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Abstract—By building and simulating neural systems we hope
to understand how the brain may work and use this knowledge
to build neural and cognitive systems to tackle engineering prob-
lems. The Neural Engineering Framework (NEF) is a hypothesis
about how such systems may be constructed and has recently
been used to build the world’s first functional brain model,
Spaun. However, while the NEF simplifies the design of neural
networks, simulating them using standard computer hardware
is still computationally expensive — often running far slower
than biological real-time and scaling very poorly: problems
the SpiNNaker neuromorphic simulator was designed to solve.
In this paper we (1) argue that employing the same model
of computation used for simulating general purpose spiking
neural networks on SpiNNaker for NEF models results in sub-
optimal use of the architecture, and (2) provide and evaluate an
alternative simulation scheme which overcomes the memory and
compute challenges posed by the NEF. This proposed method uses
factored weight matrices to reduce memory usage by around 90 %
and, in some cases, simulate 2000 neurons on a processing core
— double the SpiNNaker architectural target.

I. INTRODUCTION

For a given power budget, two factors limit the simulation
of neural networks on any computing platform: scale and
time. Theoretically, any scale of network may be simulated
but as scale increases simulation time follows. Conversely,
if the simulation time is limited (for example, if biological
real-time is necessary) then only a limited scale of network
may be simulated. Specialised neuromorphic hardware tries
to avoid these constraints by parallelising and distributing
computational effort and relying on dense interconnection of
the computing elements. The SpiNNaker platform [1] is one of
a range of neuromorphic simulators (including Neurogrid [2],
BrainScaleS [3] and TrueNorth [4]) which should benefit
researchers of large-scale neural models.

The Neural Engineering Framework (NEF) [5] is a hy-
pothesis about how neurons may be used to encode abstract
mathematical constructs, such as scalars and vectors, that
we often use to model the real world. Its successes so far
include the Spaun model of cognition [6] and a spiking neural
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network that encodes and decodes the main lexical relations
in WordNet [7]. As with all neural systems, the NEF has
proven costly to simulate: the Spaun model typically required
2.5h of compute time for 1s of simulation [8, §V]. Two
aspects of NEF networks that make them particularly costly to
simulate are the high firing rates of individual neurons (often
up to 400 Hz) and the dense synaptic matrices used to connect
neuronal populations. The former presents a significant com-
munication cost to any specialised neuromorphic hardware and
the latter requires that large amounts of memory be used to
represent the neural network with all the associated costs of
transferring large blocks of data that implies.
In this paper we:

1) Argue that due to the properties of the NEF, the ex-
isting solutions and algorithms used to simulate neural
networks on SpiNNaker will not scale satisfactorily to
large-scale models such as Spaun.

2) Detail a method by which features of the NEF may be
used to reduce the memory and compute costs associated
with its simulation.

We hope to use the result to run the full Spaun model in
biological real-time.

II. BACKGROUND

In this section we briefly discuss the SpiNNaker platform
and how neural networks are currently simulated on it before
introducing the Neural Engineering Framework (NEF) and dis-
cussing how models built with it may act to stress SpiNNaker
in various ways.

A. The SpiNNaker platform

The SpiNNaker platform is a massively parallel architecture
designed to simulate neural networks. A SpiNNaker machine
is constructed from a number of SpiNNaker chips, each
connected to their six immediate neighbours using a chip-
level interconnection network with a toroidal, triangular mesh
topology. Each SpiNNaker chip contains 18 ARM processing
cores connected, via a network-on-chip, to each other and the
external network through a multicast router. Each core has two
small tightly-coupled memories: 32 KiB for instructions and



64 KiB for data; and shares 128 MiB of off-chip SDRAM with
the other cores on the SpiNNaker chip.

SpiNNaker is an event-driven, message-passing computing
architecture. The software running on a core may transmit
packets to other processing cores to indicate the occurrence
of events or to share data. A packet consists of a 32 bit key,
used to direct the packet around the network and, optionally, a
32 bit data payload. When a packet reaches a router, its key is
inspected to determine which (if any) of the 18 processors and
six external links attached to the router it should be forwarded
to. On receipt of a packet, a core executes a callback function
which may inspect the packet and schedule further execution
as required.

B. Simulating neural nets on SpiNNaker

When simulating neural nets on a SpiNNaker machine each
core is responsible for simulating a number of point neurons
(in the order of a few hundred). When one of these neuron
spikes, it transmits a packet whose key uniquely identifies the
neuron (for this it requires no payload). This “spike” packet
is then routed across the network fabric to the processing
cores responsible for simulating each of the neurons that are
connected to the firing neuron. On receipt of a “spike” packet
a core retrieves the row of the connectivity matrix associated
with the firing neuron from SDRAM. Each of these rows
describes the synaptic weights and delays associated with the
connections between the firing neuron and those simulated on
the core. Once a row is retrieved the weights are inserted into
an input ring-buffer where they remain until the synaptic delay
has elapsed and they are applied to the neuronal input current.

Using this system there are two primary constraints on
the number of neurons that may be simulated on a single
processing core:

1) The amount of memory required to store the synaptic
weight matrices must fit within the space available to
the core. This is 8 MiB as each core is allocated % of
the 128 MiB SDRAM.

2) As the majority of processing time is spent in the
synaptic processing pipeline, there must be sufficient
time for the core to process all incoming ‘spike’ packets;
and retrieve and process the synaptic rows during one
simulation time-step (see [9]). This time is a function
of both the number of spikes received per time-step and
the density of the synaptic matrix. Sharp and Furber [9,
6II1.C] indicate that at most there may be 5000 synaptic
events per millisecond when running at biological real-
time, where a single synaptic event indicates one spike
being passed through a single synapse to a neuron on
the receiving core.

These constraints may be satisfied by either allocating
fewer neurons to each processing core or by increasing the
processing time used for each simulation time-step. Hard time
constraints are necessary when SpiNNaker is required to run
in biological real-time, as it is in experiments with other
neuromorphic hardware. Processor constraints are present for

those with access to only small SpiNNaker machines such as
those mounted in mobile robots.

It should be noted that time is also a factor prior to the
start of any simulation. All data required by the SpiNNaker
machine during simulation must be transmitted to it through
an ethernet interface, meaning that if more data is required on
the machine more time is required to prepare it for simulation.
Sharp and Furber [9] note that this preparation time can be of
the order of several minutes — something that is undesirable
if a real-time simulator is desired.

C. The Neural Engineering Framework

The Neural Engineering Framework (NEF) extends the
concept of “preferred-direction vectors” [10] to all neural
populations. Each population represents a vector within a
particular space, within which, the firing rate of each neuron
reflects the similarity of the represented vector to the neurons
“encoding” vector. Using the notation of Stewart and Eliasmith
[8] this “encoding” of a variable in vector form into a neuronal
response may be expressed as:

0; (X) =G; [aiez’ x4+ Jibias} )

Which states that the firing response of neuron ¢ (4;) to the
represented value (x) is the response of the neuron model (G;)
to an input consisting of a randomly selected gain term (o),
the encoding vector for the neuron (e;) and a fixed bias current
(Jf’ms). Correspondingly, “decoding” allows a transformation
from the spiking actions of neurons into the domain of vectors.
Again using the notation of Stewart and Eliasmith [8] we can
express this decoding process as:

X =

N
ai(x)d; 2
i=1

Where the estimate of the original represented value (X) is
the sum of the spiking activity of each neuron (a;) multiplied
by the linear decoder for the neuron (d;). The decoding
vectors may be selected to compute a function of the value
represented by the population. Fig. 1 illustrates the encoding
of a two-dimensional value using four neurons — the role of
the encoding vectors can be seen in that each neuron becomes
active for only a small range of the input space.

For a connection between a pair of populations, a (dense)
synaptic weight matrix can be calculated by computing the
matrix product of the decoders of the pre-synaptic population
and the encoders of the post-synaptic population [8]:

Wij = Otjdiej (3)

With ¢ indexing neurons in the pre-synaptic population and
j those in the post-synaptic population.

An illustrative model that we will use later in this paper is
the communication channel. A communication channel con-
sists of two populations connected with the synaptic weights
chosen such that the second ensemble will represent the same
value as the first ensemble. The concept is illustrated in
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Fig. 1. Representing a 2-dimensional value using four neurons. The input
values and spiking responses of the neurons are shown in the top plot. The
bottom left-hand plot shows how the firing responses vary with the angle of
the 2-D input vector (tuning curves) and the bottom right-hand plot shows a
decoding of the population’s representation along with the input value.
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Fig. 2. A NEF communication channel consisting of two populations of
neurons and a connection. The diagram indicates how the abstract com-
munication channel might be instantiated on a simplified representation of
the SpiNNaker architecture: Population A is split between processing two
cores, consequently two streams of multicast packets allow simulation of the
communication channel.

Fig. 2; where, to illustrate how computational constraints may
be satisfied, the pre-synaptic population has been partitioned
across two processing cores.

D. Assessing the Neural Engineering Framework (NEF)

It is entirely possible to translate models built using NEF
principles into populations of point neurons connected with
dense synaptic weight matrices. These networks could then,

in theory, be simulated using the standard SpiNNaker spiking
neural network simulator described in §II-B. In this section we
show that, based on parameters used in the Spaun functional
brain model, this approach would result in sub-optimal usage
of a SpiNNaker machine, given the constraints outlined in
SII-B.

The Spaun model is built using the Semantic Pointer Archi-
tecture (SPA) [11] which uses randomly chosen unit vectors to
represent basic concepts. These concepts can then be combined
into symbol structures using addition (+) and circular convo-
lution (®) operators, both of which can be evaluated using
the principles of the NEF. The circular-convolution operator
is non-linear and, Eliasmith [11] demonstrates, requires around
70 neurons per dimension to calculate accurately.

For example, using the basic concepts (MOUSE, CHEESE,
SUBJECT, OBJECT, EAT, VERB), a semantic pointer
representing the sentence “Mice eat cheese” can be formed
as S = MOUSE ® SUBJECT + EAT ® VERB + CHEESE ®
OBJECT. The subject of this sentence could then be extracted
using S ® SUBJECT' ~ MOUSE (where the ’ operator is
an approximate inverse [11, §D.2], calculated using a linear
involution operation). However, the result of this operation will
not be exactly MOUSE - to extract the MOUSE semantic
pointer, the result needs to be “cleaned up”. This process is
performed using an auto-associative memory network [12] the
properties of which dictate that, in order to reliably represent
a human-scale lexicon, semantic pointers must be drawn from
a vector space with around 500 dimensions.

On the basis of these two parameters (500 dimensions and
70 neurons per dimension) we can determine that semantic
pointers with this dimensionality would need to be represented
using populations of 3.5 x 10* neurons. A connection between
two of these populations would therefore require a dense
synaptic matrix with 1.225 x 10° entries. As synaptic weights
on SpiNNaker are typically represented as 16 bit values, this
full matrix would occupy approximately 2.28 GiB of memory
meaning that, as each core only has 8 MiB of SDRAM, the
post-synaptic ensemble would have to be distributed amongst
292 cores. This would reduce the number of neurons simulated
per core to only 120 — an order of magnitude short of
SpiNNaker’s architectural target of 1000 [13].

Representational errors can be reduced both by increasing
the number of neurons and by allowing them to fire at a
higher rate [5]. However, models built using the NEF typically
opt to use fewer neurons firing at rates of up to 400 Hz,
meaning that in networks such as the communication channel
example discussed in §II-C, each neuron fires at an average
rate of around 100 Hz. If this example were simulated with 70
neurons per dimension, the overall spike rate would increase
linearly with dimensionality as shown in Fig. 3. In the 4
dimensional case, this means that the post-synaptic ensemble
will receive around 20 incoming spikes per time-step which,
due to the dense connectivity matrices, will trigger a synaptic
event for each of the 280 neurons in the ensemble. This results
in a total of around 5600 synaptic events per time-step —
exceeding the limit of 5000 events per time-step found by
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Fig. 3. Spike rates for the pre-synaptic population of a communication
channel. The vertical line indicates the point at which 5000 synaptic events
per core has been passed. Each population had 70 neurons per dimension.

Sharp and Furber [9].

IIT1. EXPLOITING FEATURES OF THE NEF FOR EFFECTIVE
SIMULATION ON SPINNAKER

In this section we review an alternative simulation scheme
that will meet the constraints of the SpiNNaker hardware for
a large range of networks constructed using the NEF. The
details of the NEF described above suggest this alternate, more
efficient, implementation for SpiNNaker. We note that the
synaptic weight matrices are computed via (3). This means that
all the synaptic weight matrices are exactly factorable. More-
over every set of connection weights coming into an ensemble
will have the same o e; factor applied to it. We can thus split
the synaptic connection weight matrices into two parts: the
“encoder” ajje; and the “decoder” d;. These matrices are of
size N x D and D x N, where D is the “dimensionality”
of the representation and is generally much smaller than N,
the number of neurons. We can store the encoder in the core
that is simulating the post-synaptic population, and we can
store the decoder with the pre-synaptic population. This saves
significant memory since the two factors are much smaller
than the original weight matrix and we only need to store one
encoder no matter how many sets of input connections there
are. However, since the connection weight matrix is split in
this way, we can no longer send a packet to represent each
spike. Rather, the spikes are multiplied by the decoder and
the resulting vector value is transmitted. Importantly, since
the original weight matrices are perfectly factorable, the result
is identical to the original SpiNNaker approach in terms of
the neural behaviour, but with significantly reduced memory
requirements, and, as we shall show, improved processor
utilisation. Fig. 4a illustrates the scheme with the full weight
matrix stored in the memory of the post-synaptic core and
Fig. 4b illustrates the proposed scheme with the factored
matrix split across the pre- and post-synaptic cores and with
“value”-packets being transmitted between the processors.

We split the execution time of a processing core into three
steps: input filtering, neuron update and output. In the “spike”
simulation scheme the “inputs” to a processing core take the
form of “spike” packets which are used to drive a pipeline

that retrieves synaptic weights from SDRAM,; in our proposed
scheme the inputs take the form of a set of packets whose
payloads can be combined to form a vector. For example,
the processing core simulating population B from Fig. 2 will
receive two packets per time-step from each of the two cores
simulating population A which, combined, will form a 2-D
vector representing the current decoding of the activity of A.
At the start of each simulation step the reconstructed vector is
filtered using the appropriate synaptic filter model to provide
the input current to the population — this is the input filtering
step.

During the neuron update step the state of each neuron is
updated in turn. First the input for the neuron is computed
by calculating the dot product between the encoding vector
for the neuron and the current input to the population (a;e; -
X + Jf“‘s from (1)). Then the neuron itself is simulated, for
example using the Fuler method to compute the next state of
a LIF neuron. If, during this process, a neuron spikes then
its decoding vector (d;) is looked up and added to a buffer
containing the current decoding of the population activity (as
in (2)). Once all the neurons have been simulated the output
buffer will contain a vector which represents the weighted
decoding of any spikes which occurred during the simulation
step.

During the output stage each element of the vector con-
tained in the output buffer is transmitted in the payload of a
multicast packet whose key uniquely identifies the population
and element index. The communication fabric routes these
“value” packets to cores which simulate connected populations
of neurons.

Some ensembles may have multiple outgoing connections
with different transformations or functions, meaning that there
are multiple decoder matrices to apply when decoding the ac-
tivity of the population. In these cases we combine the matrices
such that the decoding vector for any neuron is the concatena-

tion of the required decoders (i.e., d; = [d{(x), df(x), } ).

IV. RESULTS

A. Processor utilisation

To measure the CPU load when running the algorithm
described in §III on SpiNNaker, we developed a simple tool
to profile SpiNNaker executables. In this section we use this
tool to analyse how the load on the processors simulating
the ensembles in the communication channel network shown
in Fig. 2 varies with number of dimensions and neurons.
Fig. 5 shows how the proportion of CPU time spent in the
different phases of the algorithm outlined in §III varies with
both dimensionality and neuron count.

The input filtering and output phases of the algorithm both
transmit and receive one packet per simulation time-step for
every dimension. Thus the CPU time spent in both phases is
predominantly a function of the number dimensions, D. We
built simple models of the CPU cycles spent in these phases
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Fig. 4. A comparison of the (a) spike-based and the (b) proposed value-based algorithms.

by fitting the following linear functions to the profiling data
using a minimisation of the mean-squared error:
Cinput = 245 + 43D
Coutput = 100 + 702D

)
&)

Where cCipput and Cougpue are measured in cycles, 200 000 of
which are available per 1 ms simulation time-step when the
processor is running at 200 MHz. During the neuron update
phase, the dot product of the D-dimensional input vector and
the D-dimensional encoder vector is computed for each of the
N neurons. Additionally, when a neuron spikes, it is decoded
by adding its D-dimensional decoding vector to the current
output. Consequently the compute requirement of the neuron
update stage is a function of the both the dimensionality and
the number of neurons. To model this we again fitted a simple,
1st order, 2-D function to the profiling data by minimising the
mean-squared error:

Cneuron = 188 + 69N + 13N D (6)

Adding these equations together we can model the total CPU
cycle count as:

Ctotal = 933 + 745D + 69N + 13N D @)

By substituting D = 1 into (7), we can see that the maximum
number of neurons that could be supported in the 1-D case
is 2423. This matches our experimental findings that our

new simulator can simulate over 2000 neurons — double the
SpiNNaker system’s architectural target of 1000 [13]. In order
to compare this model with the spike-based communication
model discussed in §II-D, we can further simplify (7) by
substituting D = % to reflect Eliasmith’s [11] analysis:

Ciotal = D33 + 80N + 0.19N? (8)

Finally, using the CPU cycle estimates for updating neuronal
state and processing incoming synaptic events quoted by Sharp
and Furber [9] and the incoming spike rates measured in §II-D,
we can build a similar model of the CPU cycle count of the
standard SpiNNaker simulator:

Cspike—based—total = 128N + 3N2 (9)

These models show that our implementation requires signifi-
cantly fewer CPU cycles per neuron than the general purpose
SpiNNaker simulator, allowing it to simulate up to 834 neurons
per core in this configuration. This is more than 3.5x the 236
neurons per core that the general purpose SpiNNaker simulator
can achieve in the same configuration.

B. Memory utilisation

The dense connection weight matrix for any connection
between populations of Np. and N neurons in the NEF
will be of size Npe X Nposy and, under the spike based
algorithm, would be stored entirely in the memory of the post-
synaptic core. When factored weight matrices are substituted
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TABLE I
MEMORY USAGE OF SYNAPTIC WEIGHTS IN BASAL GANGLIA MODEL

Inputs 16 32 64 128

Full weight matrix / MiB 5.38 20.34 78.96 311.04
Factored / MiB 0.18 0.63 2.37 9.18
Reduction / %  96.71  96.89  96.99 97.05

Memory usage of the synaptic weights (full matrix and factored) for the
standard Basal Ganglia implementation from Nengo (70 neurons per input).

for the full weight matrix, as described in §III, the memory
usage is split between the pre- and post-synaptic cores. The
post-synaptic core needs to store a single encoder matrix of
size Dpost X Npost While the pre-synaptic core will store a
decoder matrix of size Dpye X Npre, Where Dpopulation 1S the
dimensionality of the population.

For example, a 16-D communication channel constructed
from two 1120-neuron populations will require 1254400
values to be stored in the memory of the post-synaptic core to
represent the full weight matrix. If factored weight matrices
are used then both the pre- and post-synaptic cores must store
17920 values, although the post-synaptic core will not need to
store any more data for further incoming connections. Using
16 bit to store each synaptic value and, as in our implementa-
tion, 32 bit to store each encoder/decoder value this becomes
2.4 MiB to store the full weight matrix or 70.0 KiB each to
store the encoder and decoder (a total of 140.0 KiB). Factored
weight matrices achieve a saving of 94.3 %.

Table I shows the memory usage from the connections
within the basal ganglia model used in Spaun. The reduction
in memory usage that results from using factored weight
matrices is significant — indeed, it should be noted that for a
basal ganglia accepting 128 inputs representing the connection
weights would require the SDRAM of three SpiNNaker chips
if full weight matrices were used.

C. Simulating large-scale models

To illustrate the correctness of our technique and to provide
a comparison between SpiNNaker and the reference NEF

implementation (Nengo [14]), we simulated a larger model
based on the basal ganglia model used in Spaun [15].

For the purposes of our benchmark, we assigned a 16-D
semantic pointer to each basal ganglia input and generated
utility values over time by comparing these to a repeating
sequence of semantic pointers. A sample of the basal ganglia
input and output are shown in Fig. 6.

We simulated this model for 10s using a SpiNNaker ma-
chine and the standard NEF implementation on a standard
desktop PC (3 GHz AMD Athlon II X3 445). Fig. 7 shows the
time required to perform certain stages of preparing, uploading
data to the SpiNNaker machine, executing the model and re-
trieving data for two scales of model. As expected, SpiNNaker
is able to perform the simulation in biological real-time and is
thus significantly faster than Nengo for this example despite
the additional overheads. It is likely that as the scale and
complexity of models increase the overheads will follow, but
this should be less than the expected growth in simulation time
on the PC.

V. DISCUSSION
A. Comparison to prior SpiNNaker implementations

Galluppi, Davies, Furber, et al. [16] demonstrated a SpiN-
Naker implementation of the NEF using the approach de-
scribed in §II-B. For the reasons advanced in this paper,
we believe that this system would not have been capable
of successfully simulating models of the scale or complexity
of Spaun in biological real-time. First hand experience with
this system indicated that the load time required to transfer
full synaptic matrices to a SpiNNaker machine could be
extensive. To avoid this Galluppi et al. suggested transmitting
factored weight matrices and performing their multiplication
on SpiNNaker. While this would have reduced the load time it
may have resulted in poor accuracy due to the lack of floating
point hardware on SpiNNaker. Moreover, it would have neither
reduced the amount of memory that would be required on
SpiNNaker nor reduced the overloading of the processors due
to high spike rates and would still have resulted in inefficient
use of the architecture.
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B. Comparison to other neuromorphic simulators

SpiNNaker is one of a range of neuromorphic simulators,
a family including both analogue (e.g., Neurogrid [2], Brain-
ScaleS [3]) and digital (e.g., TrueNorth [4]) hardware, which
aim to reduce the power consumption and execution time
for simulating large neural models. These simulators can be
expected to require less power than SpiNNaker for a given
scale of model [17], but are limited to simulating the types

of neurons and synapses they were fabricated with, whereas
SpiNNaker can be reprogrammed to investigate new models.
In the context of running NEF models of the type discussed in
this paper, there is another key limitation of these systems —
the number of hardware synapses associated with each neuron.
In the case of TrueNorth this number is only 256 and for the
BrainScaleS 16 000, restricting the size of the populations that
can be connected using dense connectivity matrices to only 16
and 126 respectively.

C. Comparison to general purpose computer simulators

The reference implementation of the NEF is Nengo [14].
This defines a backend-agnostic set of elements that can
be used to construct networks using the principles of the
NEF, and a simulation tool which uses the same technique
of factoring weight matrices that we have exploited here to
reduce memory usage. Bekolay, Bergstra, Hunsberger, et al.
[14] show that this reference implementation performs well
in comparison to alternative PC-based neural simulators such
as Brian [18], NEURON [19] and NEST [20] and can also
be accelerated using commodity GPU hardware. However,
while an ATI Radeon HD 7970 GPU can simulate around
500000 000 neurons in real-time [14] — comparable to our
approach running on a 48 chip SpiNNaker system — scaling
beyond one GPU is likely to be constrained by PCI bus
bandwidth. Furthermore, GPUs can be expected to consume
significantly more power [21] than an equivalent SpiNNaker
system [17].

We have extended the work of Bekolay et al. by indicating
specific reductions in memory usage and by transferring the
factored weight matrix simulation scheme to a distributed com-
puting architecture. A particular advantage of the SpiNNaker
architecture is that it will simulate networks in biological real-
time regardless of model scale and complexity (see Fig. 7)
— something that is not possible for commodity hardware.
Furthermore, as a real-time system it is able to interface
with neuromorphic hardware (e.g., artificial retinas [22], or
cochleas [23]).

D. General applicability of the algorithm

As SpiNNaker is an example of a message passing archi-
tecture we expect that our simulation scheme, transmitting
decoded representations of ensemble activity rather than spike
activity, to be equally applicable to simulating neural nets on
any message passing distributed architecture, such as MPL

Additionally, beyond the NEF, factored weight matrices may
be applicable to further types of synaptic matrix. Furthermore,
while we have specifically optimised for the case where
the factorisations of all connections terminating at a given
population may share the same encoder matrix, this need not
be the case.

E. Future work

This work has laid the basis for simulating truly large-
scale NEF models in biological real-time. We plan several
improvements which should allow a greater number of neurons



to fit on a single core and, beyond this, we anticipate the
implementation of further neuron and synapse models. We
also intend to better assess the computational cost or gain
of value-based transmission when implementing learning rules
(e.g., [24]) and investigate how a constant traffic pattern affects
the SpiNNaker network architecture.

VI. CONCLUSION

The dense synaptic weight matrices and high firing rates
characteristic of neural networks built using the NEF lead to
inefficient use of the SpiNNaker architecture when using the
standard algorithms for simulating neural nets. In particular
storing the synaptic matrices of these networks requires large
amounts of memory and the high firing rates and dense neural
connectivity exceed the computational resources available to a
SpiNNaker core running in biological real-time. To overcome
these constraints we extended a simulation scheme proposed
by Bekolay, Bergstra, Hunsberger, et al. [14] which used fac-
tored weight matrices. This proposed scheme requires around
90% less memory in many cases and is able to simulate many
more neurons per core than would otherwise be possible — up
to 2000 neurons per core, double the SpiNNaker architectural
target. We intend to use the algorithm we have presented to
simulate the Spaun functional brain model in biological real-
time.
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