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Abstract-By building and simulating neural systems we hope 
to understand how the brain may work and use this knowledge 
to build neural and cognitive systems to tackle engineering prob­
lems. The Neural Engineering Framework (NEF) is a hypothesis 
about how such systems may be constructed and has recently 
been used to build the world's first functional brain model, 
Spaun. However, while the NEF simplifies the design of neural 
networks, simulating them using standard computer hardware 
is still computationally expensive - often running far slower 

than biological real-time and scaling very poorly: problems 
the SpiNNaker neuromorphic simulator was designed to solve. 
In this paper we (1) argue that employing the same model 
of computation used for simulating general purpose spiking 
neural networks on SpiNNaker for NEF models results in sub­
optimal use of the architecture, and (2) provide and evaluate an 
alternative simulation scheme which overcomes the memory and 
compute challenges posed by the NEF. This proposed method uses 
factored weight matrices to reduce memory usage by around 90% 
and, in some cases, simulate 2000 neurons on a processing core 
- double the SpiNNaker architectural target. 

I. INTRODUCTION 

For a given power budget, two factors limit the simulation 

of neural networks on any computing platform: scale and 
time. Theoretically, any scale of network may be simulated 
but as scale increases simulation time follows. Conversely, 
if the simulation time is limited (for example, if biological 
real-time is necessary) then only a limited scale of network 
may be simulated. Specialised neuromorphic hardware tries 
to avoid these constraints by parallelising and distributing 
computational effort and relying on dense interconnection of 
the computing elements. The SpiNNaker platform [1] is one of 
a range of neuromorphic simulators (including Neurogrid [2], 

BrainScaleS [3] and TrueNorth [4]) which should benefit 
researchers of large-scale neural models. 

The Neural Engineering Framework (NEF) [5] is a hy­
pothesis about how neurons may be used to encode abstract 
mathematical constructs, such as scalars and vectors, that 
we often use to model the real world. Its successes so far 
include the Spaun model of cognition [6] and a spiking neural 
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network that encodes and decodes the main lexical relations 
in WordNet [7]. As with all neural systems, the NEF has 
proven costly to simulate: the Spaun model typically required 
2.5 h of compute time for 1 s of simulation [8, §V]. Two 
aspects of NEF networks that make them particularly costly to 
simulate are the high firing rates of individual neurons (often 

up to 400 Hz) and the dense synaptic matrices used to connect 
neuronal populations. The former presents a significant com­
munication cost to any specialised neuromorphic hardware and 

the latter requires that large amounts of memory be used to 

represent the neural network with all the associated costs of 
transferring large blocks of data that implies. 

In this paper we: 

1) Argue that due to the properties of the NEF, the ex­
isting solutions and algorithms used to simulate neural 
networks on SpiNNaker will not scale satisfactorily to 

large-scale models such as Spaun. 
2) Detail a method by which features of the NEF may be 

used to reduce the memory and compute costs associated 
with its simulation. 

We hope to use the result to run the full Spaun model in 
biological real-time. 

II. BACKGROUND 

In this section we briefly discuss the SpiNNaker platform 
and how neural networks are currently simulated on it before 
introducing the Neural Engineering Framework (NEF) and dis­
cussing how models built with it may act to stress SpiNNaker 

in various ways. 

A. The SpiNNaker platform 

The SpiNNaker platform is a massively parallel architecture 
designed to simulate neural networks. A SpiNNaker machine 
is constructed from a number of SpiNNaker chips, each 
connected to their six immediate neighbours using a chip­
level interconnection network with a toroidal, triangular mesh 
topology. Each SpiNNaker chip contains 18 ARM processing 
cores connected, via a network-on-chip, to each other and the 

external network through a multicast router. Each core has two 
small tightly-coupled memories: 32 KiB for instructions and 



64 KiB for data; and shares 128 MiB of off-chip SDRAM with 
the other cores on the SpiNNaker chip. 

SpiNNaker is an event-driven, message-passing computing 
architecture. The software running on a core may transmit 
packets to other processing cores to indicate the occurrence 

of events or to share data. A packet consists of a 32 bit key, 
used to direct the packet around the network and, optionally, a 

32 bit data payload. When a packet reaches a router, its key is 
inspected to determine which (if any) of the 18 processors and 
six external links attached to the router it should be forwarded 
to. On receipt of a packet, a core executes a callback function 
which may inspect the packet and schedule further execution 

as required. 

B. Simulating neural nets on SpiNNaker 

When simulating neural nets on a SpiNNaker machine each 
core is responsible for simulating a number of point neurons 
(in the order of a few hundred). When one of these neuron 
spikes, it transmits a packet whose key uniquely identifies the 
neuron (for this it requires no payload). This "spike" packet 
is then routed across the network fabric to the processing 
cores responsible for simulating each of the neurons that are 
connected to the firing neuron. On receipt of a "spike" packet 

a core retrieves the row of the connectivity matrix associated 
with the firing neuron from SDRAM. Each of these rows 
describes the synaptic weights and delays associated with the 
connections between the firing neuron and those simulated on 
the core. Once a row is retrieved the weights are inserted into 
an input ring-buffer where they remain until the synaptic delay 
has elapsed and they are applied to the neuronal input current. 

Using this system there are two primary constraints on 
the number of neurons that may be simulated on a single 
processing core: 

1) The amount of memory required to store the synaptic 
weight matrices must fit within the space available to 
the core. This is 8 MiB as each core is allocated /6 of 
the 128 MiB SDRAM. 

2) As the majority of processing time is spent in the 
synaptic processing pipeline, there must be sufficient 
time for the core to process all incoming 'spike' packets; 
and retrieve and process the synaptic rows during one 
simulation time-step (see [9]). This time is a function 
of both the number of spikes received per time-step and 
the density of the synaptic matrix. Sharp and Furber [9, 

§III.C] indicate that at most there may be 5000 synaptic 
events per millisecond when running at biological real­
time, where a single synaptic event indicates one spike 
being passed through a single synapse to a neuron on 
the receiving core. 

These constraints may be satisfied by either allocating 
fewer neurons to each processing core or by increasing the 
processing time used for each simulation time-step. Hard time 
constraints are necessary when SpiNNaker is required to run 
in biological real-time, as it is in experiments with other 
neuromorphic hardware. Processor constraints are present for 

those with access to only small SpiNNaker machines such as 

those mounted in mobile robots. 
It should be noted that time is also a factor prior to the 

start of any simulation. All data required by the SpiNNaker 
machine during simulation must be transmitted to it through 
an ethernet interface, meaning that if more data is required on 
the machine more time is required to prepare it for simulation. 
Sharp and Furber [9] note that this preparation time can be of 
the order of several minutes - something that is undesirable 
if a real-time simulator is desired. 

C. The Neural Engineering Framework 

The Neural Engineering Framework (NEF) extends the 
concept of "preferred-direction vectors" [10] to all neural 
populations. Each population represents a vector within a 
particular space, within which, the firing rate of each neuron 
reflects the similarity of the represented vector to the neurons 
"encoding" vector. Using the notation of Stewart and Eliasmith 
[8] this "encoding" of a variable in vector form into a neuronal 
response may be expressed as: 

(1) 

Which states that the firing response of neuron i (6i) to the 
represented value (x) is the response of the neuron model (Gi) 
to an input consisting of a randomly selected gain term (exi), 
the encoding vector for the neuron (ei) and a fixed bias current 
(Jfias). Correspondingly, "decoding" allows a transformation 
from the spiking actions of neurons into the domain of vectors. 
Again using the notation of Stewart and Eliasmith [8] we can 

express this decoding process as: 

N 

X = L ai(x)di (2) 
i=l 

Where the estimate of the original represented value (x) is 
the sum of the spiking activity of each neuron (ai) multiplied 
by the linear decoder for the neuron (di). The decoding 
vectors may be selected to compute a function of the value 

represented by the population. Fig. 1 illustrates the encoding 
of a two-dimensional value using four neurons - the role of 

the encoding vectors can be seen in that each neuron becomes 
active for only a small range of the input space. 

For a connection between a pair of populations, a (dense) 
synaptic weight matrix can be calculated by computing the 
matrix product of the decoders of the pre-synaptic population 
and the encoders of the post-synaptic population [8]: 

(3) 

With i indexing neurons in the pre-synaptic population and 

j those in the post-synaptic population. 
An illustrative model that we will use later in this paper is 

the communication channel. A communication channel con­
sists of two populations connected with the synaptic weights 
chosen such that the second ensemble will represent the same 
value as the first ensemble. The concept is illustrated in 
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Fig. l. Representing a 2-dimensional value using four neurons. The input 
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the 2-D input vector (tuning curves) and the bottom right-hand plot shows a 
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Fig. 2. A NEF communication channel consisting of two populations of 
neurons and a connection. The diagram indicates how the abstract com­
munication channel might be instantiated on a simplified representation of 
the SpiNNaker architecture: Population A is split between processing two 
cores, consequently two streams of multicast packets allow simulation of the 
communication channel. 

Fig. 2; where, to illustrate how computational constraints may 
be satisfied, the pre-synaptic population has been partitioned 
across two processing cores. 

D. Assessing the Neural Engineering Framework (NEF) 

It is entirely possible to translate models built using NEF 

principles into populations of point neurons connected with 
dense synaptic weight matrices. These networks could then, 

in theory, be simulated using the standard SpiNNaker spiking 
neural network simulator described in §II-B. In this section we 
show that, based on parameters used in the Spaun functional 

brain model, this approach would result in sub-optimal usage 
of a SpiNNaker machine, given the constraints outlined in 
§II-B. 

The Spaun model is built using the Semantic Pointer Archi­
tecture (SPA) [11] which uses randomly chosen unit vectors to 
represent basic concepts. These concepts can then be combined 

into symbol structures using addition (+) and circular convo­
lution (®) operators, both of which can be evaluated using 
the principles of the NEE The circular-convolution operator 

is non-linear and, Eliasmith [11] demonstrates, requires around 

70 neurons per dimension to calculate accurately. 
For example, using the basic concepts (MOUSE, CHEESE, 

SUBJECT, OBJECT, EAT, VERB), a semantic pointer 

representing the sentence "Mice eat cheese" can be formed 
as S = MOUSE ® SUBJECT + EAT ® VERB + CHEESE ® 
OBJECT. The subject of this sentence could then be extracted 
using S ® SUBJECT' ;::::: MOUSE (where the' operator is 
an approximate inverse [11, §D.2l, calculated using a linear 
involution operation). However, the result of this operation will 
not be exactly MOUSE - to extract the MOUSE semantic 
pointer, the result needs to be "cleaned up". This process is 
performed using an auto-associative memory network [12] the 
properties of which dictate that, in order to reliably represent 
a human-scale lexicon, semantic pointers must be drawn from 
a vector space with around 500 dimensions. 

On the basis of these two parameters (500 dimensions and 
70 neurons per dimension) we can determine that semantic 

pointers with this dimensionality would need to be represented 
using populations of 3.5 x 104 neurons. A connection between 
two of these populations would therefore require a dense 
synaptic matrix with 1.225 x 109 entries. As synaptic weights 
on SpiNNaker are typically represented as 16 bit values, this 
full matrix would occupy approximately 2.28 GiB of memory 
meaning that, as each core only has 8 MiB of SDRAM, the 

post-synaptic ensemble would have to be distributed amongst 
292 cores. This would reduce the number of neurons simulated 
per core to only 120 - an order of magnitude short of 
SpiNNaker's architectural target of 1000 [l3]. 

Representational errors can be reduced both by increasing 
the number of neurons and by allowing them to fire at a 
higher rate [5]. However, models built using the NEF typically 
opt to use fewer neurons firing at rates of up to 400 Hz, 

meaning that in networks such as the communication channel 
example discussed in §II-C, each neuron fires at an average 
rate of around 100 Hz. If this example were simulated with 70 
neurons per dimension, the overall spike rate would increase 
linearly with dimensionality as shown in Fig. 3. In the 4 

dimensional case, this means that the post-synaptic ensemble 
will receive around 20 incoming spikes per time-step which, 
due to the dense connectivity matrices, will trigger a synaptic 

event for each of the 280 neurons in the ensemble. This results 

in a total of around 5600 synaptic events per time-step -
exceeding the limit of 5000 events per time-step found by 



Synaptic events (Communication channel) 
200 

c. 
2 VI 150 Q) 
E 

:;::; 
� 100 
c. 
VI 
� 50 
'0. 
Vl 

o 
o 4 8 12 16 20 24 28 32 

Number of dimensions 
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Sharp and Furber [9]. 

III. EXPLOITING FEATURES OF THE NEF FOR EFFECTIVE 

SIMULATION ON SPINNAKER 

In this section we review an alternative simulation scheme 
that will meet the constraints of the SpiNNaker hardware for 
a large range of networks constructed using the NEE The 
details of the NEF described above suggest this alternate, more 

efficient, implementation for SpiNNaker. We note that the 
synaptic weight matrices are computed via (3). This means that 
all the synaptic weight matrices are exactly factorable. More­
over every set of connection weights coming into an ensemble 

will have the same ajej factor applied to it. We can thus split 

the synaptic connection weight matrices into two parts: the 
"encoder" ajej and the "decoder" di. These matrices are of 
size N x D and D x N, where D is the "dimensionality" 
of the representation and is generally much smaller than N, 

the number of neurons. We can store the encoder in the core 
that is simulating the post-synaptic population, and we can 
store the decoder with the pre-synaptic population. This saves 
significant memory since the two factors are much smaller 
than the original weight matrix and we only need to store one 
encoder no matter how many sets of input connections there 
are. However, since the connection weight matrix is split in 

this way, we can no longer send a packet to represent each 
spike. Rather, the spikes are multiplied by the decoder and 
the resulting vector value is transmitted. Importantly, since 

the original weight matrices are perfectly factorable, the result 
is identical to the original SpiNNaker approach in terms of 
the neural behaviour, but with significantly reduced memory 
requirements, and, as we shall show, improved processor 
utilisation. Fig. 4a illustrates the scheme with the full weight 

matrix stored in the memory of the post-synaptic core and 
Fig. 4b illustrates the proposed scheme with the factored 
matrix split across the pre- and post-synaptic cores and with 
"value"-packets being transmitted between the processors. 

We split the execution time of a processing core into three 

steps: input filtering, neuron update and output. In the "spike" 
simulation scheme the "inputs" to a processing core take the 
form of "spike" packets which are used to drive a pipeline 

that retrieves synaptic weights from SDRAM; in our proposed 

scheme the inputs take the form of a set of packets whose 
payloads can be combined to form a vector. For example, 
the processing core simulating population B from Fig. 2 will 
receive two packets per time-step from each of the two cores 

simulating population A which, combined, will form a 2-D 
vector representing the current decoding of the activity of A. 
At the start of each simulation step the reconstructed vector is 
filtered using the appropriate synaptic filter model to provide 

the input current to the population - this is the input filtering 

step. 

During the neuron update step the state of each neuron is 

updated in turn. First the input for the neuron is computed 
by calculating the dot product between the encoding vector 
for the neuron and the current input to the population (aiei . 
x + Jfias from (1». Then the neuron itself is simulated, for 

example using the Euler method to compute the next state of 
a LIF neuron. If, during this process, a neuron spikes then 
its decoding vector (di) is looked up and added to a buffer 
containing the current decoding of the population activity (as 

in (2». Once all the neurons have been simulated the output 
buffer will contain a vector which represents the weighted 
decoding of any spikes which occurred during the simulation 
step. 

During the output stage each element of the vector con­
tained in the output buffer is transmitted in the payload of a 
multicast packet whose key uniquely identifies the population 

and element index. The cOlmnunication fabric routes these 
"value" packets to cores which simulate connected populations 
of neurons. 

Some ensembles may have multiple outgoing connections 
with different transformations or functions, meaning that there 
are multiple decoder matrices to apply when decoding the ac­
tivity of the population. In these cases we combine the matrices 
such that the decoding vector for any neuron is the concatena­

tion of the required decoders (i.e. , di = [d{(X), df(x), ... J). 
IV. RESULTS 

A. Processor utilisation 

To measure the CPU load when running the algorithm 

described in §III on SpiNNaker, we developed a simple tool 
to profile SpiNNaker executables. In this section we use this 
tool to analyse how the load on the processors simulating 
the ensembles in the communication channel network shown 
in Fig. 2 varies with number of dimensions and neurons. 
Fig. 5 shows how the proportion of CPU time spent in the 
different phases of the algorithm outlined in §III varies with 
both dimensionality and neuron count. 

The input filtering and output phases of the algorithm both 

transmit and receive one packet per simulation time-step for 
every dimension. Thus the CPU time spent in both phases is 
predominantly a function of the number dimensions, D. We 
built simple models of the CPU cycles spent in these phases 



(b) Value-based transmission 

Fig. 4. A comparison of the (a) spike-based and the (b) proposed value-based algorithms. 

by fitting the following linear functions to the profiling data 

using a minimisation of the mean-squared error: 

Cinput = 245 + 43D 

Coutput = 100 + 702D 

(4) 

(5) 

Where Cinput and Coutput are measured in cycles, 200 000 of 
which are available per 1 ms simulation time-step when the 

processor is running at 200 MHz. During the neuron update 

phase, the dot product of the D-dimensional input vector and 

the D-dimensional encoder vector is computed for each of the 
N neurons. Additionally, when a neuron spikes, it is decoded 
by adding its D-dimensional decoding vector to the current 
output. Consequently the compute requirement of the neuron 

update stage is a function of the both the dimensionality and 
the number of neurons. To model this we again fitted a simple, 
1st order, 2-D function to the profiling data by minimising the 
mean-squared error: 

Cneuron = 188 + 69N + 13N D (6) 

Adding these equations together we can model the total CPU 
cycle count as: 

Ctotal = 533 + 745D + 69N + 13N D (7) 

By substituting D = 1 into (7), we can see that the maximum 

number of neurons that could be supported in the I-D case 
is 2423. This matches our experimental findings that our 

new simulator can simulate over 2000 neurons - double the 
SpiNNaker system's architectural target of 1000 [13]. In order 

to compare this model with the spike-based cOlmnunication 
model discussed in §II-D, we can further simplify (7) by 
substituting D = fa to reflect Eliasmith's [11] analysis: 

Ctotal = 533 + 80N + 0.19N2 (8) 

Finally, using the CPU cycle estimates for updating neuronal 
state and processing incoming synaptic events quoted by Sharp 
and Furber [9] and the incoming spike rates measured in §II-D, 
we can build a similar model of the CPU cycle count of the 
standard SpiNNaker simulator: 

Cspike-based-total = 128N + 3N2 (9) 

These models show that our implementation requires signifi­

cantly fewer CPU cycles per neuron than the general purpose 
SpiNNaker simulator, allowing it to simulate up to 834 neurons 
per core in this configuration. This is more than 3.5 x the 236 

neurons per core that the general purpose SpiNNaker simulator 
can achieve in the same configuration. 

B. Memory utilisation 

The dense connection weight matrix for any connection 
between populations of Npre and Npost neurons in the NEF 
will be of size Npre x Npost and, under the spike based 
algorithm, would be stored entirely in the memory of the post­
synaptic core. When factored weight matrices are substituted 
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TABLE I 
MEMORY USAGE OF SYNAPTIC WEIGHTS IN BASAL GANGLIA MODEL 

Inputs 

Full weight matrix / MiB 
Factored / MiB 

Reduction / % 

16 

5.38 
0.18 

96.71 

32 

20.34 
0.63 

96.89 

64 

78.96 
2.37 

96.99 

128 

311.04 
9.18 

97.05 

Memory usage of the synaptic weights (full matrix and factored) for the 
standard Basal Ganglia implementation from Nengo (70 neurons per input). 

for the full weight matrix, as described in §III, the memory 
usage is split between the pre- and post-synaptic cores. The 

post-synaptic core needs to store a single encoder matrix of 

size Dpost x Npost while the pre-synaptic core will store a 
decoder matrix of size Dpre x Npre, where Dpopu]ation is the 
dimensionality of the population. 

For example, a 16-D communication channel constructed 
from two 1120-neuron populations will require 1 254 400 

values to be stored in the memory of the post-synaptic core to 
represent the full weight matrix. If factored weight matrices 

are used then both the pre- and post-synaptic cores must store 
17920 values, although the post-synaptic core will not need to 
store any more data for further incoming connections. Using 
16 bit to store each synaptic value and, as in our implementa­
tion, 32 bit to store each encoder/decoder value this becomes 
2.4 MiB to store the full weight matrix or 70.0 KiB each to 

store the encoder and decoder (a total of 140.0 KiB). Factored 
weight matrices achieve a saving of 94.3 %. 

Table I shows the memory usage from the connections 
within the basal ganglia model used in Spaun. The reduction 
in memory usage that results from using factored weight 

matrices is significant - indeed, it should be noted that for a 
basal ganglia accepting 128 inputs representing the connection 
weights would require the SDRAM of three SpiNNaker chips 

if full weight matrices were used. 

C. Simulating large-scale models 

To illustrate the correctness of our technique and to provide 
a comparison between SpiNNaker and the reference NEF 

implementation (Nengo [14]), we simulated a larger model 
based on the basal ganglia model used in Spaun [15]. 

For the purposes of our benchmark, we assigned a 16-D 
semantic pointer to each basal ganglia input and generated 
utility values over time by comparing these to a repeating 
sequence of semantic pointers. A sample of the basal ganglia 
input and output are shown in Fig. 6. 

We simulated this model for 10 s using a SpiNNaker ma­
chine and the standard NEF implementation on a standard 
desktop PC (3 GHz AMD Athlon II X3 445). Fig. 7 shows the 
time required to perform certain stages of preparing, uploading 
data to the SpiNNaker machine, executing the model and re­
trieving data for two scales of model. As expected, SpiNNaker 
is able to perform the simulation in biological real-time and is 
thus significantly faster than Nengo for this example despite 
the additional overheads. It is likely that as the scale and 
complexity of models increase the overheads will follow, but 
this should be less than the expected growth in simulation time 
on the Pc. 

V. DISCUSSION 

A. Comparison to prior SpiNNaker implementations 

Galluppi, Davies, Furber, et al. [16] demonstrated a SpiN­
Naker implementation of the NEF using the approach de­
scribed in §II-B. For the reasons advanced in this paper, 
we believe that this system would not have been capable 
of successfully simulating models of the scale or complexity 
of Spaun in biological real-time. First hand experience with 
this system indicated that the load time required to transfer 

full synaptic matrices to a SpiNNaker machine could be 
extensive. To avoid this Galluppi et al. suggested transmitting 
factored weight matrices and performing their multiplication 

on SpiNNaker. While this would have reduced the load time it 
may have resulted in poor accuracy due to the lack of floating 

point hardware on SpiNNaker. Moreover, it would have neither 
reduced the amount of memory that would be required on 

SpiNNaker nor reduced the overloading of the processors due 
to high spike rates and would still have resulted in inefficient 
use of the architecture. 
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B. Comparison to other neuromorphic simulators 

SpiNNaker is one of a range of neuromorphic simulators, 
a family including both analogue (e.g., Neurogrid [2], Brain­
ScaleS [3]) and digital (e.g., TrueNorth [4]) hardware, which 
aim to reduce the power consumption and execution time 

for simulating large neural models. These simulators can be 
expected to require less power than SpiNNaker for a given 
scale of model [17], but are limited to simulating the types 

of neurons and synapses they were fabricated with, whereas 
SpiNNaker can be reprogrammed to investigate new models. 
In the context of running NEF models of the type discussed in 
this paper, there is another key limitation of these systems -
the number of hardware synapses associated with each neuron. 
In the case of TrueNorth this number is only 256 and for the 
BrainScaleS 16000, restricting the size of the populations that 
can be connected using dense connectivity matrices to only 16 

and 126 respectively. 

C. Comparison to general purpose computer simulators 

The reference implementation of the NEF is Nengo [14]. 

This defines a backend-agnostic set of elements that can 
be used to construct networks using the principles of the 
NEF, and a simulation tool which uses the same technique 
of factoring weight matrices that we have exploited here to 
reduce memory usage. Bekolay, Bergstra, Hunsberger, et al. 

[14] show that this reference implementation performs well 
in comparison to alternative PC-based neural simulators such 
as Brian [18], NEURON [19] and NEST [20] and can also 
be accelerated using commodity GPU hardware. However, 
while an ATI Radeon HD 7970 GPU can simulate around 

500 000 000 neurons in real-time [14] - comparable to our 
approach running on a 48 chip SpiNNaker system - scaling 
beyond one GPU is likely to be constrained by PCI bus 

bandwidth. Furthermore, GPUs can be expected to consume 
significantly more power [21] than an equivalent SpiNNaker 
system [17]. 

We have extended the work of Bekolay et al. by indicating 
specific reductions in memory usage and by transferring the 
factored weight matrix simulation scheme to a distributed com­
puting architecture. A particular advantage of the SpiNNaker 
architecture is that it will simulate networks in biological real­
time regardless of model scale and complexity (see Fig. 7) 

- something that is not possible for commodity hardware. 
Furthermore, as a real-time system it is able to interface 

with neuromorphic hardware (e.g., artificial retinas [22], or 
cochleas [23]). 

D. General applicability of the algorithm 

As SpiNNaker is an example of a message passing archi­
tecture we expect that our simulation scheme, transmitting 
decoded representations of ensemble activity rather than spike 
activity, to be equally applicable to simulating neural nets on 
any message passing distributed architecture, such as MPI. 

Additionally, beyond the NEF, factored weight matrices may 
be applicable to further types of synaptic matrix. Furthermore, 
while we have specifically optimised for the case where 
the factorisations of all connections terminating at a given 
population may share the same encoder matrix, this need not 
be the case. 

E. Future work 

This work has laid the basis for simulating truly large­
scale NEF models in biological real-time. We plan several 
improvements which should allow a greater number of neurons 



to fit on a single core and, beyond this, we antIcIpate the 

implementation of further neuron and synapse models. We 
also intend to better assess the computational cost or gain 
of value-based transmission when implementing learning rules 
(e.g., [24]) and investigate how a constant traffic pattern affects 
the SpiNNaker network architecture. 

VI. CONCLUSION 

The dense synaptic weight matrices and high firing rates 
characteristic of neural networks built using the NEF lead to 
inefficient use of the SpiNNaker architecture when using the 
standard algorithms for simulating neural nets. In particular 

storing the synaptic matrices of these networks requires large 

amounts of memory and the high firing rates and dense neural 
connectivity exceed the computational resources available to a 
SpiNNaker core running in biological real-time. To overcome 
these constraints we extended a simulation scheme proposed 
by Bekolay, Bergstra, Hunsberger, et al. [14] which used fac­
tored weight matrices. This proposed scheme requires around 
90% less memory in many cases and is able to simulate many 

more neurons per core than would otherwise be possible - up 
to 2000 neurons per core, double the SpiNNaker architectural 
target. We intend to use the algorithm we have presented to 
simulate the Spaun functional brain model in biological real­
time. 
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