
Learning efficient dynamical systems in
recurrent spiking neural networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Recurrent neural networks (RNNs) are notoriously difficult to train and interpret.1

The paradigm of Reservoir Computing (RC) has managed to overcome some of2

these limitations by using randomly connected dynamical “reservoirs” of neurons.3

Despite the success of this approach, it is still difficult to interpret the representa-4

tions employed by the reservoir, or to incorporate prior knowledge into the reservoir5

to improve task performance. This ultimately leads to an inefficient use of neural6

resources. Here we show that the Neural Engineering Framework (NEF) provides7

a principled way of effectively optimizing the reservoir, by mapping desired dy-8

namics onto a latent representation within a factorable connection weight matrix.9

This enables us to train networks that outperform RC by over 4x on a delay line10

task, while reducing the cost of simulation by a factor of O(n). This new approach11

readily incorporates synaptic dynamics, and supports various rate-based and spik-12

ing neuron models on analog and digital neuromorphic hardware. We demonstrate13

the potential of this approach with comparisons to Echo State Networks (ESNs)14

and Liquid State Machines (LSMs), and provide practical examples relevant to15

dynamic neural information processing.16

1 Introduction17

One of the central challenges in neural information processing is understanding how dynamic stimuli18

can be processed by neural mechanisms to drive behaviour. Recurrent connections, adaptation, and19

synaptic responses are ubiquitous sources of dynamics throughout the mammalian brain that work in20

concert to support dynamic information processing.21

Recurrent neural networks (RNNs) employ nonlinear units that are interconnected to compute func-22

tions that combine their current input with the input history transmitted by the recurrent connections.23

While it is well known that RNNs can approximate any dynamical system arbitrarily well [10], they24

have encountered several limitations in practice. Chief among these is the difficulty of training RNNs25

at larger scales, due to the inherent challenge of globally optimizing the non-convex error function [2].26

To bypass this problem, Reservoir Computing (RC) has taken a specialized approach to training27

RNNs. The two major variants of RC networks are Echo State Networks (ESNs; 12) and Liquid28

State Machines (LSMs; 15), which differ mainly by their use of rate-based and spiking neurons,29

respectively. RC networks make a conceptual separation between a randomly connected recurrent30

reservoir and a supervised feed-forward readout. The reservoir essentially extracts nonlinear temporal31

features of its input signal (referred to as echoes), and the readout learns how to combine these features32

to approximate the desired target. Since the readout is typically a linear combination of the reservoir33

units, the optimal solution can be learned via least-squares approximation. In contrast, the reservoir34

remains untrained with dynamical properties that are fixed independently of the desired task [14].35

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

celiasmi
Typewritten Text
Copyright 2016 Aaron Voelker & Chris Eliasmith



While RC solves the issue of training RNNs, the problem of efficient scaling remains. Indeed, as36

noted by RC theorists, “just simply creating a reservoir at random is unsatisfactory” and “setting37

up the reservoir such that a good state expansion emerges is an ill-understood challenge in many38

respects” [14]. Nevertheless, the computational power of RC generally relies on having a sufficiently39

large reservoir in order to represent a superset of the required features, ultimately resulting in an40

inefficient use of the neural substrate for certain functions. This is problematic considering the41

simulation cost of conventional RC networks scale as O(n2), where n is the number of neurons, thus42

making large-scale simulations of the brain computationally prohibitive.43

The Neural Engineering Framework (NEF; 7, 8) offers a principled way forward by providing methods44

for mapping dynamical systems onto the latent representations of recurrently connected populations45

of neurons. This method of training the recurrent weights results in low-dimensional dynamics,46

which are commonly observed in biological systems [5], that can be readily understood using the47

mathematics of signal processing and control theory. The NEF has been used to implement various48

algorithms using rate-based and spiking neuron models on both analog [6, 4] and digital [11, 16]49

neuromorphic hardware.50

We begin with a review of the NEF, and generalize the theory to characterize the effect of the synaptic51

model on the dynamical state of the network. We then proceed by further extending this theory within52

the context of RC. This is used to build a network that computes delayed versions of its input as53

accurately as ESNs [13], with a factor O(n) speed-up in simulation time. The same network can then54

be made spiking, which significantly outperforms LSMs (over 4x in our experiments). We attribute55

these resource savings to having engineered prior knowledge of the desired low-dimensional function56

into the recurrent weight matrix.57

We argue that this novel approach retains the benefits of RC, while enabling us to understand the58

representations being used by the network, the computations they afford, and therefore the dynamical59

systems that can be accurately realized. We demonstrate the generation of a nonlinear trajectory and60

the computation of a nonlinear filter (i.e., the power spectrum) as applications of these methods.61

2 Structured recurrent neural networks62

2.1 Neural Engineering Framework63

The Neural Engineering Framework (NEF) is a set of three mathematical principles for describing64

neural computation [8], each of which is described below. The NEF is most commonly applied65

to building dynamic spiking neural networks, but also applies to non-spiking and feed-forward66

networks. Recently, the NEF has been used to build what remains the world’s largest functioning67

brain model [9], capable of performing perceptual, motor, and cognitive tasks. Here we give a brief68

overview of these methods applied to training both feed-forward and recurrent connection weights,69

and then extend this framework to account for synaptic dynamics and to incorporate ideas from RC.70

2.1.1 Principle 1 – Representation71

We use x(t) ∈ Rk to denote a continuous time-varying vector that is represented by a population of72

neurons. To describe this representation, we define a nonlinear (spiking or non-spiking) encoding and73

a linear decoding which together determine how neural activity relates to the represented vector.74

Specifically, we choose encoders E ∈ Rn,k, gains αi > 0, and biases βi as parameters for the75

encoding, which map x(t) to neural activities. These parameters can be chosen based on prior76

knowledge (e.g., tuning curves, firing rates, sparsity, etc.), or randomly. Most often, we select77

distributions from which to sample these parameters, incorporating known constraints on the system78

under consideration. For a spiking neuron, the encoding is:79

δxi (t) = Gi [αi 〈Ei,x(t′)〉+ βi : 0 ≤ t′ ≤ t] (1)

where δxi is the neural spike-train generated by the ith neuron and Gi[·] is the model for a single80

neuron (e.g., a leaky integrate-and-fire (LIF) neuron, a conductance neuron, etc.). We then analytically81

determine the firing rates of each neuron under constant inputs:82

ri(v) = Et≥0 [δxi ; x(t) = v] (2)

In the case of non-spiking neurons, we use its rate model in place of (2).83

2



In biological systems, any transfer of information between layers of a network are affected by a84

post-synaptic response. Consequently we introduce a post-synaptic filter h(t), referred to as the85

synapse model, that accounts for the temporal dynamics of a receiving neuron’s synapse.86

For a purely representational relationship, we can then define the desired decoding as:87

(x̂ ∗ h)(t) =

n∑
i=1

(δxi ∗ h)(t)Di (3)

To complete our characterization of a representation, we need to determine the linear decoders Di.88

This determination is the same for the first and second principles, so we consider it next.89

2.1.2 Principle 2 – Transformation90

The second principle of the NEF addresses the issue of computing nonlinear functions of the vector91

space. The encoding remains as defined in (1). However, we may decode nonlinear functions of x(t)92

by the same linear combination of temporal basis functions:93

(f̂(x) ∗ h)(t) =

n∑
i=1

(δxi ∗ h)(t)Df
i (4)

In general, we solve for the decoders Df ∈ Rn,l to compute a desired nonlinear function f : S → Rl,94

where S = {x(t) : t ≥ 0} is the domain of the signal – typically the unit k-ball {v ∈ Rk : ‖v‖2 = 1}95

or the k-cube [−1, 1]k. To account for fluctuations introduced by neural spiking, or other sources of96

uncertainty, we introduce a noise term η ∼ N (0, σ2) to regularize the solution:97

Df = argminD∈Rn,l
∫
S

[
f(v)−

n∑
i=1

(ri(v) + η)Di

]2
dv (5)

Note this training only depends on ri(v) for v ∈ S. It does not depend on x(t). Performing this98

regularized least-squares optimization provides the decoders needed by equations (3) and (4) to repre-99

sent the vector or compute transformations, respectively. We can use singular value decomposition100

(SVD) to characterize the class of functions that can be accurately approximated by the chosen basis101

functions [8: pp. 185–217].102

The accuracy of this approach for spiking neurons relies on ri(v) being a suitable proxy for δxi103

whenever x(t) = v. This is clearly true for constant x, and is also a suitable model in practice for104

low-frequency x(t).105

In general, we can use (1) and (4) to derive the connection weight matrix between layers that computes106

the desired function f . Specifically, the weight matrixW ∈ Rm,n which decodes from neuron i and107

encodes into neuron j is given by:108

Wji =
〈
Ej , D

f
i

〉
= (E(Df )T )ji (6)

That is, the matrices D and E are simply a low-dimensional factorization ofW . This observation109

implies that the process of decoding and then encoding is equivalent to the more familiar expression110

for mapping activities between layers of neurons in a conventional neural network:111

G [αWδx(t) + β] (7)

The crucial difference is that a constant dimensionality k means O(n) operations per time-step to112

implement (7) as compared to O(n2) operations for typical weight matrices, including those in RC.113

In essence, structure is imposed by the choice of representing x(t) in neural activities, which in114

turn becomes latent within the factored weight matrixW . Notably, since we are free to choose the115

representation, we do not lose computational power with this framework. Rather, this additional116

structure gives us a way to constrain the model by describing its state, and therefore understand in117

detail what the network is computing.118

3



2.1.3 Principle 3 – Dynamics119

Given our ability to compute nonlinear functions with Principle 2, the methods described here apply120

to both linear and nonlinear dynamical systems. However, for simplicity of exposition, we focus our121

discussion on linear time-invariant (LTI) systems:122

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (8)

where the time-varying vector x(t) represents the system state, y(t) the output, u(t) the input, and123

the time-invariant matrices (A, B, C, D) fully define the system dynamics.124

Principle 3 from the NEF states that in order to train the recurrent connection weights to implement (8)125

using a continuous-time lowpass filter h(t) = 1
τ e
− t
τ , we use Principle 2 to train the decoders for the126

recurrent transformation f(x(t)) = (τA+ I)x(t), input transformation f(x(t)) = τBx(t), output127

transformation f(x(t)) = Cx(t), and passthrough transformation f(x(t)) = Dx(t) [8; pp. 221–225].128

This provides a method for training the network to implement any dynamical system. Here we show129

that this approach generalizes to other synaptic models.130

For these purposes, the transfer function is a more useful description of the LTI system than (8). The131

transfer function is defined as the ratio of Y (s) and U(s), given by the Laplace transforms of y(t)132

and u(t) respectively. The variable s denotes a complex value in the frequency domain, while t is133

non-negative in the time domain. The transfer function is related to the state-space representation by134

the following:135

F (s) =
Y (s)

U(s)
= C(sI −A)−1B +D (9)

A transfer function can be converted into a state-space representation using (9) if and only if it can136

be written as a proper ratio of finite polynomials in s. The ratio is proper when the degree of the137

numerator does not exceed that of the denominator. In this case, the output will not depend on future138

input, and so the system is causal. The order of the denominator corresponds to the dimensionality of139

x, and therefore must be finite. Both of these conditions can be interpreted as physically realistic140

constraints where time may only progress forward, and neural resources are finite.141

In order to account for the introduction of a synaptic filter h(t), we replace the integrator s−1 with142

H(s). This new system has the transfer function C(H(s)−1I − A)−1B + D = F (H(s)−1). To143

compensate for this change in dynamics, we must invert the change of variables s↔ H(s)−1. This144

means finding the required F ′(s) such that F ′(H(s)−1) is equal to the desired transfer function,145

F (s). Then the state-space representation of F ′(s) provides (A′, B′, C ′, D′) which implement the146

desired dynamics. Thus the general problem reduces to solving this change of variables problem147

for various synaptic models. We now provide results for three common synaptic models. Complete148

derivations may be found in the supplementary material.149

Continuous Lowpass Synapse Replacing the integrator with the standard continuous-time lowpass150

filter so that H(s) = 1
τs+1 , gives:151

F ′(τs+ 1) = F (s) ⇐⇒ F ′(s) = C(sI − (τA+ I))−1(τB) +D (10)

which rederives the standard form of Principle 3 from the NEF [8].152

Discrete Lowpass Synapse Replacing the integrator with a discrete-time lowpass filter H(z) =153

1−a
z−a in the z-domain with time-step dt, where a = e−

dt
τ , gives:154

F ′(
z − a
1− a

) = F (z) ⇐⇒ F ′(z) = C̄(zI − 1

1− a
(Ā− aI))−1(

1

1− a
B̄) + D̄ (11)

where (Ā, B̄, C̄, D̄) is the result of discretizing (A,B,C,D) with the same time-step. This per-155

mits an exact implementation of the desired system on digital hardware, even for large time-steps.156

Consequently, we use this method in the simulations reported in this paper unless otherwise noted.157

4



Delayed Continuous Lowpass Synapse Replacing the integrator with a continuous lowpass filter158

with a pure delay of β seconds so that H(s) = e−βs

τs+1 , gives:159

F ′(
τs+ 1

e−βs
) = F (s) ⇐⇒ F ′(s) = F (

1

β
W0(ds)− 1

τ
) (12)

where d = β
τ e

β
τ and W0(xex) = x is the principal branch of the Lambert W function. Such a160

synapse model can be used to account for possible transmission time-delays along presynaptic axons,161

or feedback delays within a broader context of control. To demonstrate the case when a pure delay162

of F (s) = e−αs is the desired transfer function, we let c = e
α
τ and r = α

β to obtain the required163

transfer function:164

F ′(s) = c(
W0(ds)

ds
)r = c

∞∑
i=0

r(i+ r)i−1

i!
(−ds)i (13)

2.2 The NEF and Reservoir Computing165

Reservoir Computing (RC) takes a different approach to training RNNs. Here we show that this166

alternative strategy may be leveraged by NEF networks (and vice-versa), by considering the two167

most prominent varieties of RC networks: Echo State Networks (ESNs; 12) and Liquid State168

Machines (LSMs; 15).169

ESNs connect together sigmoidal activation units (most often tanh) using a randomly generated170

weight matrixW normalized by its spectral radius ρ(W). This so-called “reservoir” of rate neurons171

essentially forms a discrete temporal feature representation of the input stimulus u(t). The activities172

are filtered using the same lowpass synapse h(t) discussed earlier, where the rate of decay τ is a free173

parameter which alters the effective length of input history [14].174

To compute a desired function y(t) = f [u(t′) : 0 ≤ t′ ≤ t ], a “readout” is trained from the activity175

of the reservoir using a feed-forward network. This readout is typically a linear matrix D, to facilitate176

efficient optimal training via regularized least-squares approximation. We refer to this method of177

explicit simulation followed by least-squares optimization as the “RC training method”, since LSMs178

also take the same fundamental approach, but employ models of continuous-time spiking neurons.179

Within the NEF, the important distinction between ESNs and LSMs is captured simply by the choice180

of Gi [·] in equation (1). In either case, we can identify the neural activity of the output units in181

response to the input stimulus with δxi , where x(t) is some unknown state that depends on both u(t)182

and the dynamical properties of the reservoir. Note that characterizing x(t) is precisely the problem183

faced when trying to understand what RC networks are representing. Now the linear readout amounts184

to the following approximate nonlinear function of x(t):185

ŷ(t) =

n∑
i=1

(δxi ∗ h)(t)Di (14)

This has the same form as equation (3) from Principle 2. The important difference lies in how the186

decoders D are trained. Rather than solving for D using ri(v) in (5), the network is explicitly187

simulated to obtain exact values for the temporal basis functions. In general the RC training method188

relies on an explicit simulation since the form of x(t) is unknown.189

From the perspective of the NEF, this method of training is more costly (especially as the time-step190

dt becomes small), but has the benefit of automatically refining the distortion error in the decoding191

induced by the rate-mode approximation (in the spiking case). In the rate-mode case, this is mainly192

beneficial as a conceptual tool, and for applications where the mapping between the state x(t)193

and the desired target y(t) is either unknown or approximate (see Section 4.2 for an example).194

Similarly, as shown in Section 4.1, the readout can learn to compensate for approximation error or195

mischaracterization of the state variable.196

From the perspective of RC, the NEF provides a way to solve for the recurrent connection weights197

by imposing a low-dimensional dynamical state x(t) on the reservoir. By using Principle 3 we can198

incorporate prior knowledge of the required function within this latent space, by “placing” temporal199

basis functions throughout the state-space. The NEF provides a way to understand these dynamics,200

5



while still permitting the readout to capture nonlinear interactions between the state and the input (as201

characterized by Principle 2). Importantly, this reduces the cost of simulation by a factor of O(n) for202

constant dimensionality k, since the number of connection weights for RC scale as O(n2).203

3 Methods204

3.1 Software205

All networks were built and simulated using Nengo 2.1.0 [1], a Python tool for simulating large-scale206

neural networks including those built using the NEF. Benchmarks were run on Intel R© CoreTM i7-207

4770 CPU @ 3.40 GHz, using Numpy 1.10.4 and SciPy 0.17.0rc2 linked with the Intel Math Kernel208

Library (MKL).209

Weights were trained and validated using randomly sampled band-limited white-noise. In addition,210

full-spectrum white-noise was added to the network during both training and testing. Accuracy211

was measured by normalizing the root-mean squared error against the root-mean squared target212

(NRMSE; 14). As well, 95% confidence intervals were bootstrapped and plotted using Seaborn [17].213

The hyperparameters for all ESNs and LSMs (readout τ , recurrent τ , input gain, recurrent gain,214

and regularization σ2) were found using Hyperopt [3] by optimizing the validation error across 200215

random configurations containing 5 trials each. LSMs were implemented by replacing the tanh216

units with LIF spiking neurons, in the same manner as for NEF networks. Simulations used a 1 ms217

time-step (except Fig. 1) with Nengo’s default configurations for tuning curves and encoders.218

3.2 Approximating a pure delay219

To implement a pure delay of α seconds we must approximate the irrational transfer function220

F (s) = e−αs as a ratio of finite-order polynomials. We do so using its Padé approximants,221

[p/q]e−αs =
Qp(−αs)
Qq(αs)

, Qk(s) =

k∑
i=0

(
k
i

)
(p+ q − i)!

(p+ q)!
si (15)

This gives the optimal approximation for a transfer function with order p in the numerator and order222

q in the denominator. After choosing suitable values for p ≤ q, we numerically find a normalized223

state-space representation (A,B,C,D) that satisfies (9) using standard methods, and then implement224

this system given the synapse model using Principle 3. An expression for a normalized state-space225

representation when p = q can be found in the supplementary material.226

Fig. 1 demonstrates that we can implement the delay using spiking LIF neurons while analytically227

accounting for a continuous lowpass synapse (τ = 10 ms) or a delayed lowpass synapse (τ = β =228

10 ms) using (10) or (13) respectively (to perform this comparison we do not use (11) here). This229

simulation uses p = 5 and q = 6. This shows that a synaptic delay can intuitively be “amplified” 10-230

fold while improving the NRMSE by a factor of 3 compared to the continuous lowpass. Remarkably,231

both networks use the same readout; only the recurrent connection weights are trained differently232

using the NEF.233

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

1.0

0.5

0.0

0.5

1.0

1.5

O
u
tp

u
t

Implementing Delays using Different Synapses

Target
Delayed Lowpass (β=10 ms)

Lowpass

Figure 1: Computing a 100 ms delay of 15 Hz band-limited white-noise using a time-step of 0.01 ms
(10µs) in 2,000 spiking LIF neurons. Recurrent weights are trained for two different synapse models.

6



4 Results234

4.1 Delay line benchmark235

We now explore how the performance of NEF networks (using the RC training method) compare to236

traditional RC approaches. We consider the delay line task, in which we must compute a range of237

pure delays using the same reservoir. This is a natural way to measure the system’s ability to maintain238

history of its input signal, which is necessary when computing functions over past inputs. In fact,239

ESNs presented this task as one of its first examples within the RC paradigm [13].240

We compare the short-term memory capacity of each approach (ESN, LSM, and NEF using various241

neuron models for Gi [·]) by constructing a reservoir of 500 neurons, and then training separate linear242

readouts to compute delays ranging from 50–100 ms on 8 Hz band-limited white-noise.243

For the NEF case, the prescribed dynamical system is a 100 ms delay using (15), yet the readouts are244

capable of computing many different delays without loss in accuracy (see Fig. 2). This demonstrates245

that the state variable is robust to changes in the target function (i.e., the prior simply biases which246

functions will be most accurate). The performance is comparable to that of ESNs for both LIF rate247

neurons and tanh rate neurons, and 4x (or more) better than LSMs for spiking LIF neurons.248

These network were also simulated while varying the number of neurons from 5 to 2,500 in order to249

measure the real-time cost of simulation (see Fig. 3). We again note that traditional RC suffers from250

scaling issues since the recurrent weight matrices have O(n2) coefficients.251

50 60 70 80 90 100
Delay Time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
R

M
S
E

Performance of RC Networks on Time Delays

ESN
LSM
NEF with Rate LIF
NEF with Rate Tan
NEF with Spiking LIF

Figure 2: Performance from training each reser-
voir with 11 different linear readouts to compute
delays between 50 − 100 ms. Performance is
averaged across 20 trials.

0 500 1000 1500 2000 2500
Number of Neurons

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
e
a
l 
T
im

e
 p

e
r 

T
im

e
-s

te
p
 (

m
s)

Simulation Efficiency of RC Networks

ESN
LSM
NEF with Rate LIF
NEF with Rate Tan
NEF with Spiking LIF

Figure 3: Cost of simulating each RC network
for various numbers of neurons. Simulation time
is averaged across 10 trials.

4.2 Autonomous trajectory generation252

We now consider the task of generating a fixed trajectory over time by training an RC readout. Here253

we evenly space 5 delays apart by 100 ms with p = 3, q = 4, and 100 · i spiking LIF neurons for254

the ith delay. Connections use a lowpass synapse with time-constant τ = 50 ms. The combined255

population of neurons then forms the reservoir that the readout uses, as in (14), to compute the desired256

trajectory (see Fig. 4). The input is a unit impulse that triggers the trajectory. The network is therefore257

autonomous in the sense that its responses are driven solely by internal state following each impulse.258

4.3 Computing a spectrogram259

The examples that we have seen thus far have been for relatively low-frequency inputs. Recall that in260

the spiking case the accuracy of the NEF relies on δxi being well-approximated by a rate-model ri(v)261

when decoding (3), which is a poor assumption in general for higher frequencies and lower numbers262

of neurons. For rate-based neuron models this is not an issue.263

The transformations resulting from applying Principle 3 to the state-space representation of (15) are264

linear. Therefore, we can leverage the theory from Section 2.1 to compute continuous-time delays265

arbitrarily well, provided the methods of Section 3.2 are numerically stable with respect to the input266

frequency and the desired level of accuracy. We demonstrate this by sampling a sliding window of 20267

points spaced evenly apart by 20 ms (i.e., a sampling rate of 50 Hz). The sampling is implemented268

7



0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time (s)

0.50

0.25

0.00

0.25

0.50

R
e
a
d
o
u
t

Autonomous Trajectory

Target
Output

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time (s)

0

10

20

30

40

50

60

70

80

S
o
rt

e
d
 N

e
u
ro

n
 I
n
d
e
x

Filtered Neural Responses

Figure 4: Autonomous activity of a trained network. (Left) The network receives a unit impulse
every 500 ms and responds by autonomously generating a trajectory that connects a set of 5 discrete
points spaced evenly apart by 100 ms. (Right) Filtered activity of 80 uniformly sampled neurons,
sorted by time to peak activation.

using 20 independent delays with p = q = 40, τ = 1 ms, and q linear neurons per delay with269

orthogonal encoders. This sliding window is then mapped by a linear transformation to compute270

the discrete Fourier transform (DFT) of the input history, which is then encoded by a population of271

22,000 LIF rate neurons to compute the nonlinear power by squaring each complex coefficient.272

We test this on a randomly sampled 25 Hz band-limited white-noise signal (see Fig. 5). Notably,273

both the recurrent connection weights and the linear readout of this network have been trained quite274

accurately without explicitly simulating the network on any training signal.275

0
5

10
15
20
25

Fr
e
q
u
e
n
cy

 (
H

z)

Ideal Spectrogram

2 3 4 5 6 7 8 9 10
Time (s)

0
2
4
6
8

10

D
im

e
n
si

o
n

Network Readout

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5: Simulation of a network trained to compute the power of its input at various frequencies
using the DFT. Each element of the decoded vector corresponds to the power at a particular frequency.

5 Conclusions and future work276

We have demonstrated that NEF-based methods significantly outperform RC networks for dynamic277

information processing with neural networks. In the rate neuron case, the accuracy is similar but278

simulation times are reduced by a factor of O(n). In the spiking neuron case, the accuracy is 4x or279

better with the same improvement in simulation time.280

The proposed methods demonstrate how to account for synaptic dynamics while accurately imple-281

menting system-level dynamics across a wide variety of synaptic models. Specifically, we showed282

how to exploit synaptic model properties (i.e., a small delay) to improve system-level performance283

(i.e., a long delay), which is a general challenge for dynamic information processing in neural284

networks. We further demonstrated that the same principles can be used to generate autonomous285

dynamics (i.e., movement between discrete points over an extended period). In addition, the methods286

described are efficient and accurate for both digital and analog implementations. This allowed us287

to demonstrate a spiking neural network computing a challenging nonlinear filter (i.e., the spectral288

power).289

Conceptually speaking, these methods also provide a more intuitive understanding of the state being290

represented by the recurrent network, and the dynamics it is implementing. This understanding is291

partly a result of being able to specify a desired structure for the system. Some structures, like delays,292

are powerful constructs for implementing a wide class of useful dynamics.293

8



References294

[1] Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C Stewart, Daniel Rasmussen,295

Xuan Choo, Aaron Russell Voelker, and Chris Eliasmith. Nengo: a python tool for building large-scale296

functional brain models. Frontiers in neuroinformatics, 7, 2013.297

[2] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient298

descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157–166, 1994.299

[3] James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search: Hyperparameter300

optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th International301

Conference on Machine Learning. ICML, 2013.302

[4] Federico Corradi, Chris Eliasmith, and Giacomo Indiveri. Mapping arbitrary mathematical functions303

and dynamical systems to neuromorphic VLSI circuits for spike-based neural computation. In IEEE304

International Symposium on Circuits and Systems (ISCAS), Melbourne, 2014.305

[5] John P Cunningham and M Yu Byron. Dimensionality reduction for large-scale neural recordings. Nature306

neuroscience, 17(11):1500–1509, 2014.307

[6] Julie Dethier, Paul Nuyujukian, Chris Eliasmith, Terrence C Stewart, Shauki A Elasaad, Krishna V Shenoy,308

and Kwabena A Boahen. A brain-machine interface operating with a real-time spiking neural network309

control algorithm. In Advances in neural information processing systems, pages 2213–2221, 2011.310

[7] Chris Eliasmith and Charles H Anderson. Developing and applying a toolkit from a general neurocomputa-311

tional framework. Neurocomputing, 26:1013–1018, 1999.312

[8] Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representation, and dynamics313

in neurobiological systems. MIT press, 2003.314

[9] Chris Eliasmith, Terrence C Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan Tang, and315

Daniel Rasmussen. A large-scale model of the functioning brain. science, 338(6111):1202–1205, 2012.316

[10] Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time317

recurrent neural networks. Neural networks, 6(6):801–806, 1993.318

[11] Francesco Galluppi, Christian Denk, Matthias Meiner, Terrence C Stewart, Luis Plana, Chris Eliasmith,319

Steve Furber, and Jorg Conradt. Event-based neural computing on an autonomous mobile platform. In320

Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014.321

[12] Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks. Bonn,322

Germany: German National Research Center for Information Technology GMD Technical Report, 148:34,323

2001.324

[13] Herbert Jaeger. Short term memory in echo state networks. 2002.325

[14] Mantas Lukoševicius. Reservoir computing and self-organized neural hierarchies. PhD thesis, Jacobs326

University Bremen, 2012.327

[15] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable states: A328

new framework for neural computation based on perturbations. Neural computation, 14(11):2531–2560,329

2002.330

[16] Andrew Mundy, James Knight, Terrence C Stewart, and Steve Furber. An efficient spinnaker imple-331

mentation of the neural engineering framework. In Neural Networks (IJCNN), 2015 International Joint332

Conference on, pages 1–8. IEEE, 2015.333

[17] Michael Waskom, Olga Botvinnik, Paul Hobson, Jordi Warmenhoven, John B. Cole, Yaroslav Halchenko,334

Jake Vanderplas, Stephan Hoyer, Santi Villalba, Eric Quintero, and et al. seaborn: v0.6.0, June 2015.335

9


	Introduction
	Structured recurrent neural networks
	Neural Engineering Framework
	Principle 1 – Representation
	Principle 2 – Transformation
	Principle 3 – Dynamics

	The NEF and Reservoir Computing

	Methods
	Software
	Approximating a pure delay

	Results
	Delay line benchmark
	Autonomous trajectory generation
	Computing a spectrogram

	Conclusions and future work



