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Abstract

A  long-standing  challenge  in  cognitive  science  is  how
neurons could be capable of the flexible structured processing
that is the hallmark of cognition.  We present a spiking neural
model  that  can  be  given  an  input  sequence  of  words  (a
sentence)  and produces a  structured tree-like  representation
indicating  the  parts  of  speech  it  has  identified  and  their
relations  to  each  other.   While  this  system  is  based  on  a
standard  left-corner  parser  for  constituency  grammars,  the
neural nature of the model leads to new capabilities not seen
in  classical  implementations.   For  example,  the  model
gracefully  decays  in  performance  as  the  sentence  structure
gets  larger.   Unlike  previous  attempts  at  building  neural
parsing systems, this model is highly robust to neural damage,
can  be  applied  to  any  binary-constituency  grammar,  and
requires relatively few neurons (~150,000).

Keywords: Neural engineering framework; vector symbolic
architectures;  left-corner  parsing;  syntax;  binary  trees;
computational neuroscience

Introduction
Human language processing requires not only the ability to
represent complex structures,  but also the ability to create
these  representations  out  of  a  serial  sequence  of  words.
This system is flexible enough to work for a huge variety of
possible sentences, including (crucially), novel sentences.

Modern linguistics is founded on the principle that these
structured  representations  are  tree-like,  and  that  this  tree
structure  imposes  useful  order  on  the  sentence.   For
example, “the dog ran” can be parsed as follows:

Here the sentence (S) is divided into a noun phrase (NP) and
a  verb  phrase  (VP).   The  noun  phrase  is  divided  into  a
determiner  (DT)  “the”  and  a  noun (N)  “dog”.   The verb
phrase consists of a single verb (V) “ran”.

To  describe  the  space  of  possible  trees  we  define
constituency rules indicating how the parts can fit together.
For  example,  the  above  sentence  is  consistent  with  the
following constituency grammar rules:

S → [NP VP] DT → “the”
NP → [DT N] N → “dog”
VP → [V] V → “ran”
(Structural rules) (Vocabulary)

By adding more structural rules (on the left), we can build
more complex sentences.   By adding more words (on the
right), we can increase our vocabulary.

Left-Corner Parsing
As  more  rules  are  included  in  the  grammar,  parsing
becomes  more  complicated.    More  rules  mean  more
possibilities, and finding a tree that is  consistent  with the
rules can become computationally expensive.  For example,
there  may be  the two rules  VP → [V] and  VP → [V
NP], leading to an explosion of possible structures to search
through.   Furthermore,  a  single  word  may have  multiple
interpretations, such as N → “dog” and V → “dog”. 

The Left-Corner parsing algorithm addresses this problem
by combining bottom-up and top-down information.  The
top-down  information  is  what  part  of  speech  we  are
currently  looking  for  (a  sentence,  a  noun  phrase,  a
determiner, etc.).  The bottom-up information is the single
word we are currently processing.  So, if we are currently
looking for a noun, we will first try interpreting the word
“dog” as a noun, rather than a verb.  If this does not lead to
a successful parse, then the algorithm will backtrack to this
point  and try the other  option.  This approach  drastically
reduces the amount of backtracking needed.

For “the dog ran”, the algorithm proceeds as follows:
• Top-down: look for S
• Bottom-up: see “the”
• Apply rule DT → “the”
• Apply rule NP → [DT N]
• Store the partially completed tree

◦ Top-down: look for N for previous rule
◦ Bottom-up: see “dog”
◦ Apply rule N → “dog”
◦ Merge with previously stored tree

• Apply rule S → [NP VP]
• Store the partially completed tree

◦ Top-down: look for VP for previous rule
◦ Bottom-up: see “ran”
◦ Apply rule V → “ran”
◦ Apply rule VP → [V]
◦ Merge with previously stored tree

As has been pointed out (e.g. Johnson-Laird, 1983), this
algorithm  matches  well  with  observed  human  sentence
comprehension.  For example, it has difficulty with “garden-
path” sentences such as the classic “the horse raced past the
barn  fell”,  which  is  difficult  for  most  people  to  interpret
even though it has a similar form as the easier sentence “the
deer shot by the hunter fell”.  A left-corner parser has the
same tendency as people do to connect the ambiguous word
“raced” as part of a S → [NP VP] rule.
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Previous Models
Cognitive models of left-corner parsing already exist.  For
example,  Lewis  and  Vasishth  (2005)  present  an
implementation using the ACT-R cognitive architecture.  In
that work, a set of IF-THEN production rules (for selecting
grammar  rules  to  apply)  are  combined with a  declarative
memory system (for storing the partially completed parts of
the tree).  The result is a computational model that shows
how existing cognitive modules (for which there is strong
prior  evidence  they  exist  in  the  human brain)  can  be  re-
purposed  to  perform  left-corner  parsing.   The  model's
reaction  times  and  error  patterns  match  well  to  human
subjects.   However,  this  work  does  not  offer  a  neural
explanation of how those particular modules and structures
could  be  physically  instantiated  within  the  human  brain.
Indeed, the question of how language could be represented
and manipulated by interacting neurons is a long-standing
question in cognitive science (e.g. Jackendoff, 2002).

For a neural  explanation of this process,  van der Velde
and  de  Kamps  (2006)  offer  their  Neural  Blackboard
Architecture.   Here,  a  set  of  specific  neural  groups  can
temporarily  come  to  represent  different  nouns,  verbs,
adjectives, and so on.  This makes it possible to represent
structured information such as sentences.   While we have
previously  argued  (Stewart  &  Eliasmith,  2012)  that  the
neural  structures proposed by this approach are inefficient
and do not correspond to those seen in real brains, the core
difference here is that they have only shown how specific
cases  of  sentence  patterns  might  be  parsed,  rather  than
presenting  a  general  method  for  parsing  arbitrary
compositional grammar rules, as is attempted here.

Finally,  we  previously  presented  a  system  for  parsing
highly specific  sentence  patterns,  but  using a biologically
realistic neural  model (Stewart  & Eliasmith, 2013).  These
parsed commands, such as “write two” or “if see eight write
three”, could be successfully interpreted as commands and
used to guide action (Choo & Eliasmith, 2013).  However,
as  with  the  work  by  van  der  Velde  and  de  Kamps,  this
model was restricted to parsing highly specific grammatical
forms.   The  purpose  of  this  paper  is  to  generalize  to
significantly more complex grammars and to connect  this
neural  work  to  the  grammatical  structures  seen  in
established linguistic theory.

The Semantic Pointer Architecture
The core contribution of this paper is an implementation of
general-purpose  left-corner  parsing  within  a  biologically
realistic cognitive architecture.  For that purpose, we use our
Semantic Pointer Architecture (Eliasmith, 2013), which has
been  previously used  to  build Spaun,  the first  large-scale
brain  simulation  capable  of  performing  multiple  tasks
(Eliasmith et al., 2012).  In the SPA, all parts of the model
can  be implemented  using biologically  realistic  simulated
spiking neurons.  For this paper, we use the standard Leaky
Integrate-and-Fire (LIF) neuron model.  Each module in the
SPA corresponds to a particular brain area, and the synaptic
connections are optimized to compute some function.

For example, a common cortical module is a buffer.  This is
a group of neurons whose purpose is to store a value over
time.  We formalize this by expressing it  as a differential
equation as follows: the value to be represented is  x,  and
there is some input to the group of neurons u.  If we want a
group of neurons that can store x over time, then we want x
to not change at all when u is zero.  In other words, if there
is no input, do not change the value, and if there is an input,
change the stored value by that much.  Mathematically, this
can be written as dx

dt
=u .

The reason to express this as a differential equation is that
any differential equation can be approximated by a group of
spiking neurons using the Neural  Engineering Framework
(NEF;  Eliasmith  &  Anderson,  2003).   We  do  this  by
randomly generating a tuning curve (the neural activity for a
given  x value)  for  each  neuron,  consistent  with observed
firing patterns  from that  cortical  area.   For  example,  one
neuron may fire at 1Hz for  x  = -0.5, but fire at 10Hz for
x=1.0.  These tuning curves are randomly generated with a
distribution of firing patterns consistent with empirical data.
The NEF lets us do local optimization to find the optimal
synaptic connections between two groups of neurons so as
to achieve the empirically identified tuning curves.

That  is,  if  one  group  of  neurons  have  a  set  of  tuning
curves dependent on x, while another group of neurons need
tuning  curves  based  on  y,  then  we  can  find  a  set  of
connection  weights  from  x to  y such  that  the  neurons
approximate  the  computation  y=f(x).   When  recurrent
connections  are  introduced,  the  NEF  allows  for  the
approximation of any function dx

dt
=f(x,u).    Importantly, the

accuracy of this approximation is dependent on the number
of neurons and the complexity of the function (roughly, how
non-linear it is).

Since  x can  be  a  vector,  the  NEF  allows  for  the
implementation of neural models that manipulate vectors in
desired ways.  However, for a parsing system, we need to
manipulate symbolic structured information using vectors.

For  this,  we  turn  to  Vector  Symbolic  Architectures
(VSAs; Gayler, 2003).  These are a set of algorithms where
both  symbols  and  symbol  structures  can  be  expressed  as
high-dimensional vectors.  For example, we might have one
1000-dimensional  vector  that  means  “dog”,  and  another
that means N (noun), and even another that means “the”.
These vectors can be randomly chosen (as they are here), or
they  can  be  chosen  such  that  similar  terms  (“dog” and
“wolf”, for example) could have similar vectors.

We now need a way to combine these vectors.  We could,
for  example,  simply add them together  to produce a new
vector.   However,  this  would  result  in  lost  information;
dogs+chase+cats would be the same as  cats+chase+dogs.
Instead,  VSAs  introduce  a  binding  operation.   Different
VSAs choose different binding operators, and for our work
we chose circular convolution (Plate, 2003), written as ⊛, as
it can be efficiently implemented with the NEF.  We can
now  encode  the  sentence  “dogs  chase  cats”  as
S=dogs⊛subject+chase⊛verb+cats⊛object.  Importantly,
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VSAs  also  define  an  inverse  operation:  given  S we  can
determine  the  subject  of  the  sentence  by  computing
S⊛subject-1, which is approximately “dog”.

Here,  we extend this  approach  to full  parse trees.   For
example, “the dog ran” is represented as follows:

         
S = the⊛DT⊛NPL⊛SL

    + dog⊛N⊛NPR⊛SL

    + ran⊛V⊛VP⊛SR

This computes a single vector S which stores that particular
tree.  The terms “the”, “dog”, and “ran” are randomly
chosen vectors for each of those words.  The terms DT,  N,
NPL, SR, and so on are also randomly chosen vectors.  These
are used to indicate the structure of the tree.  Note that there
are different vectors for taking the left or right branch of the
tree (the R or L subscript).  This is so that the vector for the
nonsensical “ran the dog” will be different than the vector
for  this  tree  (SL and  SR would  be  swapped).   A  similar
approach could be used for more than just binary (left  or
right) branching, but only binary rules are considered here.

Given  the  vector  S,  we  can  determine  the  verb,  for
example, by computing S⊛(V⊛VP⊛SR)-1.  A parse is only
considered accurate if this vector is closer to “ran” than to
any other word in its vocabulary.  For this paper, vocabulary
sizes are set at 10,000 other randomly chosen vectors.

The  Semantic  Pointer  Architecture  uses  vectors  as  a
generic  method  for  passing  information  between  cortical
modules.   For  example,  buffers  can  store  information,
sensory areas  can turn stimuli into the appropriate  vector,
and motor areas take vectors describing the desired action
and convert  them into muscle movements  (see  Eliasmith,
2013 for more details).  However, it also needs a method for
controlling  the  flow of  information  between  these  neural
modules.  We achieve this via a model of the cortex-basal
ganglia-thalamus loop (Stewart, Choo, & Eliasmith, 2010).
This acts as an action selection and action execution system.
Neural connections from the rest of the brain into the basal
ganglia compute the  utility of each of the possible actions
that could be taken.  The basal ganglia determine which of
those utility values is largest, and pass that information to
the  thalamus.   In  the  thalamus,  neurons  for  every  action
except for the one that is chosen are suppressed.

To build a model with the SPA, we thus define a set of
actions that can be performed.  For each action i, we define
its effects Ei (what vectors should be sent from one cortical
area to another) and its utility Ui (a function that should give
a value near  1 when this action should be performed and
smaller values otherwise).  For example, the following rule
would send the output from a memory module to the input
to a speech module whenever the vision module sees a dog:

Ui: vision∙dog    (this will be large when vision=dog)
Ei: speech ← memory

These  rules  are  efficiently  implemented  via  the  NEF,
requiring  ~300  basal  ganglia  neurons  per  rule  (Stewart,
Choo, & Eliasmith, 2010).

The Model: Left-Corner Parsing in SPA
To  develop  a  neurally  plausible  implementation  of  left-
corner parsing within the Semantic Pointer Architecture, we
need  to  define  cortical  modules,  their  functions,  and  the
basal  ganglia/thalamus  rules  that  coordinate  the  flow  of
information between these modules.

For cortical modules, we only need one basic component:
a  buffer capable of storing a semantic pointer.   This is  a
module that stores a single high-dimensional vector (for this
model, 1000 dimensions is sufficient) over time.  We need
three of these: one to store the tree being built (tree), one to
store the current top-down goal (goal; what part of speech
we are looking for), and one to store the partially completed
trees  (partial).   Note  that  the  neural  modules  needed  to
visually recognize words, or to move visual attention from
one word to the next, are not considered here (see Tang &
Eliasmith, 2010 and Bobier, Stewart & Eliasmith, 2011 for
potential modules).

Since these buffers store vectors, we can use the approach
of  Vector  Symbolic  Architectures  to  store  a  tree  within
them. We assume words are presented sequentially, and that
their vectors are stored in the buffer called tree.

We now need rules  for  the basal  ganglia  and thalamus
system  that  cause  the  model  to  implement  the  parsing
algorithm.  We start with simple rules of the form X → [Y].
For  each  of  these,  we  need  a  system  that  says  if  we're
currently parsing a Y, we should build a tree that consists of
an  X connected  to  a  Y.   In  terms of  vectors,  this  means
building a new vector that is  X +  tree⊛X. For example, if
the tree buffer contains ran and we have a rule V → ran,
we want to compute V + ran⊛V and store that in the tree
buffer.  This can be written in SPA form as follows:

Ui: tree∙Y
Ei: tree ← X + tree⊛X

Note  that  the  utility  of  this  rule  is  the  dot  product  of
whatever is in the tree buffer and the Y part of the rule, so it
will only be active when the tree looks like Y.

To  see  how  this  helps  to  build  up  the  desired  tree,
consider  what  happens  if  there  is  another  similar  rule
implementing  VP → [V].  Once the first rule is active, the
tree buffer will contain  V +  ran⊛V.  This will cause the
rule for VP → [V] to have a high utility (since its utility is
tree∙V).  The effect of the rule is tree ← VP + tree⊛VP, so
the result will be VP + (V + ran⊛V)⊛VP.  This vector is
highly similar  to  ran⊛V⊛VP,  which  is  part  of  what  we
need for parsing the complete tree for “the dog ran”.  

We also need to  handle rules  of  the form  X →  [Y Z],
which gives the branching capability to the tree.  Here we
need to not only build up a tree, but we also need to set a
new top-down goal to find a Z.  The utility is the same as in
the previous rule (we want the rule to be active when  tree
contains  a  Y),  but  we  also  want  to  store  the  partially
completed tree and go on to processing the next word.  An
initial version of this rule's effect would be:
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Ei: partial ← X + tree⊛XL

     tree ← the next word
     goal ← Z

This rule would successfully store the partially completed
tree  in  the  partial buffer,  and  then  would  go  on  to  start
trying to parse the next word, trying to find a Z.  However,
setting this new goal in this way would completely replace
the old value in  goal.  Indeed, setting the new  partial tree
would completely erase any previous partial tree.  

To deal with this, we use the vector to store a list of trees
(akin to a “stack”).  This list can all be stored as a single
vector  by  combining  with  circular  convolution.   For
example, if the goal currently contains the vector for  S (a
sentence), but due to a rule like NP → [DT N] we now need
to look for an  N (a noun), we can set the new  goal to be
N+goal⊛STACK, where  STACK is another random vector.
In this case, the goal will now be N+S⊛STACK.  If we now
need  to  look  for  a  V (a  verb),  we  would  compute
V+goal⊛STACK,  giving  V+(N+S⊛STACK)⊛STACK,  or
V+N⊛STACK+S⊛STACK⊛STACK.   Note  that  to  remove
an  item from the  stack,  we  can  compute  goal⊛STACK-1,
which  would  give  us  back  an  approximation  of
N+S⊛STACK.  This approximation will gradually become
worse as the number of items in the stack increases.

The resulting rule for X → [Y Z] is as follows:

Ui: tree∙Y
Ei: partial ← X + tree⊛XL + partial⊛STACK
     tree ← the next word
     goal ← Z + goal⊛STACK

Finally,  we  need  a  top-down rule  to  recognize  when  we
have found a part of speech we are looking for.  When it
does so, we combine it  with the partial  tree on the stack,
remove it from the stack, and continue.  For a rule of the
form X → [Y Z], we get:

Ui: (partial∙X)(goal∙tree)
Ei: tree ← partial + XR⊛tree
     goal ← goal⊛STACK-1

     partial ← partial⊛STACK-1

So, if we are on the last word of “the dog ran”, the stored
value  in  partial will  be  close  to  the⊛DT⊛NPL⊛SL  +
dog⊛N⊛NPR⊛SL and the value in tree will get built up to
approximately  ran⊛V⊛VP,  as indicated previously.   The
goal  will  be  VP.  This  means that  the utility  for  this  top-
down version of the S → [NP VP] rule will be high (since
partial∙S will be large and  goal∙tree  will be large).  The
resulting tree will be  partial +  SR⊛tree,  or approximately
the⊛DT⊛NPL⊛SL + dog⊛N⊛NPR⊛SL + ran⊛V⊛VP⊛SR.  This is
the desired vector for the correct parse of the tree.

This algorithm will work for arbitrary binary construction
grammar rules.  However,  it needs to be extended to deal
with multiple possible rules that could be applied at once
(ambiguous sentences), as is discussed below.

Parsing Results
This biologically plausible left-corner parsing algorithm is
capable of computing the vector-based tree representation of
a  sentence,  given  a  set  of  constituency  grammar  rules.
These  rules  are  converted  into  connections  between  the
cortex,  basal  ganglia,  and  thalamus,  as  per  the  Semantic
Pointer Architecture.  That neural structure is then capable
of parsing sentences consistent with those rules.

It  must  be  remembered  that  implementing  these  rules
using semantic pointers results in an  approximation of the
traditional  symbolic  parsing  system.   As  the  sentence
structure becomes arbitrarily complex, it will fail to produce
an accurate parse.   However,  the existing model succeeds
for sentences and rules sets such as “the dog chases the cat”.

VP → [V NP] NP → [DET N]
S → [VP] NP → [N]
S → [NP VP]

To demonstrate  more  complex  parsing,  we  add  rules  for
subordinate clauses.  In previous work (Choo & Eliasmith,
2013) we had built neural models that could follow orders
of the form “if see square, press button”.  Rather than using
the  special-case  neural  parser  we  had  built  previously
(Stewart & Eliasmith, 2013), the parser presented here can
be extended by adding the following rules, where  IN is a
subordinating  conjunction  (such  as  “if”),  and  SBAR is  a
subordinating conjunctive phrase (“if see square”).

S → [SBAR VP]   SBAR → [IN S]

Importantly, this system can also parse more grammatically
complete sentences.   Indeed, if we also add the following
rule for PRP (personal pronouns), then the system is able to
successfully parse “if you see a square, press the button”.

NP → [PRP]
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Parsing Accuracy
While  the  model  is  capable  of  parsing  the  previous
sentences,  its  capabilities  are  not  perfect.   Indeed,  the
accuracy of the parsing is dependent on the accuracy of the
neural  representation.   This  is  a  concrete  example  of  the
competence  vs.  performance  distinction:  while  the
underlying algorithm may be have the competence to parse
those sentences, the neural implementation may not match
that in terms of actual performance.

We can  analyze  this  by  determining  the  probability  of
correctly parsing the sentence as we increase the amount of
noise.  A word is considered to be correctly parsed if we can
extract it from the vector for the sentence, using the standard
approach  to  extracting  in  Vector  Symbolic  Architectures.
For example, for the “the dog ran” the ideal resulting vector
is  S = the⊛DT⊛NPL⊛SL  + dog⊛N⊛NPR⊛SL  + ran⊛V⊛VP⊛SR.
To  determine  if  “the”  was  parsed  correctly,  we  compute
S⊛(DT⊛NPL⊛SL)-1.  If  this vector is closer to the vector for
the than to any other vector in the vocabulary of 10,000
words, then the parse is considered to be correct.  Noise is
adjusted by adding random values to the stored tree, partial,
and  goal vectors after every rule.  Finally, if the algorithm
fails (i.e. no words can be extracted), then we retry it until it
succeeds.   Figure  1  shows  that  performance  gets  much
worse  with  noise  values  of  0.15  or  more,  and  that  even
small values of noise require an average of 0.6 retries.

Figure 1: The probability of successful parsing and the
number of retries needed as the random noise varies.  95%

confidence intervals are shown.

These results give us a lower bound on the accuracy of the
neural representation that is needed for the buffers.  Since
the Neural Engineering Framework indicates that accuracy
is increased as more neurons are added, we can find how
many neurons  are  needed  for  each  buffer  to  achieve  this
level of accuracy.  We do this by creating groups of neurons
with  connection  weights  between  them optimized  via  the
NEF to compute the function  (i.e. the value x that is
being stored should not change).  The network is initialized
to contain a randomly chosen vector x, and the model is run
for  50  milliseconds.   We have previously shown that  50
milliseconds is the average amount of time taken between
rule activation (Stewart, Choo, & Eliasmith, 2010). 

Figure 2: Amount of representational noise for different
numbers of neurons.  95% confidence intervals are shown.

Figure  2  shows  that  50  to  100  neurons  are  needed  per
dimension  to  achieve  noise  levels  around  0.15.   Since
Figure 1 indicates that performance is much improved with
noise below 0.15, and since we are using vectors with 1000
dimension, we build our final  model with 50,000 neurons
per buffer.  The complete model has 3 buffers and 18 basal
ganglia/thalamus/cortex rules (300 neurons each), resulting
in  a  parsing  system  with  155,400  neurons.   Importantly,
Figures 1 and 2 also show that the model exhibits graceful
degradation.  If neurons are removed (or die), accuracy will
gradually decrease.

Using Parsed Commands
While the model presented  thus far  is  capable  of  parsing
sentences, the real test is to be able to parse a sentence and
then make use of that information.  In previous work (Choo
& Eliasmith,  2013),  we presented a spiking neural  model
that  is  capable  of  following  instructions  of  the  form “If
<condition>, <do action>”.   However,  that  model did not
perform the parsing itself.  It relied on a special-case neural
parser that only worked on particular word patterns (Stewart
&  Eliasmith,  2013).  Since  they  both  make  use  of  the
Semantic  Pointer  Architecture,  the  general-purpose  left-
corner  parser  presented  here  can  be  combined  with  the
instruction-following model.

In the instruction-following model, the instruction “if see
square, write two” was encoded as:

CONDITION (SENSE VISION + SENSE_DATA SQUARE)⊛ ⊛ ⊛
 + ACTION (MOTOR WRITE + MOTOR_DATA TWO)⊛ ⊛ ⊛

With the parser presented here,  we can directly use the
parsed sentence as a command to the instruction-following
model by making the following definitions:

CONDITION = SL

SENSE = V VP⊛ L S SBAR⊛ ⊛ R

SENSE_DATA = N NP VP⊛ ⊛ R S SBAR⊛ ⊛ R 
ACTION = SR

MOTOR = V VP⊛ L

MOTOR_DATA = N NP VP⊛ ⊛ R

The result is a biologically plausible neural model where
we can  feed  in  a  set  of  commands  as  sentences,  and  the
model can parse those sentences, remember them, and apply
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them to incoming stimuli.  For example, Figure 3 shows the
effect of a system configured to follow these instructions:

P1. If see square write 1
P2. If see circle write 2
P3. If hear one press button1
P4. If hear two press button2

The the visual  and sensory inputs to  the model  change
(top four rows of Figure 3), the model successfully responds
as  appropriate  (bottom two rows).   Of  course,  the model
presented here does not include all the details necessary to
actually perform the motor actions or the visual processing
necessary to complete these tasks.  The purpose here is to
show that  the  model  is  capable  of  correctly  selecting  the
task to perform.

Figure 3: The instruction-following model.  Each row is a
different group of neurons.  Labelled lines indicate the value
represented by this group of neurons is close to the indicated

vector.  First the model is visually shown a SQUARE (top
row), and it responds correctly with the motor action of

WRITE NUM1⊛  (“write the number 1”; bottom row).  It then
hears a ONE, is shown a CIRCLE, and a SQUARE again.  The

correct motor response is given each time.

Conclusions and Future Directions
We have presented a basic version of left-corner syntactic
parsing  that  can  be  implemented  in  biologically  realistic
spiking  neurons.   This  makes  use  of  the  cortex-basal
ganglia-thalamus loop in the brain, and is compatible with
our  ongoing  development  of  large-scale  neural  models
capable of performing cognitive tasks.  This shows how our
Semantic Pointer Architecture can be adapted to implement
cognitive  algorithms,  and  that  the  resulting  models  can
accurately  manipulate  complex  structured  representations
like parse trees.

However,  in order  to truly model syntactic  parsing,  the
model needs to be able to deal with ambiguity.  Right now,
if  the  parsing fails  (due  to  it  choosing the wrong rule to
apply when multiple rules could be applied at a given time),
we  simply  reset  the  model  and  re-run  it,  hoping  it  will
choose  the  correct  action  next  time.   We  are  instead
exploring methods to suppress recently applied rules, so as
to encourage the use of alternatives and greatly improve this
recovery  process.   We  are  also  examining  applying

reinforcement learning to situation, allowing it to learn to
adjust  the  utility  values  Ui,  opening  up  the  possibility  of
context-sensitive parsing. 

Other ongoing work is in improving the accuracy of the
system.   In  particular,  it  appears  that  the  parse  accuracy
(Figure 1) can be improved by increasing the dimensionality
of the vectors and at the same time decreasing the number of
neurons per dimension.

References
Ball,  J. (2011).  A Pseudo-Deterministic Model of  Human

Language Processing. 33rd  Cog. Sci. Society Conference.
Bobier,  B.,  Stewart,  T.C.,  and Eliasmith,  C. (2011).   The

attentional  routing  circuit:  receptive  field  modulation
through nonlinear dendritic interactions.  Proceedings of
Cognitive and Systems Neuroscience.

Choo,  X.  and  Eliasmith,  C.  (2013).  General  Instruction
Following in a Large-Scale Biologically Plausible Brain
Model.  35th  Cog. Sci. Society Conference.

Eliasmith,  C.  (2013).  How  to  build  a  brain.  Oxford
University Press, New York, NY.

Eliasmith,  C.  and  Anderson,  C.  (2003).   Neural
Engineering. Cambridge: MIT Press.

Eliasmith,  C.,  Stewart,  T.C.,  Choo,  X.,  Bekolay,  T.,
DeWolf,  T.,  Tang,  Y.,  and  Rasmussen,  D.  (2012)..  A
large-scale  model  of  the  functioning  brain.  Science,
338:1202-1205,.

Gayler,  R. (2003). Vector Symbolic Architectures Answer
Jackendoff’s  Challenges  for  Cognitive Neuroscience,  in
Slezak,  P.  (ed).  Int.  Conference  on  Cognitive  Science,
Sydney: University of New South Wales, 133–138. 

Jackendoff,  R.  (2002).  Foundations  of  language:  Brain,
meaning, grammar, evolution. Oxford, UK.

Johnson-Laird,  P.  N.  (1983).  Mental  models.  Cambridge,
MA: Harvard University Press.

Lewis,  R. L. and Vasishth, S. (2005). An activation-based
model of sentence processing as skilled memory retrieval.
Cognitive Science, 29:375-419.

Plate,  T.  (2003).  Holographic  Reduced  Representations,
CSLI Publications, Stanford, CA.

Stewart, T.C., Choo, X., and Eliasmith, C. (2010). Dynamic
Behaviour of a Spiking Model of Action Selection in the
Basal Ganglia. 10th Int. Conf. on Cognitive Modeling.

Stewart,  T.C.,  and Eliasmith,  C. (2012).  Compositionality
and biologically plausible models. In  Oxford Handbook
of Compositionality. Oxford University Press, 2012.

Tang,  Y.  and  Eliasmith,  C.  (2010).  Deep  networks  for
robust  visual  recognition.   Proceedings  of  the
International Conference on Machine Learning, 

Stewart, T.C. and Eliasmith, C.. (2013). Parsing sequentially
presented commands in a large-scale biologically realistic
brain model. In 35th Annual Conference of the Cognitive
Science Society, 3460-3467.

van  der  Velde,  F.  and  de  Kamps,  M.  (2006).  Neural
blackboard  architectures  of  combinatorial  structures  in
cognition.  Behavioral and Brain Sciences, 29, 37-70 

1538


