the 2D representation (Figure 3.6) outperforms the 1D

representation (Figure 3.5) in terms of RMS. A third representation is compared

(Figure 3.7), which includes 2 bumps along the two axes of the 2 dimensional repre-

sentation. In this simulation, the RMS error is roughly double that of the 2D 2 bump

case.

Figure 3.4: RMS of 2 Gaussian Bump representation over time

9



Figure 3.5: 1D, 2 Bump memory after 1s

Figure 3.6: 2D, 2 Bump memory after 1s

10



Figure 3.7: 2D, 4 Bump memory after 1s

11



3 Bumps

In comparing three bumps, it was not possible to place the bumps in the same plane

without significant degradation, due to the limitation of 2D representation using

20 dimensions. This difficulty is examined in detail in the Effect of Dimensional

Representation section. Instead, the 3 bumps in the 2D case were placed along the

diagonal of the plane. Here, the error in the 2D representation is again superior to

the 1D result in terms of RMS, and grows less quickly over time (Figure 3.8). By

observing the Figures 3.9 and 3.10, it is clear why the 2D representation is superior

to the 1D representation.

Figure 3.8: RMS of 3 Gaussian Bump representation over time

12



Figure 3.9: 1D, 3 Bump memory after 1s

Figure 3.10: 2D, 3 Bump memory after 1s

13



The 1D case exhibits a large amount of forgetting, as the middle peak is completely

missing from the representation after 1s. As there is a larger function space over which

the bumps can be placed in 2D, the 3 bumps do not interact as much, and hence can

be stored distinctly. This effect is examined in greater detail at the end of the Stability

Analysis section.

3.2 Effect of Dimensional Representation

As shown by the singular value distribution, the range of possible memories in 2D is

not fully represented by 20 dimensions. In particular, densely populated memories

show significant representation error. In order to examine this effect, the number of

vector dimensions represented was increased to 40, while holding the neuron popula-

tion size constant at 1089.

A memory distribution was used which was particularly difficult to represent with

20 dimensions: nine bumps distributed evenly throughout the graph. The original

memory is shown below, as well as the projection of the memories on the first 20 and

40 basis dimensions.

Figure 3.11: Original Memory

14



Figure 3.12: Memory Projected on 20 Dimensions

Figure 3.13: Memory Projected on 40 Dimensions

15



The higher frequency gaps between the memories are not possible in the 20 di-

mension representation; thus, the memories will already have begun to blend by the

time when they are stored in the integrator.

Figures 3.14 and 3.15 show the results of storing the nine memories in the inte-

grator for one second, using 20 and 40 dimensions respectively.

Figure 3.14: Memory After 1s, 20 Dimensions

Figure 3.15: Memory After 1s, 40 Dimensions

16



Although 40 dimensions represent the function space better, the same number of

neurons do not represent the increased vector space as well as with 20 dimensions.

This results in the system fixed points being farther away from the accurate values

of the constants, so that the values are not stored as accurately and attenuate more

as time passes. This can be shown in the videos all920dim.avi and all940dim.avi.

Figure 3.16 compares the RMS error between 20 and 40 dimensional representa-

tions over time. The dotted lines show the error compared to the best possible repre-

sentation of the memories given the number of dimensions used; the solid lines show

the error compared to the original memory. The graph shows that the 20 dimensional

representation performs very well against the memory projected on 20 dimensions,

but poorly against the original. The error values for the 40 dimensional case are much

closer, because the 40 dimensional projection is a more accurate representation of the

original.

Figure 3.16: Error Comparison, 20 vs. 40 Dimensions

Immediately after storage, the 40 dimensional projection performs better; how-

ever, because the values attenuate more quickly, it is surpassed by the 20 dimensional

projection after about 0.8 seconds. However, this takes into account error that may

not be important for accurate recall (e.g. greater dips below the 0 plane between the

17



memory bumps). Figures 3.14 and 3.15 appear to show that the varied surface using

40 dimensions represents the stored memories more accurately after 1 second.

3.3 Effect of Population Size

In order to evaluate the effect of population size, the number of neurons was approx-

imately doubled to 2209. The results after one second are shown in Figure 3.17, and

an error comparison to a 40 dimensional representation using 1089 neurons is shown

in Figure 3.18.

Figure 3.17: Memory After 1s, 2209 Neurons

Qualitatively, more memories are stored at comparable heights using 2209 neurons.

As well, the RMS error is shifted down. However, the error does not attenuate any

more slowly.

The storage of the memories using 2209 neurons is shown in the video all940dim2000.avi.

18



Figure 3.18: Error Comparison, 1089 vs. 2209 Neurons

19



3.4 Stability Analysis

Two particular types of stability decay are evident when encoding double Gaussian

bumps in the 1D model. Bumps which are close together and of similar height tend

to blend into a single bump over time, with a peak halfway between the two. When

bumps are close together and of dissimilar height, the smaller bump tends to be

absorbed by the larger one, while the centre of the larger bump does not change (that

is, the system forgets the smaller bump). Examples of each are shown in Figures 3.19

and 3.20.

Figure 3.19: Blending in 1D

In both cases, the combined two-bump shape causes the first, and lowest frequency,

dimensional constant to move outside of the range represented by the single-Gaussian

encoding vectors. This saturates the system, causing the first constant to attenuate

over time and resulting in a single bump. This effect is illustrated by Figure 3.21.

20



Figure 3.20: Forgetting in 1D

Figure 3.21: Constant Representation Limits

21



The Gaussian bumps used above were placed in the 2D space. The bump centres

were placed at the same distance apart as in the 1D case in dimension x1, and at zero

distance apart in dimension x2 (that is, on the same plane). Thus, the 1D and 2D

results could be compared graphically by taking the projection on x1 in the 2D case.

In both the blending and forgetting cases, 20 dimensions were inadequate to rep-

resent the memories well in 2D space, exacerbating the respective errors before the

memory had been stored. Thus, the memories were also stored in 40 dimensional

function space, holding the population size constant. Figures 3.22 and 3.23 show

the results for the forgetting scenario projected on input x1. The 40 dimensional

representation maintained a more accurate representation of the primary memory,

although forgetting is still evident in both cases.

Figure 3.22: Forgetting in 2D, 20 Dimensions

22



Figure 3.23: Forgetting in 2D, 40 Dimensions

23



Figures 3.24 and 3.25 show the results for blending. Interestingly, the final blended

memory in both cases is at or above the heights of the original memory. This is

potentially due to error in higher frequency dimensions, which vary significantly more

in 2D than in 1D (as shown by the singular values). In the 40 dimensional case in

particular, the original memories are stored with greater accuracy, but they lead to

an emergent ‘false memory’ over time that is much greater in height than the original

bumps.

Figure 3.24: Blending in 2D, 20 Dimensions

In these cases, comparing RMS values is not particularly meaningful; for instance,

a single large bump between two original memories might have a lower RMS error

than an attenuated version of the original memories, although the latter is a better

representation of the original function.

24



Figure 3.25: Blending in 2D, 40 Dimensions

25



Finally, a significant advantage of two spatial dimensions is that memories can be

spaced farther across the space due to differences in the second dimension, preventing

blending and forgetting errors. This was illustrated earlier when storing 3 bumps

diagonally. To examine this, the two ‘forgetting’ bumps were spaced at the same

distance along variable x2 as along x1, so that their centres were separated by
√

2

times the original distance. The value after one second is shown below, as well as

the projection on dimension x1 (using 20 functional dimensions). Due to the greater

distance between the centres, both memories can now be accurately recalled. Figures

3.26 and 3.27 show the stored memories after 1 second in 2 dimensions, and the

storage over time projected on x1, respectively.

Figure 3.26: Forgetting in 2D, Askew Memories

26



Figure 3.27: Forgetting in 2D, Askew Memories, Projection on x1

27



4

Discussion

Comparing 1 bump and well-spaced 2 bump memories in the 1D in 2D case re-

vealed similar RMS error. This suggests that, for simple functions which can be

well-represented in 2D with the first 20 dimensions and a low number of neurons, 1D

and 2D error does not differ significantly.

In fact, the 2D case slightly outperformed the 1D case. This is potentially due to

the error introduced by modeling unnecessary, higher dimensions in 1D. Future work

would compare the results of freely varying this parameter between the 1D and 2D

conditions.

Memories which were densely populated in the 2D plane, or spaced closely to-

gether, could not be well-represented in the 2D plane and attenuated quickly. This

problem was addressed in several ways. By placing the memories diagonally in the

2D plane, so that they differed equally in both input dimensions, memories could

be stored which would otherwise blend or forget. These ‘askew’ memories outper-

formed their 1D equivalents, illustrating how the same number of neurons can store

some memories more accurately in 2D by utilizing their differences along both input

dimensions.

As well, the number of dimensions was increased in 2D from 20 to 40. Without

increasing the number of neurons, the 40-dimensional representation could remember

more densely populated bumps. However, the error increased more rapidly during

storage as the fixed points could less adequately represent the space. The error

28



was again improved by doubling the number of neurons, although the rate at which

values approach fixed points did not improve significantly. It is possible that this

could be addressed by increasing the number of evaluation points to represent the

40-dimensional space more fully.

As mentioned, future work should address the effect of freely varying the number of

functional dimensions represented between the 1D and 2D case, in order to represent

the space as accurately as possible. As well, the effect of varying the number of

evaluation points within the N-dimensional subspace should be considered. It is

possible that better evaluation points could be chosen by examining how constants

vary in relation to each other, rather than choosing coordinates by randomly varying

values within the possible range.

Finally, with greater computational resources, future work could focus on storing

narrower Gaussian bumps in 1D and 2D, as well as increasing the population size.

29



References

[1] C. Eliasmith and C. H. Anderson, Neural Engineering. Massachusetts Institue of

Technology, 2003.

[2] C. Colby and M. Goldberg, “Space and attention in parietal cortex,” Annual

review of Neuroscience, vol. 22, no. 1, pp. 319–349, 1999.

[3] R. Andersen, L. Snyder, D. Bradley, and J. Xing, “Multimodal representation of

space in the posterior parietal cortex and its use in planning movements,” Annual

Review of Neuroscience, vol. 20, no. 1, pp. 303–330, 1997.

[4] K. Zhang, “Representation of spatial orientation by the intrinsic dynamics of the

head-direction cell ensemble: a theory,” Journal of Neuroscience, vol. 16, no. 6,

pp. 2112–2126, 1996.

30


