Sentence processing in spiking neurons: A biologically plausible left-corner parser

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Xuan Choo (fchoo@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Center for Theoretical Neuroscience, University of Waterloo
Waterloo, ON, Canada N2L 3Gl

Abstract

A long-standing challenge in cognitive science is how
neurons could be capable of the flexible structured processing
that is the hallmark of cognition. We present a spiking neural
model that can be given an input sequence of words (a
sentence) and produces a structured tree-like representation
indicating the parts of speech it has identified and their
relations to each other. While this system is based on a
standard left-corner parser for constituency grammars, the
neural nature of the model leads to new capabilities not seen
in classical implementations. For example, the model
gracefully decays in performance as the sentence structure
gets larger. Unlike previous attempts at building neural
parsing systems, this model is highly robust to neural damage,
can be applied to any binary-constituency grammar, and
requires relatively few neurons (~150,000).

Keywords: Neural engineering framework; vector symbolic

architectures; left-corner parsing; syntax; binary trees;
computational neuroscience
Introduction

Human language processing requires not only the ability to
represent complex structures, but also the ability to create
these representations out of a serial sequence of words.
This system is flexible enough to work for a huge variety of
possible sentences, including (crucially), novel sentences.

Modern linguistics is founded on the principle that these
structured representations are tree-like, and that this tree
structure imposes useful order on the sentence. For
example, “the dog ran” can be parsed as follows:

S
—_— T
NP VP
—_— |
DT N \

th‘e dc‘;g raln
Here the sentence (S) is divided into a noun phrase (NP) and
a verb phrase (VP). The noun phrase is divided into a
determiner (DT) “the” and a noun (N) “dog”. The verb
phrase consists of a single verb (V) “ran”.

To describe the space of possible trees we define
constituency rules indicating how the parts can fit together.
For example, the above sentence is consistent with the
following constituency grammar rules:

S — [NP VP] DT - “the”
NP - [DT N] N - “dog”
VP - [V] V - “ran”
(Structural rules) (Vocabulary)

By adding more structural rules (on the left), we can build
more complex sentences. By adding more words (on the
right), we can increase our vocabulary.

Left-Corner Parsing

As more rules are included in the grammar, parsing
becomes more complicated. More rules mean more
possibilities, and finding a tree that is consistent with the
rules can become computationally expensive. For example,
there may be the two rules VP - [V] and VP - [V
NP], leading to an explosion of possible structures to search
through. Furthermore, a single word may have multiple
interpretations, suchas N - “dog” andV - “dog”.

The Left-Corner parsing algorithm addresses this problem
by combining bottom-up and top-down information. The
top-down information is what part of speech we are
currently looking for (a sentence, a noun phrase, a
determiner, etc.). The bottom-up information is the single
word we are currently processing. So, if we are currently
looking for a noun, we will first try interpreting the word
“dog” as a noun, rather than a verb. If this does not lead to
a successful parse, then the algorithm will backtrack to this
point and try the other option. This approach drastically
reduces the amount of backtracking needed.

For “the dog ran”, the algorithm proceeds as follows:

*  Top-down: look for S
* Bottom-up: see “the”
e Applyrule DT - “the”
* ApplyruleNP — [DT N]
*  Store the partially completed tree
o Top-down: look for N for previous rule
© Bottom-up: see “dog”
o ApplyruleN - “dog”
©  Merge with previously stored tree
* ApplyruleS - [NP VP]
*  Store the partially completed tree
o  Top-down: look for VP for previous rule
© Bottom-up: see “ran”
o Applyrulev - “ran”
°© ApplyrulevP - [V]
©  Merge with previously stored tree

As has been pointed out (e.g. Johnson-Laird, 1983), this
algorithm matches well with observed human sentence
comprehension. For example, it has difficulty with “garden-
path” sentences such as the classic “the horse raced past the
barn fell”, which is difficult for most people to interpret
even though it has a similar form as the easier sentence “the
deer shot by the hunter fell”. A left-corner parser has the
same tendency as people do to connect the ambiguous word
“raced” as partofa s — [NP VP] rule.

1533



Previous Models

Cognitive models of left-corner parsing already exist. For
example, Lewis and Vasishth (2005) present an
implementation using the ACT-R cognitive architecture. In
that work, a set of IF-THEN production rules (for selecting
grammar rules to apply) are combined with a declarative
memory system (for storing the partially completed parts of
the tree). The result is a computational model that shows
how existing cognitive modules (for which there is strong
prior evidence they exist in the human brain) can be re-
purposed to perform left-corner parsing. The model's
reaction times and error patterns match well to human
subjects. However, this work does not offer a neural
explanation of how those particular modules and structures
could be physically instantiated within the human brain.
Indeed, the question of how language could be represented
and manipulated by interacting neurons is a long-standing
question in cognitive science (e.g. Jackendoff, 2002).

For a neural explanation of this process, van der Velde
and de Kamps (2006) offer their Neural Blackboard
Architecture. Here, a set of specific neural groups can
temporarily come to represent different nouns, verbs,
adjectives, and so on. This makes it possible to represent
structured information such as sentences. While we have
previously argued (Stewart & Eliasmith, 2012) that the
neural structures proposed by this approach are inefficient
and do not correspond to those seen in real brains, the core
difference here is that they have only shown how specific
cases of sentence patterns might be parsed, rather than
presenting a general method for parsing arbitrary
compositional grammar rules, as is attempted here.

Finally, we previously presented a system for parsing
highly specific sentence patterns, but using a biologically
realistic neural model (Stewart & Eliasmith, 2013). These
parsed commands, such as “write two” or “if see eight write
three”, could be successfully interpreted as commands and
used to guide action (Choo & Eliasmith, 2013). However,
as with the work by van der Velde and de Kamps, this
model was restricted to parsing highly specific grammatical
forms. The purpose of this paper is to generalize to
significantly more complex grammars and to connect this
neural work to the grammatical structures seen in
established linguistic theory.

The Semantic Pointer Architecture

The core contribution of this paper is an implementation of
general-purpose left-corner parsing within a biologically
realistic cognitive architecture. For that purpose, we use our
Semantic Pointer Architecture (Eliasmith, 2013), which has
been previously used to build Spaun, the first large-scale
brain simulation capable of performing multiple tasks
(Eliasmith et al., 2012). In the SPA, all parts of the model
can be implemented using biologically realistic simulated
spiking neurons. For this paper, we use the standard Leaky
Integrate-and-Fire (LIF) neuron model. Each module in the
SPA corresponds to a particular brain area, and the synaptic
connections are optimized to compute some function.

For example, a common cortical module is a buffer. This is
a group of neurons whose purpose is to store a value over
time. We formalize this by expressing it as a differential
equation as follows: the value to be represented is x, and
there is some input to the group of neurons u. If we want a
group of neurons that can store x over time, then we want x
to not change at all when u is zero. In other words, if there
is no input, do not change the value, and if there is an input,

change the stored value by that much. Mathematically, this

can be written as %:u .

The reason to express this as a differential equation is that
any differential equation can be approximated by a group of
spiking neurons using the Neural Engineering Framework
(NEF; Eliasmith & Anderson, 2003). We do this by
randomly generating a tuning curve (the neural activity for a
given x value) for each neuron, consistent with observed
firing patterns from that cortical area. For example, one
neuron may fire at 1Hz for x = -0.5, but fire at 10Hz for
x=1.0. These tuning curves are randomly generated with a
distribution of firing patterns consistent with empirical data.
The NEF lets us do local optimization to find the optimal
synaptic connections between two groups of neurons so as
to achieve the empirically identified tuning curves.

That is, if one group of neurons have a set of tuning
curves dependent on x, while another group of neurons need
tuning curves based on y, then we can find a set of
connection weights from x to y such that the neurons
approximate the computation y=f(x). When recurrent
connections are introduced, the NEF allows for the
approximation of any function % =f(x,u). Importantly, the

accuracy of this approximation is dependent on the number
of neurons and the complexity of the function (roughly, how
non-linear it is).

Since x can be a vector, the NEF allows for the
implementation of neural models that manipulate vectors in
desired ways. However, for a parsing system, we need to
manipulate symbolic structured information using vectors.

For this, we turn to Vector Symbolic Architectures
(VSAs; Gayler, 2003). These are a set of algorithms where
both symbols and symbol structures can be expressed as
high-dimensional vectors. For example, we might have one
1000-dimensional vector that means “dog”, and another
that means N (noun), and even another that means “the”.
These vectors can be randomly chosen (as they are here), or
they can be chosen such that similar terms (“dog” and
“wolf”, for example) could have similar vectors.

We now need a way to combine these vectors. We could,
for example, simply add them together to produce a new
vector. However, this would result in lost information;
dogs+chase+cats would be the same as cats+tchase+dogs.
Instead, VSAs introduce a binding operation. Different
VSAs choose different binding operators, and for our work
we chose circular convolution (Plate, 2003), written as ®, as
it can be efficiently implemented with the NEF. We can
now encode the sentence “dogs chase cats” as
S=dogs®subject+chase®verb+cats®object. Importantly,

1534



VSAs also define an inverse operation: given S we can
determine the subject of the sentence by computing
S@subject™, which is approximately “dog”.

Here, we extend this approach to full parse trees. For
example, “the dog ran” is represented as follows:

S
Nﬁp S = the®DTONP.,®S;,
DTI'/‘__T\I \|{ + dog@®N@®NP:®S,,
| | | + ran®Ve®VP® Sy
the dog ran

This computes a single vector S which stores that particular
tree. The terms “the”, “dog”, and “ran” are randomly
chosen vectors for each of those words. The terms DT, N,
NP;, S, and so on are also randomly chosen vectors. These
are used to indicate the structure of the tree. Note that there
are different vectors for taking the left or right branch of the
tree (the R or L subscript). This is so that the vector for the
nonsensical “ran the dog” will be different than the vector
for this tree (S, and Sy would be swapped). A similar
approach could be used for more than just binary (left or
right) branching, but only binary rules are considered here.

Given the vector S, we can determine the verb, for
example, by computing S®(VO®VP®S:) *. A parse is only
considered accurate if this vector is closer to “ran” than to
any other word in its vocabulary. For this paper, vocabulary
sizes are set at 10,000 other randomly chosen vectors.

The Semantic Pointer Architecture uses vectors as a
generic method for passing information between cortical
modules. For example, buffers can store information,
sensory areas can turn stimuli into the appropriate vector,
and motor areas take vectors describing the desired action
and convert them into muscle movements (see Eliasmith,
2013 for more details). However, it also needs a method for
controlling the flow of information between these neural
modules. We achieve this via a model of the cortex-basal
ganglia-thalamus loop (Stewart, Choo, & Eliasmith, 2010).
This acts as an action selection and action execution system.
Neural connections from the rest of the brain into the basal
ganglia compute the utility of each of the possible actions
that could be taken. The basal ganglia determine which of
those utility values is largest, and pass that information to
the thalamus. In the thalamus, neurons for every action
except for the one that is chosen are suppressed.

To build a model with the SPA, we thus define a set of
actions that can be performed. For each action i, we define
its effects E; (what vectors should be sent from one cortical
area to another) and its utility U; (a function that should give
a value near 1 when this action should be performed and
smaller values otherwise). For example, the following rule
would send the output from a memory module to the input
to a speech module whenever the vision module sees a dog:

Us: vision® dog (this will be large when vision=dog)
Ei: speech «<— memory
These rules are efficiently implemented via the NEF,

requiring ~300 basal ganglia neurons per rule (Stewart,
Choo, & Eliasmith, 2010).

The Model: Left-Corner Parsing in SPA

To develop a neurally plausible implementation of left-
corner parsing within the Semantic Pointer Architecture, we
need to define cortical modules, their functions, and the
basal ganglia/thalamus rules that coordinate the flow of
information between these modules.

For cortical modules, we only need one basic component:
a buffer capable of storing a semantic pointer. This is a
module that stores a single high-dimensional vector (for this
model, 1000 dimensions is sufficient) over time. We need
three of these: one to store the tree being built (free), one to
store the current top-down goal (goal; what part of speech
we are looking for), and one to store the partially completed
trees (partial). Note that the neural modules needed to
visually recognize words, or to move visual attention from
one word to the next, are not considered here (see Tang &
Eliasmith, 2010 and Bobier, Stewart & Eliasmith, 2011 for
potential modules).

Since these buffers store vectors, we can use the approach
of Vector Symbolic Architectures to store a tree within
them. We assume words are presented sequentially, and that
their vectors are stored in the buffer called tree.

We now need rules for the basal ganglia and thalamus
system that cause the model to implement the parsing
algorithm. We start with simple rules of the form X — [Y].
For each of these, we need a system that says if we're
currently parsing a ¥, we should build a tree that consists of
an X connected to a Y. In terms of vectors, this means
building a new vector that is X + tree®X. For example, if
the tree buffer contains ran and we have a rule V — ran,
we want to compute V + ran®V and store that in the tree
buffer. This can be written in SPA form as follows:

Ui: treee Y
Ei: tree «— X + tree®X

Note that the utility of this rule is the dot product of
whatever is in the tree buffer and the Y part of the rule, so it
will only be active when the tree looks like Y.

To see how this helps to build up the desired tree,
consider what happens if there is another similar rule
implementing VP — [V]. Once the first rule is active, the
tree buffer will contain V + ran®V. This will cause the
rule for VP — [V] to have a high utility (since its utility is
tree*V). The effect of the rule is tree «— VP + tree®VP, so
the result will be VP + (V + ran®V) ®VP. This vector is
highly similar to ran®vV@®VP, which is part of what we
need for parsing the complete tree for “the dog ran”.

We also need to handle rules of the form X — [¥ Z],
which gives the branching capability to the tree. Here we
need to not only build up a tree, but we also need to set a
new top-down goal to find a Z. The utility is the same as in
the previous rule (we want the rule to be active when tree
contains a Y), but we also want to store the partially
completed tree and go on to processing the next word. An
initial version of this rule's effect would be:

1535



Ei: partial — X + tree®X,.
tree «— the next word
goal — Z

This rule would successfully store the partially completed
tree in the partial buffer, and then would go on to start
trying to parse the next word, trying to find a Z. However,
setting this new goal/ in this way would completely replace
the old value in goal. Indeed, setting the new partial tree
would completely erase any previous partial tree.

To deal with this, we use the vector to store a list of trees
(akin to a “stack”). This list can all be stored as a single
vector by combining with circular convolution.  For
example, if the goal currently contains the vector for S (a
sentence), but due to a rule like NP — [DT N] we now need
to look for an N (a noun), we can set the new goal to be
N+goal® STACK, where STACK is another random vector.
In this case, the goal will now be N+S®STACK. If we now
need to look for a V (a verb), we would compute
V+goal® STACK, giving V+H(N+S@®STACK)®STACK, or
VAN® STACK+S®STACK®STACK. Note that to remove
an item from the stack, we can compute goal®STACK™,
which would give us back an approximation of
N+S®STACK. This approximation will gradually become
worse as the number of items in the stack increases.

The resulting rule for X — [¥ Z] is as follows:

Ui treee Y

Ei: partial < X + tree® X, + partial® STACK
tree < the next word
goal «— Z + goal® STACK

Finally, we need a top-down rule to recognize when we
have found a part of speech we are looking for. When it
does so, we combine it with the partial tree on the stack,
remove it from the stack, and continue. For a rule of the
form X — [Y Z], we get:

Ui: (partial e X)(goal » tree)

Ei: tree « partial + Xz ®tree
goal — goal® STACK
partial < partial® STACK

So, if we are on the last word of “the dog ran”, the stored
value in partial will be close to the®DT@®NP. ®S, +
dog®N@®NP:®S; and the value in tree will get built up to
approximately ran®V@®VP, as indicated previously. The
goal will be VP. This means that the utility for this top-
down version of the S — [NP VP] rule will be high (since
partial* S will be large and goaletree will be large). The
resulting tree will be partial + Sz®tree, or approximately
the®DT@®NP,®S, + dog®N®NP:®S, + ran®Ve®vP®s,. This is
the desired vector for the correct parse of the tree.

This algorithm will work for arbitrary binary construction
grammar rules. However, it needs to be extended to deal
with multiple possible rules that could be applied at once
(ambiguous sentences), as is discussed below.

Parsing Results

This biologically plausible left-corner parsing algorithm is
capable of computing the vector-based tree representation of
a sentence, given a set of constituency grammar rules.
These rules are converted into connections between the
cortex, basal ganglia, and thalamus, as per the Semantic
Pointer Architecture. That neural structure is then capable
of parsing sentences consistent with those rules.

It must be remembered that implementing these rules
using semantic pointers results in an approximation of the
traditional symbolic parsing system. As the sentence
structure becomes arbitrarily complex, it will fail to produce
an accurate parse. However, the existing model succeeds
for sentences and rules sets such as “the dog chases the cat”.

VP - [V NP] NP — [DET N]
S - [VP] NP — [N]
S —» [NP VP]
S
—
NP VP
T — T —
DT N Y NP
I I I —
the dog chases D‘T N

|
the cat

To demonstrate more complex parsing, we add rules for
subordinate clauses. In previous work (Choo & Eliasmith,
2013) we had built neural models that could follow orders
of the form “if see square, press button”. Rather than using
the special-case neural parser we had built previously
(Stewart & FEliasmith, 2013), the parser presented here can
be extended by adding the following rules, where IN is a
subordinating conjunction (such as “if”), and SBAR is a
subordinating conjunctive phrase (“if see square”).

S — [SBAR VP] SBAR — [IN S]
S
SBAR VP
—_—
[
if VP write N
v NP two

|
see N
|

square

Importantly, this system can also parse more grammatically
complete sentences. Indeed, if we also add the following
rule for PRP (personal pronouns), then the system is able to
successfully parse “if you see a square, press the button”.

NP — [PRP]
S
——
SBAR VP
— —
IN S \% NP
i T T —— i ——
if NP VP press DT N
| | 1
PRP V NP the button
| I o

you see D‘T I\‘J

a square

1536



Parsing Accuracy

While the model is capable of parsing the previous
sentences, its capabilities are not perfect. Indeed, the
accuracy of the parsing is dependent on the accuracy of the
neural representation. This is a concrete example of the
competence vs. performance distinction: while the
underlying algorithm may be have the competence to parse
those sentences, the neural implementation may not match
that in terms of actual performance.

We can analyze this by determining the probability of
correctly parsing the sentence as we increase the amount of
noise. A word is considered to be correctly parsed if we can
extract it from the vector for the sentence, using the standard
approach to extracting in Vector Symbolic Architectures.
For example, for the “the dog ran” the ideal resulting vector
IS S = the®DT®NP.®S, + dog®N®NP®S, + ran®VOVP®S..
To determine if “the” was parsed correctly, we compute
s®(pTenp;®s;) . If this vector is closer to the vector for
the than to any other vector in the vocabulary of 10,000
words, then the parse is considered to be correct. Noise is
adjusted by adding random values to the stored tree, partial,
and goal vectors after every rule. Finally, if the algorithm
fails (i.e. no words can be extracted), then we retry it until it
succeeds. Figure 1 shows that performance gets much
worse with noise values of 0.15 or more, and that even
small values of noise require an average of 0.6 retries.

1.2

I parse probability
= # of retries o

1.0f

0.8}

0.6

0.4}

0.00 0.05 0.10 0.15 0.20 0.25
noise

Figure 1: The probability of successful parsing and the
number of retries needed as the random noise varies. 95%
confidence intervals are shown.

These results give us a lower bound on the accuracy of the
neural representation that is needed for the buffers. Since
the Neural Engineering Framework indicates that accuracy
is increased as more neurons are added, we can find how
many neurons are needed for each buffer to achieve this
level of accuracy. We do this by creating groups of neurons
with connection weights between them optimized via the

NEF to compute the function ‘(ll—jf = 0 (i.e. the value x that is

being stored should not change). The network is initialized
to contain a randomly chosen vector x, and the model is run
for 50 milliseconds. We have previously shown that 50
milliseconds is the average amount of time taken between
rule activation (Stewart, Choo, & Eliasmith, 2010).

=
=}

°o o o
~ o ©

o
[N]

noise in stored vector

0.0
1,000

10,000 20,000 50,000 100,000
neurons

2,000 5,000
Figure 2: Amount of representational noise for different
numbers of neurons. 95% confidence intervals are shown.

Figure 2 shows that 50 to 100 neurons are needed per
dimension to achieve noise levels around 0.15. Since
Figure 1 indicates that performance is much improved with
noise below 0.15, and since we are using vectors with 1000
dimension, we build our final model with 50,000 neurons
per buffer. The complete model has 3 buffers and 18 basal
ganglia/thalamus/cortex rules (300 neurons each), resulting
in a parsing system with 155,400 neurons. Importantly,
Figures 1 and 2 also show that the model exhibits graceful
degradation. If neurons are removed (or die), accuracy will
gradually decrease.

Using Parsed Commands

While the model presented thus far is capable of parsing
sentences, the real test is to be able to parse a sentence and
then make use of that information. In previous work (Choo
& Eliasmith, 2013), we presented a spiking neural model
that is capable of following instructions of the form “If
<condition>, <do action>". However, that model did not
perform the parsing itself. It relied on a special-case neural
parser that only worked on particular word patterns (Stewart
& Eliasmith, 2013). Since they both make use of the
Semantic Pointer Architecture, the general-purpose left-
corner parser presented here can be combined with the
instruction-following model.

In the instruction-following model, the instruction “if see
square, write two” was encoded as:

CONDITION® (SENSE®VISION + SENSE DATA®SQUARE)
+ ACTION® (MOTOR@WRITE + MOTOR_DATA®TWO)

With the parser presented here, we can directly use the
parsed sentence as a command to the instruction-following
model by making the following definitions:

CONDITION = S,

SENSE = V@®VP,@S@®SBARy
SENSE_DATA = N@®NP@®VP:®@S®SBARy
ACTION = Sy

MOTOR = V@®VP,

MOTOR_DATA = N@®NP®VPy

The result is a biologically plausible neural model where
we can feed in a set of commands as sentences, and the
model can parse those sentences, remember them, and apply

1537



them to incoming stimuli. For example, Figure 3 shows the
effect of a system configured to follow these instructions:
P1. If see square write 1
P2. If see circle write 2
P3. If hear one press buttonl
P4. If hear two press button2

The the visual and sensory inputs to the model change
(top four rows of Figure 3), the model successfully responds
as appropriate (bottom two rows). Of course, the model
presented here does not include all the details necessary to
actually perform the motor actions or the visual processing
necessary to complete these tasks. The purpose here is to
show that the model is capable of correctly selecting the
task to perform.

- TN
Vision SQUARE\ CIRCLE / SQUARE
Vision gt ¥

(Spikes) [ o
Auditory \
ONE
Auditory | R v G
(Spikes) ||/ s
Sensor

Verb SEE HEAR
Sensor
Noun SQUARE ONE CIRCLE SQUARE

Rule " o

Position W P3 W r]M 1
Action

Verb WRITE PRESS WRITE WRITE
Action y
Noun NUM1 BUTTON1 NUM2 NUM1
Motor WRITE*NUM1 PREMNI WRITE*NUM2 _ WRITE*NUM1
Motor | B G R i e o

(Spikes) | B R ¥ B i i ‘ 7 %
0.0 0.2 0.4 0.6 0.8 1.0 12 14 16

time (s)

Figure 3: The instruction-following model. Each row is a
different group of neurons. Labelled lines indicate the value
represented by this group of neurons is close to the indicated

vector. First the model is visually shown a SQUARE (top
row), and it responds correctly with the motor action of

WRITE®NUMI (“write the number 17; bottom row). It then
hears a ONE, is shown a CIRCLE, and a SQUARE again. The

correct motor response is given each time.

Conclusions and Future Directions

We have presented a basic version of left-corner syntactic
parsing that can be implemented in biologically realistic
spiking neurons. This makes use of the cortex-basal
ganglia-thalamus loop in the brain, and is compatible with
our ongoing development of large-scale neural models
capable of performing cognitive tasks. This shows how our
Semantic Pointer Architecture can be adapted to implement
cognitive algorithms, and that the resulting models can
accurately manipulate complex structured representations
like parse trees.

However, in order to truly model syntactic parsing, the
model needs to be able to deal with ambiguity. Right now,
if the parsing fails (due to it choosing the wrong rule to
apply when multiple rules could be applied at a given time),
we simply reset the model and re-run it, hoping it will
choose the correct action next time. We are instead
exploring methods to suppress recently applied rules, so as
to encourage the use of alternatives and greatly improve this
recovery process. We are also examining applying

reinforcement learning to situation, allowing it to learn to
adjust the utility values U, opening up the possibility of
context-sensitive parsing.

Other ongoing work is in improving the accuracy of the
system. In particular, it appears that the parse accuracy
(Figure 1) can be improved by increasing the dimensionality
of the vectors and at the same time decreasing the number of
neurons per dimension.

References

Ball, J. (2011). A Pseudo-Deterministic Model of Human
Language Processing. 33 Cog. Sci. Society Conference.
Bobier, B., Stewart, T.C., and Eliasmith, C. (2011). The
attentional routing circuit: receptive field modulation
through nonlinear dendritic interactions. Proceedings of

Cognitive and Systems Neuroscience.

Choo, X. and Eliasmith, C. (2013). General Instruction
Following in a Large-Scale Biologically Plausible Brain
Model. 35" Cog. Sci. Society Conference.

Eliasmith, C. (2013). How to build a brain. Oxford
University Press, New York, NY.
Eliasmith, C. and Anderson, C.

Engineering. Cambridge: MIT Press.

Eliasmith, C., Stewart, T.C., Choo, X., Bekolay, T.,
DeWolf, T., Tang, Y., and Rasmussen, D. (2012).. A
large-scale model of the functioning brain. Science,
338:1202-1205,.

Gayler, R. (2003). Vector Symbolic Architectures Answer
Jackendoff’s Challenges for Cognitive Neuroscience, in
Slezak, P. (ed). Int. Conference on Cognitive Science,
Sydney: University of New South Wales, 133—138.

Jackendoff, R. (2002). Foundations of language: Brain,
meaning, grammar, evolution. Oxford, UK.

Johnson-Laird, P. N. (1983). Mental models. Cambridge,
MA: Harvard University Press.

Lewis, R. L. and Vasishth, S. (2005). An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive Science, 29:375-419.

Plate, T. (2003). Holographic Reduced Representations,
CSLI Publications, Stanford, CA.

Stewart, T.C., Choo, X., and Eliasmith, C. (2010). Dynamic
Behaviour of a Spiking Model of Action Selection in the
Basal Ganglia. 10" Int. Conf. on Cognitive Modeling.

Stewart, T.C., and Eliasmith, C. (2012). Compositionality
and biologically plausible models. In Oxford Handbook
of Compositionality. Oxford University Press, 2012.

Tang, Y. and Eliasmith, C. (2010). Deep networks for
robust visual recognition. Proceedings of the
International Conference on Machine Learning,

Stewart, T.C. and Eliasmith, C.. (2013). Parsing sequentially
presented commands in a large-scale biologically realistic
brain model. In 35¢th Annual Conference of the Cognitive
Science Society, 3460-3467.

van der Velde, F. and de Kamps, M. (2006). Neural
blackboard architectures of combinatorial structures in
cognition. Behavioral and Brain Sciences, 29, 37-70

(2003). Neural

1538



