
An efficient SpiNNaker implementation of the
Neural Engineering Framework

Andrew Mundy and James Knight
School of Computer Science,

University of Manchester,

Terrence C. Stewart Steve Furber

M13 9PL, UK

Centre for Theoretical Neuroscience,

University of Waterloo,

Waterloo, ON,

School of Computer Science,

University of Manchester,

Oxford Road, Manchester,

M13 9PL, UK Email: andrew.mundy@ieee.org

Email: james.knight@manchester.ac.uk

Canada N2L 3G 1

Email: tcstewar@uwaterloo.ca Email: steve.furber@manchester.ac.uk

Abstract-By building and simulating neural systems we hope
to understand how the brain may work and use this knowledge
to build neural and cognitive systems to tackle engineering prob­
lems. The Neural Engineering Framework (NEF) is a hypothesis
about how such systems may be constructed and has recently
been used to build the world's first functional brain model,
Spaun. However, while the NEF simplifies the design of neural
networks, simulating them using standard computer hardware
is still computationally expensive - often running far slower

than biological real-time and scaling very poorly: problems
the SpiNNaker neuromorphic simulator was designed to solve.
In this paper we (1) argue that employing the same model
of computation used for simulating general purpose spiking
neural networks on SpiNNaker for NEF models results in sub­
optimal use of the architecture, and (2) provide and evaluate an
alternative simulation scheme which overcomes the memory and
compute challenges posed by the NEF. This proposed method uses
factored weight matrices to reduce memory usage by around 90%
and, in some cases, simulate 2000 neurons on a processing core
- double the SpiNNaker architectural target.

I. INTRODUCTION

For a given power budget, two factors limit the simulation

of neural networks on any computing platform: scale and
time. Theoretically, any scale of network may be simulated
but as scale increases simulation time follows. Conversely,
if the simulation time is limited (for example, if biological
real-time is necessary) then only a limited scale of network
may be simulated. Specialised neuromorphic hardware tries
to avoid these constraints by parallelising and distributing
computational effort and relying on dense interconnection of
the computing elements. The SpiNNaker platform [1] is one of
a range of neuromorphic simulators (including Neurogrid [2],

BrainScaleS [3] and TrueNorth [4]) which should benefit
researchers of large-scale neural models.

The Neural Engineering Framework (NEF) [5] is a hy­
pothesis about how neurons may be used to encode abstract
mathematical constructs, such as scalars and vectors, that
we often use to model the real world. Its successes so far
include the Spaun model of cognition [6] and a spiking neural

This work is partially supported by EPSRC grant EP/G015740/1 (BIMPA);
the European Union under grant nos. ERC-320689 (BIMPC), FP7-287701
(BrainScales-Extension), and FP7-604102 (HBP); and by the U.S. Office of
Naval Research.

978-1-4799-1959-8/15/$31.00 @2015 IEEE

network that encodes and decodes the main lexical relations
in WordNet [7]. As with all neural systems, the NEF has
proven costly to simulate: the Spaun model typically required
2.5 h of compute time for 1 s of simulation [8, §V]. Two
aspects of NEF networks that make them particularly costly to
simulate are the high firing rates of individual neurons (often

up to 400 Hz) and the dense synaptic matrices used to connect
neuronal populations. The former presents a significant com­
munication cost to any specialised neuromorphic hardware and

the latter requires that large amounts of memory be used to

represent the neural network with all the associated costs of
transferring large blocks of data that implies.

In this paper we:

1) Argue that due to the properties of the NEF, the ex­
isting solutions and algorithms used to simulate neural
networks on SpiNNaker will not scale satisfactorily to

large-scale models such as Spaun.
2) Detail a method by which features of the NEF may be

used to reduce the memory and compute costs associated
with its simulation.

We hope to use the result to run the full Spaun model in
biological real-time.

II. BACKGROUND

In this section we briefly discuss the SpiNNaker platform
and how neural networks are currently simulated on it before
introducing the Neural Engineering Framework (NEF) and dis­
cussing how models built with it may act to stress SpiNNaker

in various ways.

A. The SpiNNaker platform

The SpiNNaker platform is a massively parallel architecture
designed to simulate neural networks. A SpiNNaker machine
is constructed from a number of SpiNNaker chips, each
connected to their six immediate neighbours using a chip­
level interconnection network with a toroidal, triangular mesh
topology. Each SpiNNaker chip contains 18 ARM processing
cores connected, via a network-on-chip, to each other and the

external network through a multicast router. Each core has two
small tightly-coupled memories: 32 KiB for instructions and

64 KiB for data; and shares 128 MiB of off-chip SDRAM with
the other cores on the SpiNNaker chip.

SpiNNaker is an event-driven, message-passing computing
architecture. The software running on a core may transmit
packets to other processing cores to indicate the occurrence

of events or to share data. A packet consists of a 32 bit key,
used to direct the packet around the network and, optionally, a

32 bit data payload. When a packet reaches a router, its key is
inspected to determine which (if any) of the 18 processors and
six external links attached to the router it should be forwarded
to. On receipt of a packet, a core executes a callback function
which may inspect the packet and schedule further execution

as required.

B. Simulating neural nets on SpiNNaker

When simulating neural nets on a SpiNNaker machine each
core is responsible for simulating a number of point neurons
(in the order of a few hundred). When one of these neuron
spikes, it transmits a packet whose key uniquely identifies the
neuron (for this it requires no payload). This "spike" packet
is then routed across the network fabric to the processing
cores responsible for simulating each of the neurons that are
connected to the firing neuron. On receipt of a "spike" packet

a core retrieves the row of the connectivity matrix associated
with the firing neuron from SDRAM. Each of these rows
describes the synaptic weights and delays associated with the
connections between the firing neuron and those simulated on
the core. Once a row is retrieved the weights are inserted into
an input ring-buffer where they remain until the synaptic delay
has elapsed and they are applied to the neuronal input current.

Using this system there are two primary constraints on
the number of neurons that may be simulated on a single
processing core:

1) The amount of memory required to store the synaptic
weight matrices must fit within the space available to
the core. This is 8 MiB as each core is allocated /6 of
the 128 MiB SDRAM.

2) As the majority of processing time is spent in the
synaptic processing pipeline, there must be sufficient
time for the core to process all incoming 'spike' packets;
and retrieve and process the synaptic rows during one
simulation time-step (see [9]). This time is a function
of both the number of spikes received per time-step and
the density of the synaptic matrix. Sharp and Furber [9,

§III.C] indicate that at most there may be 5000 synaptic
events per millisecond when running at biological real­
time, where a single synaptic event indicates one spike
being passed through a single synapse to a neuron on
the receiving core.

These constraints may be satisfied by either allocating
fewer neurons to each processing core or by increasing the
processing time used for each simulation time-step. Hard time
constraints are necessary when SpiNNaker is required to run
in biological real-time, as it is in experiments with other
neuromorphic hardware. Processor constraints are present for

those with access to only small SpiNNaker machines such as

those mounted in mobile robots.
It should be noted that time is also a factor prior to the

start of any simulation. All data required by the SpiNNaker
machine during simulation must be transmitted to it through
an ethernet interface, meaning that if more data is required on
the machine more time is required to prepare it for simulation.
Sharp and Furber [9] note that this preparation time can be of
the order of several minutes - something that is undesirable
if a real-time simulator is desired.

C. The Neural Engineering Framework

The Neural Engineering Framework (NEF) extends the
concept of "preferred-direction vectors" [10] to all neural
populations. Each population represents a vector within a
particular space, within which, the firing rate of each neuron
reflects the similarity of the represented vector to the neurons
"encoding" vector. Using the notation of Stewart and Eliasmith
[8] this "encoding" of a variable in vector form into a neuronal
response may be expressed as:

(1)

Which states that the firing response of neuron i (6i) to the
represented value (x) is the response of the neuron model (Gi)
to an input consisting of a randomly selected gain term (exi),
the encoding vector for the neuron (ei) and a fixed bias current
(Jfias). Correspondingly, "decoding" allows a transformation
from the spiking actions of neurons into the domain of vectors.
Again using the notation of Stewart and Eliasmith [8] we can

express this decoding process as:

N

X = L ai(x)di (2)
i=l

Where the estimate of the original represented value (x) is
the sum of the spiking activity of each neuron (ai) multiplied
by the linear decoder for the neuron (di). The decoding
vectors may be selected to compute a function of the value

represented by the population. Fig. 1 illustrates the encoding
of a two-dimensional value using four neurons - the role of

the encoding vectors can be seen in that each neuron becomes
active for only a small range of the input space.

For a connection between a pair of populations, a (dense)
synaptic weight matrix can be calculated by computing the
matrix product of the decoders of the pre-synaptic population
and the encoders of the post-synaptic population [8]:

(3)

With i indexing neurons in the pre-synaptic population and

j those in the post-synaptic population.
An illustrative model that we will use later in this paper is

the communication channel. A communication channel con­
sists of two populations connected with the synaptic weights
chosen such that the second ensemble will represent the same
value as the first ensemble. The concept is illustrated in

1.0

0.5

"5
a. 0.0

c : : llium-
o

Neuronal responses

2 3

Time Is

4 5 6

18
Tuning curves

1.0
Decoded output

N 16
::c 14 0.5

12
2 10 to 0.0 8
Cl 6 r::::

.;:: 4 -0.5
u::: 6 t - 1.0

0 O.51l" 1l" 1.51l" 21l" - 1.0 -0.5 0.0 0.5

Angle

1.0

Fig. l. Representing a 2-dimensional value using four neurons. The input
values and spiking responses of the neurons are shown in the top plot. The
bottom left-hand plot shows how the firing responses vary with the angle of
the 2-D input vector (tuning curves) and the bottom right-hand plot shows a
decoding of the population's representation along with the input value.

A (20) B(2D)

• Neuron
r-r. Connection with "width"
-+ Map neuron(s) to processing core
"". Multicast packets

Fig. 2. A NEF communication channel consisting of two populations of
neurons and a connection. The diagram indicates how the abstract com­
munication channel might be instantiated on a simplified representation of
the SpiNNaker architecture: Population A is split between processing two
cores, consequently two streams of multicast packets allow simulation of the
communication channel.

Fig. 2; where, to illustrate how computational constraints may
be satisfied, the pre-synaptic population has been partitioned
across two processing cores.

D. Assessing the Neural Engineering Framework (NEF)

It is entirely possible to translate models built using NEF

principles into populations of point neurons connected with
dense synaptic weight matrices. These networks could then,

in theory, be simulated using the standard SpiNNaker spiking
neural network simulator described in §II-B. In this section we
show that, based on parameters used in the Spaun functional

brain model, this approach would result in sub-optimal usage
of a SpiNNaker machine, given the constraints outlined in
§II-B.

The Spaun model is built using the Semantic Pointer Archi­
tecture (SPA) [11] which uses randomly chosen unit vectors to
represent basic concepts. These concepts can then be combined

into symbol structures using addition (+) and circular convo­
lution (®) operators, both of which can be evaluated using
the principles of the NEE The circular-convolution operator

is non-linear and, Eliasmith [11] demonstrates, requires around

70 neurons per dimension to calculate accurately.
For example, using the basic concepts (MOUSE, CHEESE,

SUBJECT, OBJECT, EAT, VERB), a semantic pointer

representing the sentence "Mice eat cheese" can be formed
as S = MOUSE ® SUBJECT + EAT ® VERB + CHEESE ®
OBJECT. The subject of this sentence could then be extracted
using S ® SUBJECT' ;::::: MOUSE (where the' operator is
an approximate inverse [11, §D.2l, calculated using a linear
involution operation). However, the result of this operation will
not be exactly MOUSE - to extract the MOUSE semantic
pointer, the result needs to be "cleaned up". This process is
performed using an auto-associative memory network [12] the
properties of which dictate that, in order to reliably represent
a human-scale lexicon, semantic pointers must be drawn from
a vector space with around 500 dimensions.

On the basis of these two parameters (500 dimensions and
70 neurons per dimension) we can determine that semantic

pointers with this dimensionality would need to be represented
using populations of 3.5 x 104 neurons. A connection between
two of these populations would therefore require a dense
synaptic matrix with 1.225 x 109 entries. As synaptic weights
on SpiNNaker are typically represented as 16 bit values, this
full matrix would occupy approximately 2.28 GiB of memory
meaning that, as each core only has 8 MiB of SDRAM, the

post-synaptic ensemble would have to be distributed amongst
292 cores. This would reduce the number of neurons simulated
per core to only 120 - an order of magnitude short of
SpiNNaker's architectural target of 1000 [l3].

Representational errors can be reduced both by increasing
the number of neurons and by allowing them to fire at a
higher rate [5]. However, models built using the NEF typically
opt to use fewer neurons firing at rates of up to 400 Hz,

meaning that in networks such as the communication channel
example discussed in §II-C, each neuron fires at an average
rate of around 100 Hz. If this example were simulated with 70
neurons per dimension, the overall spike rate would increase
linearly with dimensionality as shown in Fig. 3. In the 4

dimensional case, this means that the post-synaptic ensemble
will receive around 20 incoming spikes per time-step which,
due to the dense connectivity matrices, will trigger a synaptic

event for each of the 280 neurons in the ensemble. This results

in a total of around 5600 synaptic events per time-step -
exceeding the limit of 5000 events per time-step found by

Synaptic events (Communication channel)
200

c.
2 VI 150 Q)
E

:;::;
� 100
c.
VI
� 50
'0.
Vl

o
o 4 8 12 16 20 24 28 32

Number of dimensions

Fig. 3. Spike rates for the pre-synaptic population of a communication
channel. The vertical line indicates the point at which 5000 synaptic events
per core has been passed. Each population had 70 neurons per dimension.

Sharp and Furber [9].

III. EXPLOITING FEATURES OF THE NEF FOR EFFECTIVE

SIMULATION ON SPINNAKER

In this section we review an alternative simulation scheme
that will meet the constraints of the SpiNNaker hardware for
a large range of networks constructed using the NEE The
details of the NEF described above suggest this alternate, more

efficient, implementation for SpiNNaker. We note that the
synaptic weight matrices are computed via (3). This means that
all the synaptic weight matrices are exactly factorable. More­
over every set of connection weights coming into an ensemble

will have the same ajej factor applied to it. We can thus split

the synaptic connection weight matrices into two parts: the
"encoder" ajej and the "decoder" di. These matrices are of
size N x D and D x N, where D is the "dimensionality"
of the representation and is generally much smaller than N,

the number of neurons. We can store the encoder in the core
that is simulating the post-synaptic population, and we can
store the decoder with the pre-synaptic population. This saves
significant memory since the two factors are much smaller
than the original weight matrix and we only need to store one
encoder no matter how many sets of input connections there
are. However, since the connection weight matrix is split in

this way, we can no longer send a packet to represent each
spike. Rather, the spikes are multiplied by the decoder and
the resulting vector value is transmitted. Importantly, since

the original weight matrices are perfectly factorable, the result
is identical to the original SpiNNaker approach in terms of
the neural behaviour, but with significantly reduced memory
requirements, and, as we shall show, improved processor
utilisation. Fig. 4a illustrates the scheme with the full weight

matrix stored in the memory of the post-synaptic core and
Fig. 4b illustrates the proposed scheme with the factored
matrix split across the pre- and post-synaptic cores and with
"value"-packets being transmitted between the processors.

We split the execution time of a processing core into three

steps: input filtering, neuron update and output. In the "spike"
simulation scheme the "inputs" to a processing core take the
form of "spike" packets which are used to drive a pipeline

that retrieves synaptic weights from SDRAM; in our proposed

scheme the inputs take the form of a set of packets whose
payloads can be combined to form a vector. For example,
the processing core simulating population B from Fig. 2 will
receive two packets per time-step from each of the two cores

simulating population A which, combined, will form a 2-D
vector representing the current decoding of the activity of A.
At the start of each simulation step the reconstructed vector is
filtered using the appropriate synaptic filter model to provide

the input current to the population - this is the input filtering

step.

During the neuron update step the state of each neuron is

updated in turn. First the input for the neuron is computed
by calculating the dot product between the encoding vector
for the neuron and the current input to the population (aiei .
x + Jfias from (1». Then the neuron itself is simulated, for

example using the Euler method to compute the next state of
a LIF neuron. If, during this process, a neuron spikes then
its decoding vector (di) is looked up and added to a buffer
containing the current decoding of the population activity (as

in (2». Once all the neurons have been simulated the output
buffer will contain a vector which represents the weighted
decoding of any spikes which occurred during the simulation
step.

During the output stage each element of the vector con­
tained in the output buffer is transmitted in the payload of a
multicast packet whose key uniquely identifies the population

and element index. The cOlmnunication fabric routes these
"value" packets to cores which simulate connected populations
of neurons.

Some ensembles may have multiple outgoing connections
with different transformations or functions, meaning that there
are multiple decoder matrices to apply when decoding the ac­
tivity of the population. In these cases we combine the matrices
such that the decoding vector for any neuron is the concatena­

tion of the required decoders (i.e. , di = [d{(X), df(x), ... J).
IV. RESULTS

A. Processor utilisation

To measure the CPU load when running the algorithm

described in §III on SpiNNaker, we developed a simple tool
to profile SpiNNaker executables. In this section we use this
tool to analyse how the load on the processors simulating
the ensembles in the communication channel network shown
in Fig. 2 varies with number of dimensions and neurons.
Fig. 5 shows how the proportion of CPU time spent in the
different phases of the algorithm outlined in §III varies with
both dimensionality and neuron count.

The input filtering and output phases of the algorithm both

transmit and receive one packet per simulation time-step for
every dimension. Thus the CPU time spent in both phases is
predominantly a function of the number dimensions, D. We
built simple models of the CPU cycles spent in these phases

(b) Value-based transmission

Fig. 4. A comparison of the (a) spike-based and the (b) proposed value-based algorithms.

by fitting the following linear functions to the profiling data

using a minimisation of the mean-squared error:

Cinput = 245 + 43D

Coutput = 100 + 702D

(4)

(5)

Where Cinput and Coutput are measured in cycles, 200 000 of
which are available per 1 ms simulation time-step when the

processor is running at 200 MHz. During the neuron update

phase, the dot product of the D-dimensional input vector and

the D-dimensional encoder vector is computed for each of the
N neurons. Additionally, when a neuron spikes, it is decoded
by adding its D-dimensional decoding vector to the current
output. Consequently the compute requirement of the neuron

update stage is a function of the both the dimensionality and
the number of neurons. To model this we again fitted a simple,
1st order, 2-D function to the profiling data by minimising the
mean-squared error:

Cneuron = 188 + 69N + 13N D (6)

Adding these equations together we can model the total CPU
cycle count as:

Ctotal = 533 + 745D + 69N + 13N D (7)

By substituting D = 1 into (7), we can see that the maximum

number of neurons that could be supported in the I-D case
is 2423. This matches our experimental findings that our

new simulator can simulate over 2000 neurons - double the
SpiNNaker system's architectural target of 1000 [13]. In order

to compare this model with the spike-based cOlmnunication
model discussed in §II-D, we can further simplify (7) by
substituting D = fa to reflect Eliasmith's [11] analysis:

Ctotal = 533 + 80N + 0.19N2 (8)

Finally, using the CPU cycle estimates for updating neuronal
state and processing incoming synaptic events quoted by Sharp
and Furber [9] and the incoming spike rates measured in §II-D,
we can build a similar model of the CPU cycle count of the
standard SpiNNaker simulator:

Cspike-based-total = 128N + 3N2 (9)

These models show that our implementation requires signifi­

cantly fewer CPU cycles per neuron than the general purpose
SpiNNaker simulator, allowing it to simulate up to 834 neurons
per core in this configuration. This is more than 3.5 x the 236

neurons per core that the general purpose SpiNNaker simulator
can achieve in the same configuration.

B. Memory utilisation

The dense connection weight matrix for any connection
between populations of Npre and Npost neurons in the NEF
will be of size Npre x Npost and, under the spike based
algorithm, would be stored entirely in the memory of the post­
synaptic core. When factored weight matrices are substituted

� 35
0

OJ
E 30
:;::;
=> 25 <>.
U
g- 20
ti
OJ 15 E :;::;
§ 10
:;::; '"
:; 5
E

iii 0

Output
Neuron update

_ Input filtering

10 20 50 100 200
Number of neurons

(a) 16-D

� 40
0

OJ
E 35
:;::;
=> 30 <>.
';. 25
� 20 OJ
E :;::; 15
c:
:310
'"

� 5

iii 0

.. Output
- Neuron update
_ Input filtering +

1 2 4 8 16
Number of dimensions

(b) 100 neurons per population

32

Fig. 5. Mean percentage of Ims simulation time step spent in different phases of our simulation algorithm when simulating communication channels of
varying dimensionality using different numbers of neurons.

TABLE I
MEMORY USAGE OF SYNAPTIC WEIGHTS IN BASAL GANGLIA MODEL

Inputs

Full weight matrix / MiB
Factored / MiB

Reduction / %

16

5.38
0.18

96.71

32

20.34
0.63

96.89

64

78.96
2.37

96.99

128

311.04
9.18

97.05

Memory usage of the synaptic weights (full matrix and factored) for the
standard Basal Ganglia implementation from Nengo (70 neurons per input).

for the full weight matrix, as described in §III, the memory
usage is split between the pre- and post-synaptic cores. The

post-synaptic core needs to store a single encoder matrix of

size Dpost x Npost while the pre-synaptic core will store a
decoder matrix of size Dpre x Npre, where Dpopu]ation is the
dimensionality of the population.

For example, a 16-D communication channel constructed
from two 1120-neuron populations will require 1 254 400

values to be stored in the memory of the post-synaptic core to
represent the full weight matrix. If factored weight matrices

are used then both the pre- and post-synaptic cores must store
17920 values, although the post-synaptic core will not need to
store any more data for further incoming connections. Using
16 bit to store each synaptic value and, as in our implementa­
tion, 32 bit to store each encoder/decoder value this becomes
2.4 MiB to store the full weight matrix or 70.0 KiB each to

store the encoder and decoder (a total of 140.0 KiB). Factored
weight matrices achieve a saving of 94.3 %.

Table I shows the memory usage from the connections
within the basal ganglia model used in Spaun. The reduction
in memory usage that results from using factored weight

matrices is significant - indeed, it should be noted that for a
basal ganglia accepting 128 inputs representing the connection
weights would require the SDRAM of three SpiNNaker chips

if full weight matrices were used.

C. Simulating large-scale models

To illustrate the correctness of our technique and to provide
a comparison between SpiNNaker and the reference NEF

implementation (Nengo [14]), we simulated a larger model
based on the basal ganglia model used in Spaun [15].

For the purposes of our benchmark, we assigned a 16-D
semantic pointer to each basal ganglia input and generated
utility values over time by comparing these to a repeating
sequence of semantic pointers. A sample of the basal ganglia
input and output are shown in Fig. 6.

We simulated this model for 10 s using a SpiNNaker ma­
chine and the standard NEF implementation on a standard
desktop PC (3 GHz AMD Athlon II X3 445). Fig. 7 shows the
time required to perform certain stages of preparing, uploading
data to the SpiNNaker machine, executing the model and re­
trieving data for two scales of model. As expected, SpiNNaker
is able to perform the simulation in biological real-time and is
thus significantly faster than Nengo for this example despite
the additional overheads. It is likely that as the scale and
complexity of models increase the overheads will follow, but
this should be less than the expected growth in simulation time
on the Pc.

V. DISCUSSION

A. Comparison to prior SpiNNaker implementations

Galluppi, Davies, Furber, et al. [16] demonstrated a SpiN­
Naker implementation of the NEF using the approach de­
scribed in §II-B. For the reasons advanced in this paper,
we believe that this system would not have been capable
of successfully simulating models of the scale or complexity
of Spaun in biological real-time. First hand experience with
this system indicated that the load time required to transfer

full synaptic matrices to a SpiNNaker machine could be
extensive. To avoid this Galluppi et al. suggested transmitting
factored weight matrices and performing their multiplication

on SpiNNaker. While this would have reduced the load time it
may have resulted in poor accuracy due to the lack of floating

point hardware on SpiNNaker. Moreover, it would have neither
reduced the amount of memory that would be required on

SpiNNaker nor reduced the overloading of the processors due
to high spike rates and would still have resulted in inefficient
use of the architecture.

1.2

1.0

0.8

0.6

0.4

0.2

A

0.0 �==�
-0.2

-0.4
1.2

.....
5. 1.0
.....
:::J
o 0.8
.!!l
C\ 0.6 c
ttl
C\
ttl
III
ttl

co

B c D

0.0 ��----�--,���I ��--__ ��--__ �_��

0.0 0.1 0.2 0.3

Time / 5

0.4 O.S

Fig. 6. SpiNNaker simulation of the Basal Ganglia model, selecting between
4 inputs labelled A, B, C and D, presented to it in sequence.

160
Downloading I
Simulation

-140

120 Uploading
Generation

100 - -----

I

I
-

�
-

�
- -

- -

80

60

40

20

o
Nengo SpiNNaker Nengo SpiNNaker

8 actions 16 actions

Fig. 7. The time spent in different stages of both the SpiNNaker and the
Nengo reference simulators when running the basal ganglia benchmark.

B. Comparison to other neuromorphic simulators

SpiNNaker is one of a range of neuromorphic simulators,
a family including both analogue (e.g., Neurogrid [2], Brain­
ScaleS [3]) and digital (e.g., TrueNorth [4]) hardware, which
aim to reduce the power consumption and execution time

for simulating large neural models. These simulators can be
expected to require less power than SpiNNaker for a given
scale of model [17], but are limited to simulating the types

of neurons and synapses they were fabricated with, whereas
SpiNNaker can be reprogrammed to investigate new models.
In the context of running NEF models of the type discussed in
this paper, there is another key limitation of these systems -
the number of hardware synapses associated with each neuron.
In the case of TrueNorth this number is only 256 and for the
BrainScaleS 16000, restricting the size of the populations that
can be connected using dense connectivity matrices to only 16

and 126 respectively.

C. Comparison to general purpose computer simulators

The reference implementation of the NEF is Nengo [14].

This defines a backend-agnostic set of elements that can
be used to construct networks using the principles of the
NEF, and a simulation tool which uses the same technique
of factoring weight matrices that we have exploited here to
reduce memory usage. Bekolay, Bergstra, Hunsberger, et al.

[14] show that this reference implementation performs well
in comparison to alternative PC-based neural simulators such
as Brian [18], NEURON [19] and NEST [20] and can also
be accelerated using commodity GPU hardware. However,
while an ATI Radeon HD 7970 GPU can simulate around

500 000 000 neurons in real-time [14] - comparable to our
approach running on a 48 chip SpiNNaker system - scaling
beyond one GPU is likely to be constrained by PCI bus

bandwidth. Furthermore, GPUs can be expected to consume
significantly more power [21] than an equivalent SpiNNaker
system [17].

We have extended the work of Bekolay et al. by indicating
specific reductions in memory usage and by transferring the
factored weight matrix simulation scheme to a distributed com­
puting architecture. A particular advantage of the SpiNNaker
architecture is that it will simulate networks in biological real­
time regardless of model scale and complexity (see Fig. 7)

- something that is not possible for commodity hardware.
Furthermore, as a real-time system it is able to interface

with neuromorphic hardware (e.g., artificial retinas [22], or
cochleas [23]).

D. General applicability of the algorithm

As SpiNNaker is an example of a message passing archi­
tecture we expect that our simulation scheme, transmitting
decoded representations of ensemble activity rather than spike
activity, to be equally applicable to simulating neural nets on
any message passing distributed architecture, such as MPI.

Additionally, beyond the NEF, factored weight matrices may
be applicable to further types of synaptic matrix. Furthermore,
while we have specifically optimised for the case where
the factorisations of all connections terminating at a given
population may share the same encoder matrix, this need not
be the case.

E. Future work

This work has laid the basis for simulating truly large­
scale NEF models in biological real-time. We plan several
improvements which should allow a greater number of neurons

to fit on a single core and, beyond this, we antIcIpate the

implementation of further neuron and synapse models. We
also intend to better assess the computational cost or gain
of value-based transmission when implementing learning rules
(e.g., [24]) and investigate how a constant traffic pattern affects
the SpiNNaker network architecture.

VI. CONCLUSION

The dense synaptic weight matrices and high firing rates
characteristic of neural networks built using the NEF lead to
inefficient use of the SpiNNaker architecture when using the
standard algorithms for simulating neural nets. In particular

storing the synaptic matrices of these networks requires large

amounts of memory and the high firing rates and dense neural
connectivity exceed the computational resources available to a
SpiNNaker core running in biological real-time. To overcome
these constraints we extended a simulation scheme proposed
by Bekolay, Bergstra, Hunsberger, et al. [14] which used fac­
tored weight matrices. This proposed scheme requires around
90% less memory in many cases and is able to simulate many

more neurons per core than would otherwise be possible - up
to 2000 neurons per core, double the SpiNNaker architectural
target. We intend to use the algorithm we have presented to
simulate the Spaun functional brain model in biological real­
time.

ACKNOWLEDGEMENTS

The authors would like to extend their thanks to the organ­
isers of the Telluride Neuromorphic Cognition Engineering
Workshop.

REFERENCES

[1] S. Furber, F. Galluppi, S. Temple, and L. Plana, "The SpiN­
Naker project," Proceedings of the IEEE, vol. 102, no. 5,
pp. 652-665, 2014, ISSN: 0018-9219.

[2] B. Benjamin, P. Gao, E. McQuinn, et ai., "Neurogrid: A
mixed-analog-digital multichip system for large-scale neu­
ral simulations," Proceedings of the IEEE, vol. 102, no. 5,
pp. 699-716, 2014, ISSN: 0018-9219.

[3] J. Schemmel, D Bruderle, A Grubl, M. Hock, K. Meier, and
S. Millner, "A wafer-scale neuromorphic hardware system for
large-scale neural modeling," in Circuits and Systems (ISCAS),
Proceedings of2010 IEEE International Symposium on, IEEE,
2010, pp. 1947-1950.

[4] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, et al., "A million
spiking-neuron integrated circuit with a scalable communi­
cation network and interface," Science, vol. 345, no. 6197,
pp. 668-673,2014.

[5] C. Eliasmith and C. H. Anderson, Neural Engineering. MIT
Press, 2004, ISBN: 978-0262550604.

[6] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf,
Y. Tang, and D. Rasmussen, "A large-scale model of the
functioning brain," Science, vol. 338, no. 6111, pp. 1202-1205,
2012.

[7] E. Crawford, M. Gingerich, and C. E1iasmith, "Biologically
plausible, human-scale knowledge representation," 35th An­
nual Conference of the Cognitive Science Society, pp. 412-
417,20l3.

[8] T. Stewart and C. Eliasmith, "Large-scale synthesis of func­
tional spiking neural circuits," Proceedings of the IEEE, vol.
102, no. 5, pp. 881-898,2014, ISSN: 0018-9219.

[9] T. Sharp and S. Furber, "Correctness and performance of the
SpiNNaker architecture," in Neural Networks (IJCNN), The

2013 International loint Conference on, 20l3, pp. 1-8.
[10] A. Georgopoulos, A. Schwartz, and R. Kettner, "Neuronal

population coding of movement direction," Science, vol. 233,
no. 4771, pp. 1416-1419, 1986.

[11] C. Eliasmith, How to build a brain: A neural architecture for
biological cognition. Oxford University Press, 20l3.

[12] T. C. Stewart, Y. Tang, and C. Eliasmith, "A biologically
realistic cleanup memory: autoassociation in spiking neurons,"
Cognitive Systems Research, vol. 12, no. 2, pp. 84-92, Jun.
2011, ISSN: 13890417.

[13] S. Furber and S. Temple, "Neural systems engineering," lour­
nal of The Royal Society Interface, vol. 4, no. 13, pp. 193-206,
2007, ISSN: 1742-5689.

[14] T. Beko1ay, 1. Bergstra, E. Hunsberger, et ai., "Nengo: A
Python tool for building large-scale functional brain models,"
Frontiers in Neuroinformatics, vol. 7, no. 48, 2014, ISSN:
1662-5196.

[15] T. C. Stewart, X. Choo, and C. E1iasmith, "Dynamic behaviour
of a spiking model of action selection in the basal ganglia," in
Proceedings of the 10th international conference on cognitive
modeling, 2010, pp. 235-40.

[16] F. Galluppi, S. Davies, S. Furber, T. Stewart, and C. Eliasmith,
"Real time on-chip implementation of dynamical systems with
spiking neurons," in Neural Networks (IJCNN). The 2012
International loint Conference on, 2012, pp. 1-8.

[17] E. Stromatias, F. Galluppi, C. Patterson, and S. Furber, "Power
analysis of large-scale, real-time neural networks on spin­
naker," in Neural Networks (IJCNN). The 2013 International
loint Conference on, 20l3, pp. 1-8.

[18] D. F. M. Goodman and R. Brette, "The Brian simulator,"
Frontiers in Neuroscience, vol. 3, no. 26, 2009, ISSN: 1662-
453X.

[19] N. T. Carnevale and M. L. Hines, The NEURON book. Cam­
bridge University Press, 2006.

[20] M.-O. Gewa1tig and M. Diesmann, "Nest (neural simulation
tool)," Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[21] G. Wang, "Power analysis and optimizations for gpu archi­
tecture using a power simulator," ICACTE 2010 - 2010 3rd
International Conference on Advanced Computer Theory and
Engineering. Proceedings, vol. 1, pp. 619-623, 2010, ISSN:
2154-749l.

[22] P. Lichtsteiner, C. Posch, and T. Delbruck, "A 128 times 128
120 db 15us latency asynchronous temporal contrast vision
sensor," Solid-State Circuits. IEEE lournal of, vol. 43, no. 2,
pp. 566-576, 2008, ISSN: 0018-9200.

[23] V. Chan, S.-c. Liu, and A. van Schaik, "Aer ear: A matched
silicon cochlea pair with address event representation inter­
face," Circuits and Systems 1: Regular Papers. IEEE Transac­
tions on, vol. 54, no. 1, pp. 48-59, 2007, ISSN: 1549-8328.

[24] A. Russell Voelker, E. Crawford, and C. Eliasmith, "Learning
large-scale heteroassociative memories in spiking neurons," in
Unconventional Computation & Natural Computation, Lon­
don, Ontario, 2014.

