
Biologically Inspired SLAM

Brent Komer1

Abstract— This report demonstrates an extension to the
RatSLAM algorithm that uses a spiking neural network. This
is a replacement of the pose cell network in RatSLAM with a
more biologically plausible one that performs path integration
and receives visual input to correct for errors. The network is
constructed using Nengo and the neuron model used facilitates
comparisons between the artificial system and real neural
recordings from animals. Three different network architectures
are explored and simulations are performed using the iRat 2011
dataset. The final system is successfully run on the SpiNNaker
neuromorphic hardware platform and is able to produce a map
of the environment that is similar quality to one produced by
the original RatSLAM algorithm.

I. INTRODUCTION

This report presents a SLAM system that runs using
a spiking neural network. This system is built upon the
RatSLAM algorithm [1] and only uses sensors that are
available to animals (vision and proprioception).

A. Motivation

The primary motivation for this work is an interest in
how humans and other animals perform SLAM. Humans are
much better than robots at understanding their environment
in most situations, so learning more about how the brain
works could lead to advances in robotics. A first step is to
build a system that mimics the ways a brain could perform
the SLAM task. From there it is possible to refine the system
when new neural data is discovered as well as track the
progress on benchmark robotics tasks as more neural detail
is added. A spiking neural network is an ideal architecture
because it facilitates comparisons of the artificial system to
real neural systems. Properties of the artificial neurons can
be modeled after real neurons in the brain area interest (firing
rate, connectivity, synaptic time constants, etc).

The brain is also very energy efficient and only uses about
20W of power. Employing the kinds of computations and
heuristics that the brain uses could produce algorithms for
robotic control that are computationally efficient and can be
carried out in real-time.

The two goals that this project strives towards simul-
taneously are improvements to models of the brain and
improvements to robotics.

B. Applications

One of the main applications for this work is a tool for
understanding the mechanisms involved in spatial representa-
tion and navigation in animals. Since the system is designed

1Brent Komer is with the Computational Neuroscience Research Group,
Department of Systems Design Engineering, University of Waterloo, N2L
3G1, Canada bjkomer@uwaterloo.ca

using a spiking neural network, spike recordings obtained in
the artificial system can be compared to what neuroscientists
record in a real animal, creating a model that researchers can
use to make predictions about various cognitive functions or
behavioural experiments. The model can be tuned to match
experimental animal recordings and then subsequently used
in traditional SLAM tasks.

Another advantage of using a spiking neuron architecture
is that the system can be integrated into other existing
spiking neural architectures. For example, the Spaun [2]
model could be enhanced to include spatial tasks in addition
to the cognitive tasks it already performs.

The spiking neural architecture also allows the system
to be run on neuromorphic hardware. This is specialized
hardware designed to run these kinds of neural networks very
efficiently and quickly. There are many different architectures
currently being developed, with some of the more popular
ones being SpiNNaker [3], TrueNorth [4], and Neurogrid
[5]. The properties that all of these hardware platforms
have in common is low power consumption, highly parallel
processing, and guaranteed real-time performance (if the
model is able to be loaded onto the system). In particular
the low power consumption and real-time performance are
very useful for robotic applications.

C. Related Work

This project is a direct extension of RatSLAM [1]. The
original RatSLAM algorithm is inspired by the brain but is
not implemented with a neural network or any constraints
based on the properties of neurons. The authors more re-
cently released an open source and modular version of the
algorithm with the hopes that other researchers will be able
to build upon it and incorporate more biologically realistic
modules [6].

A controlled attractor model of path integration using
spiking neurons is described in [7]. Due to the level of detail
provided by the neuron model used, this work produced
predictions of the neural firing patterns of grid cells [8] and
the relationship between head direction and place cells which
was later confirmed experimentally [9].

The first use of a spiking neural network with neuromor-
phic hardware for a spatial task is [10]. This is a proof-of-
concept for using biologically plausible hippocampal models
on a robot. A set of ring oscillators of different frequencies
is used to encode position in space. This robot operates in a
simple environment with only two predetermined places that
it knows about and does not use a visual system or produce
a map.



Fig. 1: Place Cell

The gray lines indicate the trajectory of a rat throughout a square environ-
ment. Red dots indicate locations where a particular place cell was active.
Figure from [13]

Fig. 2: Grid Cell

The gray lines indicate the trajectory of a rat throughout a square environ-
ment. Red dots indicate locations where a particular grid cell was active.
Figure from [13]

II. BACKGROUND

A. The Brain

The area of the brain that is widely considered to play
a major role in spatial navigation is the hippocampus [11].
Neurons have been observed in this area that are tuned to
specific areas of space or landmarks. A ‘place cell’ is a
type of neuron that fires strongly when the animal is located
within a particular region of space, called the ‘place field’
of the cell, and does not fire when the animal is outside this
region [12]. The place fields of every cell is different and
can differ in size, with boundaries between the place fields
typically occurring with visual changes to the environment
(such as entering a new room or turning a corner in a
passageway). Often each cell has only one particular place
in the environment for which it responds, but for some
larger environments one cell could respond to more than one
distinct place. An example of the firing pattern of this type
of cell is shown in Figure 1.

Another important type of cells that are found in a nearby
region are ‘grid cells’ [14]. These cells fire at regular spatial
intervals as an animal moves throughout its environment.
When plotting the firing of a particular cell as a function
of location, a clear grid pattern emerges, as can be seen in
Figure 2. This grid exists at different spatial scales and phases
for different grid cells and is thought to play an important
role in path integration. From using just the recorded spike
data it is possible to reconstruct the trajectory of the animal.

Fig. 3: Boundary Vector Cell

Response of a boundary vector cell (also called a border cell) in a rat while
traversing a square environment with a wall in the middle. The figure on
the right shows the trajectory in black, and locations where the particular
cell was active as green squares. The figure on the left is a heat map of that
activity. Figure from [16]

A third type of cell related to spatial processing are
‘boundary vector cells’ [15]. These cells fire when the animal
is at a particular distance and direction from a wall or other
obstacle. An example of the firing pattern for this type of
cell is shown in Figure 3.

Most neural recordings of the hippocampus are gathered
from rodents, but it is hypothesized that similar functionality
exists in humans and other mammals.

B. RatSLAM

RatSLAM is a SLAM algorithm inspired by the rat
hippocampus [1]. The key idea behind this algorithm is
using a competitive attractor network to combine odometry
information (analogous to grid cells) and landmark sensing
(analogous to place cells) to form a representation of the
environment. Keeping in line with the senses that are avail-
able to animals, this algorithm only requires vision as input
and can run with a low quality monocular camera. Odometry
inputs can optionally be provided to the algorithm (analogous
to proprioception in animals) but an odometry signal is
estimated from vision if not present. There are four main
modules in this algorithm, and they are each implemented
as their own ROS node in the OpenRatSLAM project [6]. A
diagram of the interaction between these modules is depicted
in Figure 4.

The Experience Map contains the representation for the
map created by the RatSLAM system. It contains nodes
covering a discretized space that the robot has been to, and
edges connecting the nodes forming paths.

The Posecell Network is the attractor network that rep-
resents the belief about the current pose. It is a three
dimensional network of cells with indices representing the
x, y, and θ (heading) state variables. The connectivity of the
network is such that it wraps around at the ends, forming a
3D toriod structure. Each cell in the network is connected
to itself and its neighbours with a strength depending on the
distance. The profile of the connection strength is defined
by a difference of Gaussians (Mexican hat) function. Cells
close by have a large positive connection strength, cells a
little further away have a negative connection strength, and
cells even further away have a connection strength decaying
to zero. A velocity signal shifts these connection weightings
to produce an off-center difference of Gaussians, causing the



Fig. 4: RatSLAM Modules

Graphical depiction of the RatSLAM modules and connections between
them. Figure taken from [6]

location of the primary bump of activity to move. Each node
in the Experience Map is associated to the cell in the Posecell
Network that had the highest activity when that node was
created.

Computation in the Posecell Network is carried out in six
sequential stages. The first is local excitation, where energy
is added around each pose cell using a Gaussian kernel. This
is followed by local inhibition, where energy is subtracted
from around each pose cell using a different Gaussian kernel.
The next stage is global inhibition, where an equal amount
of energy is removed from all pose cells and any cell that
goes below zero is set to zero. The system is then normalized
so that the sum of all energy in the system is one (to ensure
stability). Next the odometry information is used for path
integration, shifting the energy in the system. Finally the
centroid of the dominant activity packet is found and is
used in conjunction with the Local View Cell information
to determine how to update the Experience Map.

The Local View Cells contain representations of land-
marks and are associated to both locations in the Posecell
Network and nodes on the Experience Map. Whenever a
visual input that is sufficiently different from any other view
cell occurs, a new cell is created. The cell itself stores a
downsampled grayscale version of the image which is used
for comparing the similarity. The matching threshold and
amount to downsample are tunable parameters. When a vi-
sual input that matches a previous view cell occurs, energy is
injected into the Posecell Network at the locations associated
to that view cell. Connection strength between view cells and
pose cells is strengthened by Hebbian learning. Details on
how this mechanism works is described in [1].

Visual Odometry is the optional node that estimates trans-
lational and rotational velocity from a series of images.

C. Neural Simulation

The Neural Engineering Framework (NEF)[17] provides a
means of representing arbitrary vectors using the properties
of neurons as a basis. This is done through a nonlinear
encoding mechanism carried out by the tuning curves of the
neurons, and a weighted linear decoding of the responses of
the neurons to retrieve an approximation of the vector being
encoded. Tuning curves are a characterization of the response

Fig. 5: Tuning Curves

Example set of tuning curves for an ensemble of neurons. Each line
represents the response properties of a particular neuron (firing rate) to
the state variable X . Each neuron has a preferred direction in which it fires
maximally. In the 1D case this is either +1 or -1, but in general the preferred
direction can be any vector along a unit hypersphere. The maximum firing
rates of the neurons exist within some distribution, which in this case is
set to be uniform between 100 and 200 spikes per second. Figure produced
using Nengo. [21]

of a group of neurons to some stimuli. A visualization of
tuning curves for a group of neurons for a one dimensional
input is shown in Figure 5. A transformation can be ap-
plied to the underlying representation by specifying different
weights on the linear decoding. Any computable function
can be approximated through a transform, and the degree
of accuracy of the decoding is dependent on the number
of neurons used and the complexity of the function. The
neurons themselves are a part of a dynamical system where
timing effects and filters across connections play a role in
the behaviour of the system. For more detail on the NEF,
see [18], [19], [20].

An implementation of the NEF is carried out by the
software package Nengo [21]. Nengo is written in Python
and contains many tools for building biologically plausible
neural networks. The type of neuron model used is flexible
and different neuron types can be used in different parts
of the same network, but the most common type in Nengo
models is the Leaky Integrate and Fire (LIF) neuron [22].
This is a spiking neuron model that is fast to compute while
still providing a reasonable functional approximation of a
real neuron.

In Nengo, groups of neurons that represent a particular
state variable are called an ensemble. The main parameters
to an ensemble are the number of neurons and the dimen-
sionality of the state being represented. Connections can be
defined from one ensemble to another or recurrently from
an ensemble back to itself. A transformation matrix or a
function to approximate can be passed to the connection.
This matrix or function is typically defined in the state space
of the vector being represented by the neurons, rather than
the neuron state space. Since the decoding is linear, a least
squares optimization is carried out by Nengo to determine the
optimal decoding weights for the connection to approximate
the desired function. These weights can also be learned over



Fig. 6: RatSLAM Node and Message Structure

Organization of ROS nodes and messages in the OpenRatSLAM system.
Figure from [6]

time by setting up a learning rule from an error signal in the
network. Connections to and from individual neurons within
an ensemble can also be specified.

Nodes can be defined that allow the neural network to
interface with external inputs or outputs. A ROS node can
be defined within a Nengo node to allow the network to
communicate with other ROS components.

The script developed using Nengo provides a high level
description of the network, which can then be compiled
to run on a particular backend, depending on the applica-
tion. The three most common supported backends are CPU
(NumPy), GPU (OpenCL), and SpiNNaker.

III. SPIKING NEURAL NETWORK
The component of the RatSLAM algorithm that is most

analogous to function in the brain is the Posecell Network.
Since OpenRatSLAM uses ROS it is possible to replace the
Posecell Network with a spiking neural network model and
still interface with the rest of the system. A diagram of the
node and message structure of RatSLAM is shown in Figure
6. The various network configurations that were tried are
described in the following sections.

A. Gaussian Weighted Connections

The first approach is the closest to a direct translation
of the RatSLAM code to a spiking neural network. Here a
small 1D ensemble of neurons is defined for each cell in
the 3D pose cell network. Each of these cells is connected
to its neighbours with the connection strength defined by
a difference of Gaussians function. The velocity signal
influences these weightings to produce an offset difference of
Gaussians, with the offset proportional to the velocity vector.
The evolution of the state of this network can be thought
of as convolving the network activity with a difference of
Gaussians kernel at every time step, with the mean of the
Gaussians determined by the current velocity. Normalization
of the activity of the network is also required to prevent
the system from becoming unstable. A diagram of the
connectivity of the network is shown in 7.

Fig. 7: Gaussian Weighted Connections Network Diagram

Visualization of the Nengo network structure for a 5x5x1 pose cell grid
with Gaussian weighted connections. The size of the pose cell network
in OpenRatSLAM for this task is 11x11x36 but a network of that size
is difficult to display. The position ensemble computes the indices of the
maximally active pose cell ensemble, and the injector node is used to inject
energy into the system based on the view cells. Not shown here, but an
additional ensemble is needed to compute the normalization of the network
as well as a method for updating the connection weights based on the
velocity signals.

B. Function Space Representation

The second approach defines the state as a Gaussian
function centered on the location of the pose cell with
maximum activity. The variance of the Gaussian along each
axis represents the uncertainty of that pose estimate for
each state variable. Instead of using neurons to represent the
activation of individual pose cells, the neurons collectively
represent the function space itself. This is done by defining
a set of Gaussian bases to cover the space and the neural
activity will represent the coefficients on those bases. In
order to prevent discontinuities at points in the space where
the representation wraps around, the basis functions used are
periodic Gaussians, with the period in a particular dimension
equal to the length of the pose cell network in that dimension.

One of the difficulties of this approach is choosing an
appropriate number of bases to use. A large number of bases
increases the computation time required to build and simulate
the network as well as increases the number of neurons
required to approximate the coefficients on those bases ef-
fectively, which in turn also slows down the simulation. Too
few bases means that parts of the space are not adequately
represented, leading to degradation of performance when the
state enters those regions. As the dimensionality of the state
increases, an exponentially many more bases are required to
cover the space with the same degree of accuracy.

There is evidence in the brain that the signals that represent
head direction come from a different area than the signals
representing position in space [23]. Keeping in line with
this distinction and in contrast to the original RatSLAM
system, one ensemble of neurons is used to represent θ and a
separate ensemble represents both x and y. Splitting the state
representation in this manner allows less basis functions to
be required and reduces the computation time. The bases
themselves are randomly chosen from a uniform distribution



Fig. 8: Function Space Network Diagram

Diagram of the function space network in Nengo. Nodes are depicted as
boxes, and ensembles as groups of circles. The posecell node handles
communication to and from the other ROS nodes. The posecells xy ensemble
contains the neurons representing the 2D Gaussian bases for the x-y location,
with the decoded representation displayed on the image on the right. The
posecells th ensemble contains the neurons representing the 1D Gaussian
bases for θ , with the decoded representation displayed on the plot in the top
right. Each of the max ensembles represents the maximally active position
for each state variable (mean of the Gaussian). The stim ensembles are used
to inject energy into the system based on the view cells, and the velocity
input ensemble contains the current translational and rotational velocity.
The other nodes are utilities for managing and plotting the function space
representation.

covering the space.
The effect of the velocity input on the basis coefficients

is nonlinear so in order for the neurons to approximate this
relationship the velocity information must be present in the
same ensemble as the bases. For example, if 50 bases are
used to represent the x and y position then the resulting neural
ensemble will be 52 dimensional. The first 50 dimensions
correspond to the coefficients on each 2D periodic Gaussian
basis function, and the last two dimensions correspond to the
x and y velocity. The recurrent connection from the ensemble
back onto itself is defined in such a way that the mean of the
Gaussian reconstructed from the bases will move over time
proportional to the velocity. A visualization of the Nengo
network along with some plots during a simulation is shown
in Figure 8.

C. Cyclic Integrator

The third approach uses neural integrators to store the
state variables. A neural integrator is is an ensemble of
neurons that computes the integral of its input signal. This
is achieved by creating a recurrent connection from the
ensemble back onto itself and weighting the input connection
to the ensemble with a value equivalent to the synaptic time
constant of the neurons. This allows the ensemble to maintain
a stable representation of a value over time (memory) and
any external input from other neurons is integrated into this
memory. Since individual spiking neurons have a maximum

firing rate, the magnitude of the value being represented by
the neurons is limited (based on the number of neurons and
the desired accuracy of the represented value). There will
be a point where in order to represent a value on one of the
extremes, each neuron is either firing maximally or not firing
at all and driving the system harder will not cause a change
in the neural activity (cannot fire less than zero and cannot
fire more than the maximum), meaning the represented value
will not become larger.

Luckily this saturation effect is not a limitation for the
RatSLAM system since the state being represented by the
pose cells wraps around at particular values, keeping it
bounded within a fixed region at all times. In order to
get this wrapping functionality, the recurrent connection of
the integrator can be modified to approximate the use of a
modulus operator. The problem with this approach is that
the sharp discontinuity at the point where the value wraps
around is difficult for neurons to approximate, leading to a
degradation of the signal in that region. One solution to this
is to redefine the value to be represented as a point on a
unit circle rather than a scalar. Integration can be achieved
by moving around the circle in a particular direction and
defining the state variable as the angle to that point which
can be decoded from this representation by using the arc-
tangent of the current x-y position. Using this underlying
representation, wrapping is smooth and spiking neurons can
do a good job of approximating this functionality with no
discontinuities.

To keep things simple, a separate integrator is defined
for each of the x, y, and θ state variables. The rotational
velocity is used as the input to the θ integrator. Another
ensemble of neurons takes as input the translational velocity
as well as the current heading angle decoded from the θ

integrator to produce signals for the x and y components of
the velocity to be fed into their respective integrators. There
are also additional connections to the integrators to account
for energy being injected into the system from the view cells.
These connections push the state of the integrators towards
the corresponding point on the circle with a magnitude
proportional to the energy being injected. A visualization of
the Nengo network structure along with some plots during a
simulation is shown in Figure 9.

IV. SIMULATIONS
A. Dataset

Simulations were completed using the iRat 2011 dataset,
which is a ROS bagfile recorded from a small rat-like robot
moving around in a constructed indoor environment [24].
Any dataset that provides images that can be sent as a ROS
message could be used, but this dataset in particular was
chosen because it was used with the OpenRatSLAM system,
allowing for direct comparison of performance to the spiking
neuron implementation. The scale of the motions recorded in
this dataset are also similar in magnitude to those a rat would
experience, meaning that any tuning of the parameters of the
algorithm to work on this dataset would also be helpful in
simulating rat data.



Fig. 9: Cyclic Integrator Network Diagram

Diagram of the cyclic integrator network in Nengo. The posecell node
handles communication to and from the other ROS nodes. Each of the
posecells ensembles is a cyclic integrator representing a particular state
variable. The decoded representations are shown in the middle set of plots.
The max ensembles represent the scalar state variable which is decoded
directly from the corresponding posecells ensemble. It is possible to remove
these ensembles and just connect the posecells ensembles to the posecell
node directly with the appropriate transform, but they are left in the model
for clarity. Note that the plots in the middle and bottom are produced by
the same neural activity, only the linear decoding weights are different. The
stim ensembles are used to inject energy into the system based on the view
cells, and the velocity input ensemble contains the current translational and
rotational velocity.

The dataset contains approximately 16 minutes of video
of the robot moving through the environment depicted in
Figure 10. Each image comes from a front facing camera on
the robot; an example image is shown in Figure 11.

B. implementation

Before making the pose cell network in Nengo, an imple-
mentation in pure Python is created and compared to the C++
version from OpenRatSLAM. This is used to ensure that no
changes to the results occur from using a Python interface to
ROS (for example, how the message queue is handled or the
speed of processing could potentially have an effect). There
is no significant difference in the maps produced, meaning
results obtained from the spiking network can be directly
compared to benchmarks done on the C++ system.

From here the Python implementation can be updated
to include a spiking neural network using Nengo. The
interface to ROS is abstracted away from the rest of the
network and contained within a single Nengo node. This
node accepts a 3 dimensional input (location of maximally

Fig. 10: iRat 2011 Environment Overhead View

The iRat robot is the white triangular object with the red
nose. It traverses the area along the dark blue paths.

Fig. 11: iRat 2011 Camera View

active pose cell in x, y, and θ ) and produces a 6 dimensional
output (translational velocity, rotational velocity, location to
inject energy in x, y, and θ and the amount of energy to
be injected). The ROS publishers and subscribers for the
pose cell network are wrapped within this Nengo node and
include the publisher for PoseCell/TopologicalAction (effect
on edges and nodes on the experience map), the subscriber
for LocalView/Template (information on the currently active
view cell), and the subscriber for /odom (linear and rotational
velocity). The rest of the Nengo network does not need to
know the implementation details of this node, it just needs to
connect its inputs and outputs to the node and all processing
on those signals to convert them to and from ROS messages
is handled within the node. The spikes coming into this
node are filtered to produce an estimate of the instantaneous
spike rate, which gives a less noisy approximation of the
represented value which is used in constructing the ROS
messages.

The Gaussian weighted connection method was extremely
slow to simulate and contained many biologically unreal-
istic properties (global normalization, instantaneous weight
changes) so it was not tested with the full RatSLAM system.

The function space approach was also quite slow, but a
still lot faster than the previous method worked well enough
that simulations could be performed. Initial simulations of
the network performed quite poorly, the final map is shown
in Figure 12a. One potential reason for this is the network
could not be run in real-time on a CPU (about 0.15x real-
time on average). This is true for most large spiking neural
network models as the computations to keep track of all of
the neural activity throughout the network at every time step
can be intensive for a sequential processor. The timing being



out of line with the rest of the RatSLAM system can cause
the performance to degrade, due to visual input and odometry
being associated to the wrong parts of the pose cell network.
One way to account for this is to play the ROS bag file at
a lower rate, to match the speed of the neural network. A
map produced using a playback rate of 0.15 is shown in
Figure 12b. The map seems slightly better, but still far from
perfect. One reason why changing the playback rate won’t
fix the problem is that the slowdown of the neural network is
not consistent. At some points it may be running at 0.2x real-
time, while at others it would be 0.1x real-time. The speed of
the network is dependent on the intensity of the calculations
it needs to do at a particular time step. Instances where
neurons are spiking more frequently cause the network to
run slower than periods of less spiking. Setting the playback
rate to be the slowest time will not work because the network
running faster than that rate will also cause issues because the
internal dynamics will be accelerated in comparison to the
rest of the system. Modifying the instantaneous playback rate
of the the bag files to match the current lag in the network is
not easy to do. The better alternative is to run the network on
the SpiNNaker system to guarantee real-time performance.
Unfortunately the network was not able to run on SpiNNaker
at this time. The code in Nengo that allows the construction
of networks to represent function spaces is very new, still
under development and not officially supported. This code
caused errors when being compiled to SpiNNaker. One of
the reasons why this code is slow in the first place could be
due to inefficiencies in the function space code. 8000 neurons
were used in this network when producing the plots, and
while using a lower number of neurons improved the speed,
the representation of the Gaussian activity became noticeably
worse.

The cyclic integrator method is able to run much faster
than the previous approach (about 0.5x real-time on average).
The map created with standard rosbag playback is shown
in Figure 12d. This map looks okay despite the time not
matching up. One possible reason is that 0.5x speed is still
fast enough to process the ROS messages coming in without
a backlog building up. The difference in speeds would mostly
affect the effective scaling of the velocity signal, and since
units in the pose cell network are arbitrary and cyclic, this
may not have a negative effect. To test this further, another
network is created with the same functionality but using a
larger number of neurons (7500 total). Increasing the number
of neurons will increase the accuracy of the simulation,
but more importantly for this test, decrease the speed. This
network ran at about the same speed as the function space
method and produced a bad map, as shown in Figure 12c.
The output of the 1500 neuron model with a playback rate
of 0.5 is shown in Figure 12e, and on SpiNNaker with full
playback speed in Figure 12f.

For comparison, the map created with the pure C++
OpenRatSLAM system is shown in Figure 12g and the map
created using only odometry information and no pose cell
network in Figure 12i. The use of a pose cell network shows
a clear improvement from odometry-only mapping as loop

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12: Experience Map Comparisons

Experience map created after one iteration through the dataset with different
posecell network implementations. a: function space network. b: function
space network with 0.15x playback rate. c: cyclic integrator network
with a large number of neurons d: cyclic integrator network. e: cyclic
integrator network with 0.5x playback rate. f: cyclic integrator network run
on SpiNNaker. g: unmodified OpenRatSLAM implementation. h: Python
posecell network without neurons. i: no posecell network, only odometry.

closures can be detected and path integration errors corrected.

V. CONCLUSIONS

A spiking neural network is able to be used as the pose
cell network in a RatSLAM system and produce reliable
mapping results. There is no noticeable advantage in terms of
accuracy in using spiking neurons over a traditional approach
(at least for the dataset chosen) but the advantage comes
from the ability to make connections to biological data as
well as integrate this algorithm into more advanced cognitive
systems that use spiking neurons.

The cyclic integrator spiking neural network architecture
performs the best out of the ones tested, in terms of both
speed and accuracy. The size of the model is small enough
that it can be loaded onto a single SpiNNaker board and run
in real-time to produce accurate maps.

The main representational limitation of this approach is
that it cannot represent and propagate beliefs of different
states simultaneously. The two previous methods had some
way of maintaining more than one bump of activity (anal-
ogous to a particle filter) at least for a small amount of
time before one takes over. This ability does not seem
to be important for this particular mapping task and the
computational savings of the neural integrator approach make
it more desirable. For mapping in environments where there



are many rooms that look identical this ability may be more
useful.

All of the code for this project is available on GitHub
(https://github.com/bjkomer/spiking-ratslam).

VI. FUTURE WORK

One interesting area of future work is adding a biologically
inspired visual system to the network. A new type of
camera has been developed modeled after the retina that
can asynchronously detect changes in pixel intensity with
high temporal resolution [25]. The asynchronous event driven
nature of this camera makes it a good fit to use with the
parallel computation that spiking neural networks provide.

A change that would be interesting to explore is combining
the cyclic integrators for the x and y position into one
neural ensemble that encodes x and y position together. This
will likely involve a representation that is a point on the
unit hypersphere with two possible axes of rotation for the
integration. Since the definition of x and y are arbitrary, this
combined representation may be able to better model the
kinds of computations that are going on in real brains. In
animal studies, grid cells are found to tile the horizontal
plane in a hexagonal structure, meaning an orthogonal prior
may not be ideal for a brain model.

Oscillations in neural activity have been observed in the
hippocampus and are thought to play a role in navigation
[26]. Incorporating oscillators into the model in a similar
manner as was used in [10] would be a worthwhile extension.

This RatSLAM system could be used with a robot that
is made to move around in an environment similar to the
ones used with rats in the grid cell experiments. The spikes
from the neurons in the artificial system can be recorded and
compared to those observed in a real rat to see what are the
similarities and differences as well as see if grid cell firing
patterns emerge in the artificial system.

Another possible extension is to add a component to the
algorithm that is analogous to Boundary Vector Cells. This
would allow the system to have a representation of obstacles
rather than just paths that have been previously explored.
This information could guide decisions for new areas to
explore.

Since this spiking neural network is developed using
Nengo it can be integrated with other spiking neural net-
works using the same software. This opens up interesting
opportunities to to add spatial representation capabilities to
a larger cognitive neural system and run the entire system in
real-time on neuromorphic hardware.

REFERENCES

[1] M. J. Milford, G. F. Wyeth, and D. Rasser, “Ratslam: a hippocampal
model for simultaneous localization and mapping,” in Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International
Conference on, vol. 1. IEEE, 2004, pp. 403–408.

[2] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf, Y. Tang,
and D. Rasmussen, “A large-scale model of the functioning brain,”
science, vol. 338, no. 6111, pp. 1202–1205, 2012.

[3] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, “Overview of the spinnaker system
architecture,” Computers, IEEE Transactions on, vol. 62, no. 12, pp.
2454–2467, 2013.

[4] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communica-
tion network and interface,” Science, vol. 345, no. 6197, pp. 668–673,
2014.

[5] B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chan-
drasekaran, J.-M. Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla,
and K. Boahen, “Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations,” Proceedings of the IEEE, vol. 102,
no. 5, pp. 699–716, 2014.

[6] D. Ball, S. Heath, J. Wiles, G. Wyeth, P. Corke, and M. Milford,
“Openratslam: an open source brain-based slam system,” Autonomous
Robots, vol. 34, no. 3, pp. 149–176, 2013.

[7] J. Conklin and C. Eliasmith, “A controlled attractor network model
of path integration in the rat,” Journal of computational neuroscience,
vol. 18, no. 2, pp. 183–203, 2005.

[8] E. A. Zilli, “Models of grid cell spatial firing published 2005–2011,”
Front. Neural Circuits, vol. 6, no. 16, pp. 10–3389, 2012.

[9] A. P. Maurer, A. W. Lester, S. N. Burke, J. J. Ferng, and C. A. Barnes,
“Back to the future: Preserved hippocampal network activity during
reverse ambulation,” The Journal of Neuroscience, vol. 34, no. 45, p.
15022, 2014.

[10] F. Galluppi, J. Conradt, T. Stewart, C. Eliasmith, T. Horiuchi, J. Tap-
son, B. Tripp, S. Furber, and R. Etienne-Cummings, “Live demo:
Spiking ratslam: Rat hippocampus cells in spiking neural hardware,”
in Biomedical Circuits and Systems Conference (BioCAS), 2012 IEEE.
IEEE, 2012, pp. 91–91.

[11] A. D. Ekstrom, M. J. Kahana, J. B. Caplan, T. A. Fields, E. A. Isham,
E. L. Newman, and I. Fried, “Cellular networks underlying human
spatial navigation,” Nature, vol. 425, no. 6954, pp. 184–188, 2003.

[12] J. O’Keefe and J. Dostrovsky, “The hippocampus as a spatial map.
preliminary evidence from unit activity in the freely-moving rat,” Brain
research, vol. 34, no. 1, pp. 171–175, 1971.

[13] D. Derdikman and E. I. Moser, “A manifold of spatial maps in the
brain,” Trends in cognitive sciences, vol. 14, no. 12, pp. 561–569,
2010.

[14] T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser,
“Microstructure of a spatial map in the entorhinal cortex,” Nature,
vol. 436, no. 7052, pp. 801–806, 2005.

[15] C. Lever, S. Burton, A. Jeewajee, J. O’Keefe, and N. Burgess, “Bound-
ary vector cells in the subiculum of the hippocampal formation,” The
journal of neuroscience, vol. 29, no. 31, pp. 9771–9777, 2009.

[16] T. Hartley, C. Lever, N. Burgess, and J. O’Keefe, “Space in the
brain: how the hippocampal formation supports spatial cognition,”
Phil. Trans. R. Soc. B, vol. 369, no. 1635, p. 20120510, 2014.

[17] C. Eliasmith and C. H. Anderson, Neural engineering: Computation,
representation, and dynamics in neurobiological systems. MIT press,
2004.

[18] C. Eliasmith, “How to build a brain: From function to implementa-
tion,” Synthese, vol. 159, no. 3, pp. 373–388, 2007.

[19] T. C. Stewart, T. Bekolay, and C. Eliasmith, “Neural representations of
compositional structures: Representing and manipulating vector spaces
with spiking neurons,” Connection Science, vol. 23, no. 2, pp. 145–
153, 2011.

[20] C. Eliasmith, How to build a brain: A neural architecture for biolog-
ical cognition. Oxford University Press, 2013.

[21] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart,
D. Rasmussen, X. Choo, A. R. Voelker, and C. Eliasmith, “Nengo: a
python tool for building large-scale functional brain models,” Frontiers
in neuroinformatics, vol. 7, 2013.

[22] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input,” Biological cybernetics, vol. 95, no. 1,
pp. 1–19, 2006.

[23] J. Ranck Jr, “Head-direction cells in the deep cell layers of dorsal
presubiculum in freely moving rats,” in Soc Neurosci Abstr, vol. 10,
no. 176.12, 1984.

[24] D. Ball, S. Heath, G. Wyeth, and J. Wiles, “irat: Intelligent rat animat
technology,” in Proceedings of the 2010 Australasian Conference on
Robotics and Automation, 2010, pp. 1–3.

[25] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128× 128 120 db 15
µs latency asynchronous temporal contrast vision sensor,” Solid-State
Circuits, IEEE Journal of, vol. 43, no. 2, pp. 566–576, 2008.

[26] M. E. Hasselmo, J. Hay, M. Ilyn, and A. Gorchetchnikov, “Neuro-
modulation, theta rhythm and rat spatial navigation,” Neural Networks,
vol. 15, no. 4, pp. 689–707, 2002.


