
A Neurally Plausible Encoding of Word Order Information into a Semantic Vector
Space

Peter Blouw (pblouw@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Center for Theoretical Neuroscience, University of Waterloo

Waterloo, ON N2L3G1 Canada

Abstract

Distributed models of lexical semantics increasingly
incorporate information about word order. One influential
method for encoding this information into high-dimensional
spaces uses convolution to bind together vectors to form
representations of numerous n-grams that a target word is a
part of. The computational complexity of this method has led
to the development of an alternative that uses random
permutation to perform order-sensitive vector combinations.
We describe a simplified form of order encoding with
convolution that yields comparable performance to earlier
models, and we discuss considerations of neural
implementation that favor the use of the proposed encoding.
We conclude that this new encoding method is a more
neurally plausible alternative than its predecessors.

Keywords: semantic memory; convolution; random
permutation; vector space models; distributional semantics

Introduction
The well-known ‘semantic space’ approach to modeling

word meanings is frequently employed by researchers
interested in understanding how the brain represents lexical
information. At its most simple, the approach involves
encoding word co-occurrence statistics from natural
language corpora into a set of high dimensional vectors (e.g.
Landauer & Dumais, 1997; Lund & Burgess, 1996; Jones &
Mewhort, 2007). The spatial relationships between such
vectors are then taken to reflect semantic relationships
amongst corresponding words. Experiments involving
semantic space models have produced impressive results
matching human data from studies of category typicality
(e.g., Jones & Mewhort, 2007) and synonym identification
(e.g., Landauer & Dumais, 1997), amongst other things.

However, one concern with the traditional semantic space
approach is that it fails to take into account information
about how words are sequentially related to one another
(Jones & Mewhort, 2007). For example, the latent semantic
analysis (LSA) model developed by Landauer and Dumais
(1997) functions by building a word-document frequency
matrix that treats all words occurring in a single document
equivalently. Similarly, Lund and Burgess’ (1996)
hyperspace analog to language (HAL) model simply counts
the frequency of words occurring within a multi-word
window around a target term. This indifference to sentence
structure has led to HAL and LSA being referred to as ‘bag
of words’ models of lexical semantics (Jones & Mewhort,
2007; Recchia et al., 2010).

More recently, two techniques have been developed to
incorporate word order information into semantic vectors.
The first, developed by Jones and Mewhort (2007), uses
circular convolution (proposed by Plate (2003) as a vector
binding operation) to create vector representations of the
numerous n-grams a target word is a part of. The second,
developed by Sahlgren, Holst, and Kanerva (2008), uses
random vector permutation to index the positions of
neighboring words in relation to a target word. Functionally,
the two approaches are quite similar, but random
permutation is much more computationally efficient than
convolution (Sahlgren, Holst, & Kanerva, 2008). Moreover,
a recent analysis indicates that convolution and random
permutation offer similar degrees of accuracy during
information retrieval, and that they perform comparably on
a set of basic semantic tasks involving synonym
identification (Recchia et al., 2010).

Given that computational efficiency favors the use of
random permutation, the aim of this paper is to develop a
simplified version of convolution encoding that can
replicate many of the important functional properties of
Jones and Mewhort’s (2007) method. More specifically, we
use convolution with position-indexing vectors to produce a
single n-gram for each occurrence of a target word in a
corpus (cf. Sahlgren, Holst, & Kanerva, 2008). Encoding a
single n-gram per word occurrence is much simpler than
Jones and Mewhort’s technique of encoding multiple n-
grams per word occurrence, and we demonstrate that this
simplification provides good model performance on a range
of order-specific tasks involving phrase-completion.

In addition, we argue that our encoding is more
biologically plausible for two reasons:

1) All of the required vector representations can be

instantiated using simulated spiking neurons.

2) All of the required computations on these
representations can also be instantiated using
simulated spiking neurons.

To substantiate these claims, we rely on prior work.
Eliasmith and Anderson (2003) describe a method for
representing and transforming high dimensional real-valued
vectors in neural systems through a combination of the non-
linear encoding of a signal into a pattern of neural spikes,
and the weighted linear decoding of these spikes. Simple
operations such as vector addition are easily implemented

1905

using these methods, and Eliasmith (2005) extends such
work to describe a neural implementation of the circular
convolution operation. Since our encoding method utilizes
only circular convolution and vector addition, these remarks
indicate that it is therefore a neurally plausible method.

In contrast, the approach of Sahlgren, Holst and Kanerva
employs binary vectors, which are not naturally
implemented in neural models (Stewart & Eliasmith, 2012).
Moreover, the approach of Jones and Mewhort employs a
series of computations that are arguably too complex to
scale appropriately if implemented in neurons. Our position
encoding approach, on the other hand, has been utilized in a
portion of what is currently the world’s largest functional
brain model (Eliasmith, et al., 2012), capable of a range
diverse tasks involving perception, cognition, and action.

In what follows, we first review the convolution-based
encoding algorithm presented by Jones and Mewhort
(2007), along with the random permutation algorithm
presented by Salhgren, Holst, and Kanerva (2008). We then
introduce our own encoding algorithm. Next, we report
results from a series of simulations conducted to assess
model performance. We conclude that convolution with
position indices offers an equally useful but more
biologically plausible strategy for incorporating order
information into semantic space models.

 Two Approaches to Encoding Word Order
The main challenge facing efforts to encode syntactic

information into high-dimensional spaces is to find an
appropriate, order-preserving mathematical operation for
recursively combining vectors. Given that standard vector
operations, such as superposition, are inadequate for this
purpose, researchers have proposed a number of
multiplicative binding methods instead. Examples include
Smolensky’s (1990) tensor products, Kanerva’s (1994)
binary spatter codes, and Plate’s (2003) holographic reduced
representations. Plate’s approach has been particularly
attractive to researchers interested in language because of its
use of circular convolution, which ensures that all
recursively bound vectors are of the same dimensionality. In
absence of preserved dimensionality, it becomes difficult to
compare vectors representing differently structured
linguistic objects (e.g. phrases of different lengths; Jones &
Mewhort, 2007).

Before getting into the details of encoding with
convolution and random permutation, it is worth noting that
the point of departure for comparing the two methods is
Jones and Mewhort’s (2007) BEAGLE1 model, which
assigns each word in a modeled corpus a unique
environmental vector (e), along with a zero-valued memory
vector (m). Each time a word is encountered in the corpus,
its memory vector is updated with context information
provided through the superposition of the environmental
vectors for every other word in the surrounding sentence.

1 The acronym stands for ‘bound encoding of the aggregate

language environment’.

Simultaneously, the memory vector is also updated with a
vector describing the ordering of the target word in relation
to a limited range neighbors. As whole, the process
conforms to the following expression:

mi = mi + ci + oi (1)

where i indexes the word being represented, while ci and oi
refer to vectors describing context and order information
for a given word occurrence.2 The primary difference, then,
between the approaches of Jones & Mewhort (2007) and
Sahlgren, Holst, and Kanerva (2008), is in the calculation of
oi. In BEAGLE, oi incorporates a range of n-grams that a
target word is a part of. To give an example of how this
works, consider the sentence ‘make hay while the sun
shines’ and the target word ‘hay’. The order vector, ohay, is
then calculated as the sum of various n-grams that ‘hay’ is a
part of:

bigram1 = emake ∗Φ
bigram2 = Φ∗ewhile
trigram1 = emake ∗Φ∗ewhile
trigram2 = Φ∗ewhile *ethe
ngrami = ...

where, * denotes the circular convolution operation, Φ
denotes a placeholder vector for the target word, and n sets
size of the window around the target word from which order
information is drawn. The value of n is typically set to 7.

Overall, this method is quite computationally expensive
given that each word occurrence prompts the generation of
numerous sequences of convolutions, each of which must be
computed in O(n log n) time (Jones & Mewhort, 2007).
Moreover, because convolution is a commutative operation,
permutations are applied to distinguish vectors of the form
A * B and B * A. This adds an additionally layer of
complexity when encoding large sequences of ordered
vectors.

In light of this computational complexity, Sahlgren, Holst,
and Kanerva’s (2008) proposal is to recursively apply a
random permutation to the environmental vectors to indicate
their position relative to the target word. The random
permutation, ∏, scrambles the order of the elements in a
vector, and its recursive application indexes positions at
varying distances from the target word:

ohay =∏−1 emake + 0 +∏

1 ewhile...+∏
4 eshines

Here, the positive superscripts indicate the number times the
permutation is applied to an environmental vector, and the
negative superscripts indicate the number of times the
inverse of the permutation is applied. One important feature
of this method is that each occurrence of a target word in the

2 The context and order vectors are normalized prior to being

combined and incorporated into the memory vector.

1906

corpus results in the memory vector being updated with
only a single n-gram containing every word in the order
window. The resulting order vector, o, is thus structurally
quite different from vectors produced through the summing
of multiple n-grams (Sahlgren, Holst, & Kanerva, 2008).

For information retrieval in this framework, the inverse of
a particular position permutation is applied to a memory
vector. This process yields a vector that is most similar to
environmental vectors that have been frequently bound into
the memory vector in this position. Thus, one can extract
information about which words are likely to occur in various
positions around a target word. For example, ∏-1mhay would
yield a vector most similar to words that have frequently
been bound into the first position succeeding ‘hay’ in
various order vectors generated over the course of scanning
the corpus. Depending on the statistical properties of this
corpus, a comparison (i.e. cosine measure) between ∏-1mhay

and the environmental vectors will likely yield an
environmental vector such as ebale as most similar.

Overall, when comparing these methods for generating
memory vectors, three things are important to keep in mind.
First, there are a number of further differences between
BEAGLE and Sahlgren, Holst, and Kanerva’s model
beyond the use of random permutation for order encoding.
For example, the latter model uses binary environmental
vectors, while Jones and Mewhort’s model uses
environmental vectors whose elements are picked from a
Gaussian distribution of a mean of zero and variance equal
to 1/D.3 Moreover, Sahlgren, Holst, and Kanerva apply a
smaller window for calculating context information that
ignores sentence boundaries. These differences limit the
ability to conduct performance comparisons based on the
use of random permutation alone.

Second, to the extent that such comparisons have been
made, they focus almost exclusively on storage capacity
measures and performance on simple synonym
identification tasks. However, one of the more compelling
attributes of the BEAGLE model is its ability to reflect
experimental effects involving things like category
typicality, priming, and semantic constraints on stem
completion. It has not been demonstrated that models built
using random permutation have comparable capabilities.

Third, the BEAGLE model is computationally expensive,
but uses real-valued vectors (which are efficiently
implementable in a biologically plausible network;
Eliasmith & Anderson, 2003), whereas the permutation
model is computationally efficient, but uses binary vectors
(which have not been demonstrated to be efficient to
implement biologically). Past work has not proposed a
representation that is both computationally and biologically
efficient.

Here, we describe a new representation that is comparable
to the BEAGLE model in that it preserves the functional

3 These properties are needed to ensure that convolution can be

used effectively as an operation for binding and unbinding vectors
(Plate, 2003).

properties of its memory vectors, but it uses a single n-gram
order encoding method that is structurally similar to
Sahlgren, Holst, and Kanerva’s technique while employing
real-valued vectors.

Convolution with Position Vectors
Our proposal is to encode order information with a set of

reusable, real-valued, unitary, randomly generated ‘position
vectors’.4 These vectors are convolved with environmental
vectors and summed to give an order vector of the following
form:

oi = ...p−1 *e−1 + 0 + p1 *e1 + p2 *e2 ... (2)

where p1 is the vector that indexes the first position
succeeding the target word, p-1 is the vector that indexes the
first position preceding the target word, and so forth. e1, e2,
etc. are the environmental vectors of the words in each
position around the target word. Structurally, this approach
shares the property of position indexing with the model of
Sahlgren, Holst and Kanerva (2008), but computationally, it
shares the use of convolution of real-valued vectors with the
model of Jones and Mewhort (2007).

To make the proposal clearer, consider again the word
‘hay’ in the sentence ‘make hay while the sun shines’. The
order vector produced with our method would be

ohay = p−1 *emake + 0 + p1 *ewhile ...+ p2 *eshines

Once this order vector is incorporated into the memory
vector for ‘hay’, this memory vector will become slightly
more similar to other vectors with have had ‘hay’ bound
into the first position to the right too.

To retrieve order information from a memory vector, we
can use one of two methods, both adapted from Jones &
Mewhort (2007). The first is to convolve the inverse of a
position vector with a memory vector to extract a
representation that is most similar to the environmental
vectors that have been frequently bound into the memory
vector in this position. For example:

mhay * p1

−1 ≈ ewhile

Note that this method can be used to extract words
commonly found in any of the twelve positions for which
order information is encoded.

The second form of information retrieval involves
constructing a probe corresponding to particular ordering
around a target word, and then identifying which memory
vectors have most frequently encoded the ordering of

4 To index position, a single unitary vector could also be self-

convolved multiple times. This would avoid the use of random
vectors for each position, but it is functionally equivalent to the
present formulation.

1907

interest. To give an example, one could construct the
following probe vector:

probe = p−1 *emake + 0 + p1 *ewhile + ...+ p3 *eshines

If this vector is compared to all memory vectors generated
from the corpus, it will match most closely with words that
have frequently encoded the order sequence ‘make ___
while the sun shines’. Provided that the corpus does not
contain a multitude of words that repeatedly occupy the
blank position in relation to the same the surrounding
words, the comparison will return the memory vector mhay
as the closest match.

Overall, information retrieval is made quite simple when
position encoding is conducted via convolution with
position vectors. As important, however, is whether or not
the encoding enables good model performance.

Simulations
We test the effects of the position encoding method for

performance on a range of tasks involving semantic
similarity and phrase completion. As per Jones and
Mewhort (2007), context vectors are calculated as the
superposition of environmental vectors in the sentence
surrounding a target word, and environmental vectors are
randomly generated with elements drawn from a Gaussian
distribution. A list of stop words is used to prevent
frequently occurring function words from being
overrepresented in the context vectors, and order
information is calculated using position indices ranging
from -6 to +6. This range is chosen because it captures the
same set of words that would be included in order vectors
calculated using Jones and Mewhort’s original method.
Finally, context vectors and order vectors are normalized
prior to inclusion in the overall memory vector for a given
word.

All simulations are run, for efficiency, on a subset of the
same TASA corpus used in tests of both BEAGLE and
Sahlgren, Holst, and Kanerva’s (2008) random permutation
model. Approximately 27,000 unique words are modeled
using roughly 110,000 sentences, and words occurring less
than twice in the corpus are ignored to exclude misspellings
and typographical errors.

A Nearest Neighbors Task
As an initial qualitative assessment of model performance,
we calculated the nearest neighbors to the memory vectors
for four common words found in the TASA corpus. We
chose the same four words used in Table 3 of Jones and
Mewhort (2007). The results, shown in Table 1 below,
indicate that encoding order information with position
vectors instead of an array of n-grams results in plausible
model performance for each of the four words. All reported
activation values are cosines of the angle between two
vectors in the semantic space. The context space is
comprised of memory vectors only updated with context
information, while the order space is comprised of memory

vectors only updated with order information. The combined
space includes memory vectors calculated in accordance
with Equation 1.

As with the comparison between BEAGLE and the model
of Sahlgren, Holst, and Kanerva (2008), subtle differences
in things like the selection of stopwords and the formation
of the environmental vectors make quantitative comparisons
impractical, so we present these results as an independent
demonstration of model performance.

Table 1: Nearest Neighbors in Three Spaces

 Context Order Combined
EAT
 food 0.69 get 0.89 get 0.78
 get 0.65 buy 0.87 make 0.75
 animals 0.63 make 0.86 take 0.70
 need 0.62 keep 0.86 keep 0.69
 make 0.61 meet 0.85 find 0.69
CAR
 came 0.65 nation 0.89 house 0.75
 back 0.64 village 0.88 road 0.73
 road 0.64 fire 0.88 big 0.73
 one 0.63 family 0.88 little 0.71
 way 0.63 story 0.88 dog 0.70
READING
 read 0.66 writing 0.72 writing 0.68
 book 0.61 making 0.67 that 0.61
 writing 0.61 business 0.64 your 0.61

skimming 0.59 power 0.62 or 0.61
 may 0.56 food 0.62 this 0.59
SLOWLY
 little 0.63 quickly 0.75 quickly 0.62
 around 0.63 again 0.67 and 0.60
 back 0.62 ran 0.65 down 0.60
 across 0.60 to 0.65 then 0.59
 move 0.59 brought 0.65 to 0.59

Retrieval with Decoding
Retrieval through decoding, again, involves convolving a

memory vector with the inverse of a position vector, and
then comparing the output of this process to a library of
environmental vectors to find closest matches. In this
simulation, we use the decoding retrieval method to find the
most likely word to occur both before and after a particular
target word. Results are reported in Table 2.

One point to note about these decoding results is that the
activation values for the words in each column indicate non-
random correspondence with the target word if the
similarity value is greater than ~0.1 (see Jones and
Mewhort, 2007, p. 13). Accordingly, the decoding does a
good job of picking out words that are likely to follow
before or after a given word.

1908

Table 2: Decoding Around a Target Word

 Word Before Word After
LUTHER
 martin 0.29 king 0.21
 straightening 0.17 gravity 0.17
 latest 0.17 1733 0.16
 coinage 0.16 puff 0.16
 so-called 0.16 conscience 0.16
KING
 the 0.54 was 0.19
 experienced 0.17 tens 0.17
 boundaries 0.17 bowing 0.17
 kites 0.17 lawfully 0.17
 donor 0.16 pasture 0.16

Retrieval with Resonance
Resonance retrieval, again, involves constructing a probe by
superposing a number of bound environmental and position
vectors. This probe vector is then compared to all of the
memory vectors to find items that have frequently occurred
within the sequence of words described by the probe.

Table 3: Resonance Around a Target Word

 Word Before Word After
KING
 rex 0.38 midas 0.42
 luther 0.22 tut 0.42
 rumbles 0.17 aietes 0.39
 hamlet 0.17 farouk 0.36
 oyster 0.16 richards 0.31
PRESIDENT
 vice 0.32 eisenhower 0.45
 activist 0.20 lincoln 0.31
 egypts 0.19 coolidge 0.27
 middle-of-the-road 0.19 johnson 0.25
 dove 0.18 nixon 0.23
WAR
 spanish-american 0.31 II 0.49
 civil 0.29 bonnet 0.21
 post-world 0.27 hysteria 0.19
 pre-civil 0.26 whoops 0.19
 post-civil 0.23 1898 0.18
SEA
 caspian 0.22 anemone 0.38
 Aegean 0.22 level 0.27
 mediterranean 0.19 gull 0.26
 foaming 0.17 anenomes 0.24
 sensitivity 0.16 captains 0.24

To assess model performance with resonance, we simulate a
task involving retrieval around a set of four target words
drawn from Table 4 of Jones and Mewhort (2007). The
results from this simulation are presented in Table 3.
Despite the intrusion of a few unexpected items into these
lists of nearest matches (e.g. ‘sensitivity’), the overall trend
here provides further evidence that order encoding with
position vectors can produce a functioning semantic space
model.

Phrase Completion with Resonance
To go beyond the retrieval of words either immediately to
the left or to the right of a target word, we next simulate a
set of tasks in which probe vectors corresponding to short
phrases are compared to the memory vectors. Initially, only
a limited amount of information is included in the probe
vector, but subsequently, the probe is enriched to represent a
more and more specific order sequence (see Jones &
Mewhort, 2007). As more information is incorporated into
the probe in this way, the model increasingly converges on a
single word that best fits the blank region in the probe
phrase. We use phrase materials drawn from Jones and
Mewhort (2007). Results are reported in Table 4 below.

Once again, the model generally meets performance
expectations. Preliminary results also indicate that the
model generally performs well with other phrases similar to
the ones shown. Further work is ongoing in this area.

Discussion
At this point, it seems clear that the method of encoding

with position vectors performs well enough to be considered
a plausible alternative to earlier methods. However, it is
worth considering the criteria by which one might select
amongst the three forms of encoding discussed in this paper.
Computational efficiency, again, favors the use of a single
n-gram encoding method like random permutation or
encoding with position vectors.

Then, to decide between convolution and random
permutation, one could look to performance measures of the
sort just examined. Here, position vector encoding has the
advantage of a demonstrated ability to perform a variety of
phrase completion tasks; the performance credentials of
random permutation have yet to be comparably established.
It is possible that random permutation supports the same
degree of functionality as demonstrated here, and future
work might bear out such a prediction.

However, even if this is the case, we think that
independent considerations of neural implementation favor
the use of the position vector encoding method. First, note
that vector space models of language have appealed to
cognitive researchers in part because they possess certain
properties suggestive of neural plausibility (Jones &
Mewhort, 2007; Recchia et al., 2010). Connectionist
models, for example, have long been used to implement
computations defined over vectors, and one of the main
attractions of these models is their use of neurally inspired
processing mechanisms. So, because semantic space models

1909

are constructed through computations defined over vectors,
and connectionist models can implement such
computations, it follows that semantic space models can
share to some extent in the claim of being consistent with
how the brain processes information.

Second, models with a high degree of neural plausibility
have been built using vector symbolic architectures that
employ real-valued vectors and convolution as a binding
operator. The same cannot be said for binary vectors. For
instance, neurally implemented convolution operations play
a key role in a recent model of working memory (Choo &
Eliasmith, 2010), and more significantly, what is currently
the world's largest functional brain model (Eliasmith et al.,
2012). So, the argument in favor of using convolution with
position vectors to encode word order into semantic space
models is straightforward: doing so is consistent with the
architectural principles that guide state-of-the-art models of
complex cognition. Put simply, there is a good deal
evidence from these models that the convolution operation
accommodates the computational constraints of neural
systems.

Together with the demonstrated functionality of semantic
space models built using convolution encoding, we think
that these considerations of neural implementation provide a
compelling case in favor of the method we demonstrate
here. Convolution with position vectors provides an
approach to building an order-sensitive semantic vector
space that is functional, neurally plausible, and relatively
computationally efficient. We leave it to future work to
determine whether methods utilizing random permutation
can display a similar range of strengths.

Acknowledgments
This research was supported by the Social Sciences and
Humanities Research Council of Canada.

References
Choo, F.X., & Eliasmith, C. (2010). A spiking neuron

model of serial order recall. Proceedings of the 32nd
Annual Conference of the Cognitive Science Society. (pp.
2188-2193)

Eliasmith, C. (2005). Cognition with neurons: A large-scale
biologically plausible model of the Wason card task.

Proceedings of the 27th Annual Conference of the
Cognitive Science Society (pp. 624-630).

Eliasmith, C. & Anderson, C. (2003). Neural engineering:
Computation, representation, and dynamics in
neurbiological systems. Cambridge, MA: MIT Press.

Eliasmith, C., Stewart, T., Choo, F.X., Bekolay, T., DeWolf,
T., Tang, Y., & Rasmussen, D. (2012). A large-scale
model of the functioning brain. Science, 338.6111, 1202-
1205.

Jones, M.N. & Mewhort, D. (2007). Representing word
meaning and order information in a composite
holographic lexicon. Psychological Review, 114.1, 1-37.

Kanerva, P. (1994). The spatter code for encoding concepts
at many levels. Proceedings of the International
Conference on Artificial Neural Networks. (pp. 226-229).
Sorrento, Italy: Springer-Verlag.

Landauer, T., and Dumais, S. (1997). A solution to Plato’s
problem: The latent semantic analysis theory of
acquisition, induction and representation of knowledge.
Psychological Review, 104.2, 211–240.

Lund, K. & Burgess, C. (1996). Producing high-dimensional
semantic spaces from lexical co-occurrence. Behavioral
Research Methods, 28.2, 203-208.

Plate, T.A. (2003). Holographic reduced representations:
distributed representations for cognitive structures.
Stanford, CA: CSLI Publications.

Recchia, G., Jones, M., Sahlgren, M., & Kanerva, P. (2010).
Encoding sequential information in vector space models
of semantics: Comparing holographic reduced
representations and random permutation. Proceedings of
the 32nd Annual Conference of the Cognitive Science
Society (pp. 865-870).

Sahlgren, M., Holst, A., & Kanerva, P. (2008). Permutations
as a means to encode order in word space. Proceedings of
the 30th Annual Conference of the Cognitive Science
Society (pp. 1300-1305).

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46, 159-216.

Stewart, T. & Eliasmith, C. (2012). Compositionality and
Biologically plausible models. In W. Hinzen, E. Machery,
& M. Werning (eds.) Oxford Handbook of
Compositionality (pp. 596-615). Oxford: Oxford
University Press

Table 4: Highest Word Activations as an Order Sequence is Filled in Around a Target Position

Phrase Activations

emperor [penguins] yuan 0.26 penguins 0.26 caligula 0.20
 [penguins] have planaria 0.34 threepio 0.27 astronomers 0.26

the emperor [penguins] have come
to their breeding grounds penguins 0.34 yaun 0.31 annelida 0.27

although [ostriches] gauges 0.21 democratically 0.20 tsumanis 0.18

although [ostriches] cannot pretends 0.16 raindrops 0.16 democratically 0.16
although [ostriches] cannot fly they

have other skills ostriches 0.18 assent 0.18 caved 0.16

1910

