Milestone 4.3.3 -- Adaptive Motor Control in Spaun
Xuan Choo and Chris Eliasmith

Milestone 4.3.3: Integrate adaptive motor controller into a next generation Spaun.
1.0 Introduction

In deliverable 4.3.2 we described the introduction of an improved visual system into the
large-scale Spaun model (Eliasmith, et al., 2012). As noted, during the course of this project, we
have developed several spiking network algorithms that significantly improve upon those used in
the original Spaun. In this deliverable, we focus on the integration of our improved motor
system into Spaun (see deliverables 4.1.1-4.1.4).

Deliverable 4.1.1 describes the REACH model in detail, which forms Spaun’s new motor
system, which controls a single arm as in the original Spaun. As shown in that deliverable, this
new motor system improves on the original system in several respects, and demonstrates good
quantitative matches to several aspects of human reaching. Most importantly, the new motor
system is fully implemented in spiking neurons and includes the ability to adapt to unknown
forces on-the-fly. Neither of these are true of the original Spaun motor system.

Deliverables 4.1.2-4.1.3 focus on performing a wide variety of motor control experiments and
comparing the results to state-of-the-art deep learning methods and state-of-the-art (non-neural)
control on the same tasks (4.1.4 implements the controller on a physical robot). As described in
detail in deliverable 4.1.3, the REACH model is as good or better than other approaches across
the tasks (see, e.g., Figures 1A, 1B, 5 and 7). Furthermore, the REACH model is more
computationally efficient and scales better than these other approaches, suggesting it can
effectively exploit the strengths of neuromorphic hardware. One of the tasks considered in these
deliverables is the “force field” task, which is the focus of our demonstration of integrating this
model into Spaun, as it requires on-the-fly adaptation which could not be captured by the
previous Spaun model.

Consequently, the focus of this report is on demonstrating the effective adaptation of the fully
spiking motor model integrated into Spaun. Technical details of the REACH model can be found
in deliverable 4.1.3 and (DeWolf, 2014). Here we describe the main results of integrating the
new motor system and detail methods for reproducing these results in the Nengo neural
simulator.

2.0 Results

To demonstrate the adaptive characteristics of the new motor system in Spaun, the force field
task has been adapted to number writing. The original task is described in deliverable 4.1.2 and
4.1.3 reproduces a series of experiments performed on human subjects (Shadmehr, 1994).

This task is similar to a standard center-out reaching task, in which the subject’s hand begins at a
center position, and then they reach to one of several (typically 8) endpoints. In the case of the

force field task, a perturbing force field is introduced. This is typically accomplished by having
subjects hold on to an object (e.g. joystick) under the control of the experimenter, while making
the movements. The object is then subjected to forces that can be a function of position or other
reach parameters. In the experiments we are reproducing, the force field is a function of the end
effector velocity, making for a more challenging reaching task than a static (i.e., position
dependent) force field. This means that the dynamics of the system change significantly over the
trial.

In human trials on this task, adaptation was considered complete when the correlation between
the non-force field reach paths and force field reach paths was over 0.9. As described in
deliverable 4.1.3 this performance was matched by the REACH model along several dimensions
(e.g., adaptation accuracy, reach paths, neural activity, etc.). As shown in Figure 1, comparison
controllers did not perform as well.

hi: reach ilgg: forcefield Iqr: forcefield osc: forcefield reach: forcefield

* ¥ $ % X

Figure 1: Force field reaching performance of several controllers compared. The REACH
model performance (post adaptation) is shown on the far right. The deep learning (hf:
hessian free) model (far left) generalizes poorly to other situations and training time
proved to be too large for comparison of this controller on each of the tasks, we only
show results for basic reaching. ilqg: iterative linear quadratic gaussian. Iqr: linear
quadratic regulator. osc: operational space control.

To demonstrate integration of the REACH model into Spaun, we have implemented the same
kind of force field task, but for number drawing rather than straight line reaching. Since number
drawing requires more sophisticated paths, this is a more difficult task than simple reaching. The
As the adaptive controller requires multiple trials to improves the fidelity of the written digits,
Spaun is tasked with repeated instances of the list recall task (the task with the shortest amount
of input stimuli required per number of digits in Spaun's response).

Figure 2 shows Spaun's responses to the task of remembering and reproducing the list [4, 2, 7, 5]
(numbers chosen at random) in the presence of the end-effector velocity modulated force field
used in Figure 1. For the responses illustrated in Figure 2, the adaptive controller has been
removed to demonstrate the baseline response Spaun's default motor controller (OSC) produces
in the presence of the force field.

Al3Ipl4]2]17]1-(4]?] [N
Al3[pl4]212]5]4] 7] N

—

| |2
2| |
e

NEDCHAGEEE .
AEDNEDGEEE .
AEDENHERGEEE .

Al3[pls/]2]7]514] 2] [N
RNEIQAAREBCENE |
RNEIQSEMECENE |

Figure 2: Baseline digit responses of Spaun's default motor controller for 8 consecutive
trials of the memory task in the presence of the velocity-modulated force field. The input
stimuli is shown as white characters in the black squares, while Spaun's motor response is
illustrated as blue paths in the white squares.

5
27
ZA

£y
2

2y
Z

From Figure 2, it can be seen that without the adaptive controller, Spaun's written responses are
consistent, barely legible and do not improve with the number of trials. Figure 3 shows the same
task, but with the adaptive controller included in Spaun's motor system. From the figure, it can
be seen that over the course of the trials, the adaptive controller learns the effect of the force field
and gradually improves the accuracy of Spaun's written responses.

It should be noted that the 7th trial of the memory task shown in Figure 3, Spaun mis-classifies
the input digit 4 as the number 6, and thus responds with the list [6, 2, 7, 5] rather than the
correct answer of [4, 2, 7, 5]. However, this mistake illustrates that the adaptive motor controller
has not learned just to accurately reproduce the specific digits 4, 2, 7, and 5, but rather, it has
learned to generalize the effect of the velocity modulated force field and is thus able to
appropriately compensate when reproducing any written response.

As a point of reference, Figure 4 illustrates Spaun's written responses using the default OSC
motor controller without the adaptive motor controller nor the force field applied to the system.

=
5
)
‘n

Al3Ip14]12]71s14]P] |

NEIQRERESCOREE - 0 -
Al3Ip14]12]7]sS]4]?] [RIESEIE
RNEIQFIARSCOHEE - -
Al3Ip14]1017]s14] 2] |[KEESENE
RNEIQNEABCEE - 0

Al3[plAl21715]4] 7] [KERSINEIE

N

RNEIQCEEAECIENE -

Figure 3: Digit responses of Spaun's new adaptive motor controller for 8 consecutive
trials of the memory task in the presence of the velocity-modulated force field. As with
Figure 2, the input stimuli is shown as white characters in the black squares, while
Spaun's motor response is illustrated as blue paths in the white squares. Note that for the
7th trial (row 7), Spaun wrongly identified the input stimulus (the digit 4) as a 6, and as
such reproduces the list [6, 2, 7, 5] instead of the correct response of [4, 2, 7, 5].

Sl 7| 6
YUl 75| &
Sl 75 &
Y275 4

Figure 4: Examples of Spaun's written responses for the digits 4, 2, 7, 5, and 6 using
Spaun's default motor controller without adaptation, nor the influence of the velocity
modulated force field.

An additional significant improvement over the original Spaun model is that with this new motor
system, the entire system is a spiking neural network. Figure 5 shows plots of the spiking neural
activity of the cerebellar (CB), M1 (M1) and adaptive controller (Adapt Ens). Using the Neural
Engineering Framework, it is possible to decode the spiking activity (see the Adapt Ens value
plot) of the adaptive controller to get a sense of the function it is representing. For the memory
tasks illustrated in Figure 5, a constant force field (constant force of 0, 100 and 200 units of
force) has been applied to each joint in Spaun's arm. As illustrated in Figure 5, after 2
consecutive trials of the memory task, the adaptive controller has learned to compensate for this
force field -- the decoded value of 'Adapt Ens' stabilizes at 0, -100, and -200 units of force,
effectively cancelling out the effect of the constant force field.

Figure 6 shows the same data recorded for Figure 5, graphed for the first 4 seconds of the
simulation. This was done to make individual spikes more distinct in the final figure.

Adaptive Motor Network

[Al3|p]#12]7|514?]

e ———— POS2*TWO |
POS3*SEV
POS4*FIV

FM — POSI*FOR

Working Mem

AP OO L
w B 0 Bnoiouneone Vis Input
—

Mtr M1 Mtr CB

Adapt Ens

e R el g i

Ry L

Mtr Ramp ~ Adapt Ens
L
[=1
(=]

94
~
-
o
o
=

12

ArmOutput S 5 8 G

Figure 5: Spiking activity of motor control system with the adaptive controller
performing two consecutive trials of the list memory task. Shown are the visual stimuli
that Spaun was presented (Vis Input), the semantic pointer representation of the values
stored in Spaun's working memory (Working Mem), the spikes recorded from the
cerebellar (CB), M1 (M1) and adaptive controller (Adapt Ens) populations within the
motor control system, the 'decoded' output of the adaptive controller (Adapt Ens)
population, the ramp signal driving the motor system output (Mtr Ramp), and Spaun's
written responses (Arm Output).

Working Mem

Adapt Ens

Vis Input

Mtr CB

Arm Output |

o APOSHEIW
wm O U Arovounounc

Adaptive Motor Network

- : = — POS1*FOR ||
- ! POS2*TWO
POS3*SEV
POSA*FIV

i

. 2

.0 0.5 1.0 15 20 2.5 3.0 3.5 4.0

Figure 6: Spiking activity of motor control system with the adaptive controller
performing two consecutive trials of the list memory task. The data used in this plot is
identical to Figure 5, with the plot showing only the first 4 seconds of the task.

3.0 Usage

The new version of Spaun is built in Nengo 2.0 (Bekolay et al., 2014). To install the Nengo
GUI, Python must be available. Then at a command prompt the following command will install
the simulator (for detailed instructions, see https://github.com/nengo/nengo gui):

pip install nengo gui

It is also recommended to install nengo_oc1 as well to decrease the time needed to run the
simulations (for detailed instructions, see https://github.com/nengo/nengo_ocl):

pip install nengo_ ocl

The Spaun model itself can be obtained from the experimental’s branch in Spaun github
repository. It is also recommended to install matplotlib to see the plots that the various scripts
generate:

pip install matplotlib

cd ~/git

git clone https://github.com/xchoo/spaun2.0
cd spaun2.0

git checkout experimental

To run Spaun with the options for using / not using the motor adaptation for the different types of
force field tasks, use the —-config option of the run _spaun.py script. The parameters that
the -—config option supports (for the adaptive force field task) are mtr dyn adaptation
andmtr forcefield. The following is a list of possible values that can be used with these
parameters:
e To use the adaptive motor controller, use: "mtr dyn adaptation=True"
e To disable the adaptive motor controller, use: "mtr dyn adaptation=False"
e To run Spaun's tasks with the joint-velocity-modulated force field, use (note: both sets of
quotations are needed for this to run properly):
"mtr forcefield='QVelForcefield'"
e To run Spaun's tasks with the end-effector-velocity-modulated force field, use:
"mtr forcefield='XYVelForcefield'"
e To run Spaun's tasks with the constant-joint-force force field, use:
"mtr forcefield='ConstantForcefield'"
e To run Spaun's tasks with the no force field, either omit this parameter, or use:
"mtr forcefield='NoForcefield""

Additionally, to automatically display the plots shown in Figure 2 - 4, use the --showiofig
argument option, and to display the graphs shown in Figure 5 & 6, use the ——showgrph
argument option.

For example, to run the Spaun simulation to generate the graphs for Figure 2 (velocity modulated
force field with no adaptation), run:

cd ~/git/spaun2.0

python run spaun.py -s '"{A3[#4#2#7#5]?XXXX:8}"' --showiofig
--config "mtr dyn adaptation=False"

"mtr forcefield='QVelForcefield'"

Likewise, to run the Spaun simulation to generate the graphs for Figure 3 (velocity modulated
force field with adaptation), run:

python run spaun.py -s '{A3[#4#2#7#5]?XXXX:8}' --showiofig
--config "mtr_dyn adaptation=True"
"mtr forcefield='QVelForcefield'"

To generate the spike plots shown in Figure 4 (no force field with no adaptation), use the
--showgrph argument (instead of ~—showiofig), omitthe mtr dyn adaptation and
mtr forcefield parameters and include the probe graph config parameter with the
value ' ProbeCfgDarpaMotor' and run:

python run spaun.py -s '"{A3[#4#2#7#5]?XXXX:8}' --showgrph
--config "probe graph config='ProbeCfgDarpaMotor'"

To generate the spike plots shown in Figure 5 (constant force force field with adaptation), run:

python run spaun.py -s '"{A3[#4#2#7#5]?XXXX:2}"' --showgrph
--config "probe graph config='ProbeCfgDarpaMotor'"

"mtr dyn adaptation=True"

"mtr forcefield='ConstantForcefield'"

Lastly, to generate the spike plots shown in Figure 6 (same as Figure 5, but first 4 seconds), use
the —t argument option, and run:

python run spaun.py -s '"{A3[#4#2#7#5]?XXXX:2}"' --showgrph

-t 4 --config "probe graph config='ProbeCfgDarpaMotor'"
"mtr dyn adaptation=True"
"mtr forcefield=ConstantForcefield"

Spaun can also be visualized and run in nengo_gui by adding the --nengo gui option to
the run_spaun.py script command line.

python run spaun.py --nengo_gui

n_spaun.py

B ru
« C | [localhost:8080/? filename=run_spaun.py
]

S O« A = 2 3 B

Stimulus Vision Sys

P . eeenon Somas

‘ - = i YOS L —
7 \

neg_attention

15 -104
0500 0000 oren

5 crose

-0500 0.000 W seace

Speed 0.00x m
o

Time 0.000 35 -30 25 2.0 15 10 05 (il

In addition to the command line argument options above, the time it takes to simulate Spaun can
be decreased by running Spaun with nengo_oc1l. To do so, have nengo_ocl installed (see
above for details), and then provide the --oc1 argument to the run_spaun. py script. OCL
platform and device settings can be specified using the --~ocl plaform and

--ocl device argument options respectively (running the script without these options set
will give you an option to manually specify these options):

python run spaun.py -s '{A3[#4#2#7#5]?XXXX:8}' --ocl
--ocl_plaform 0 --ocl_device 0 --showiofig --showgrph
-—-config "probe graph config='ProbeCfgDarpaMotor'"

"mtr dyn adaptation=True" "mtr forcefield='QVelForcefield'"

4.0 Discussion

We have demonstrated the integration of the REACH adaptive motor control system for arm
movements into the Spaun model. We demonstrated its performance on the number drawing
classification task while a force field was applied to the arm. This task is using the new visual
system integrated in deliverable 4.3.2 for classification and the new adaptive motor system for
arm control.

5.0 References

DeWolf, Travis (2014). A neural model of the motor control system. PhD thesis, University of
Waterloo. URL: https://uwspace.uwaterloo.ca/handle/10012/9089.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen, D.
(2012). A large-scale model of the functioning brain. Science, 338: 1202—-1205.
doi:10.1126/science.1225266

Shadmehr, R., & Mussa-Ivaldi, F. A., (1994). Adaptive representation of dynamics during
learning of a motor task. The Journal of Neuroscience, 14 (5 Pt 2): 3208-3224.

