© © N O O A W N =

Copyright 2016 Aaron Voelker & Chris Eliasmith

Learning efficient dynamical systems in
recurrent spiking neural networks

Anonymous Author(s)
Affiliation
Address

email

Abstract

Recurrent neural networks (RNNs) are notoriously difficult to train and interpret.
The paradigm of Reservoir Computing (RC) has managed to overcome some of
these limitations by using randomly connected dynamical “reservoirs” of neurons.
Despite the success of this approach, it is still difficult to interpret the representa-
tions employed by the reservoir, or to incorporate prior knowledge into the reservoir
to improve task performance. This ultimately leads to an inefficient use of neural
resources. Here we show that the Neural Engineering Framework (NEF) provides
a principled way of effectively optimizing the reservoir, by mapping desired dy-
namics onto a latent representation within a factorable connection weight matrix.
This enables us to train networks that outperform RC by over 4x on a delay line
task, while reducing the cost of simulation by a factor of O(n). This new approach
readily incorporates synaptic dynamics, and supports various rate-based and spik-
ing neuron models on analog and digital neuromorphic hardware. We demonstrate
the potential of this approach with comparisons to Echo State Networks (ESNs)
and Liquid State Machines (LSMs), and provide practical examples relevant to
dynamic neural information processing.

1 Introduction

One of the central challenges in neural information processing is understanding how dynamic stimuli
can be processed by neural mechanisms to drive behaviour. Recurrent connections, adaptation, and
synaptic responses are ubiquitous sources of dynamics throughout the mammalian brain that work in
concert to support dynamic information processing.

Recurrent neural networks (RNNs) employ nonlinear units that are interconnected to compute func-
tions that combine their current input with the input history transmitted by the recurrent connections.
While it is well known that RNNs can approximate any dynamical system arbitrarily well [10], they
have encountered several limitations in practice. Chief among these is the difficulty of training RNNs
at larger scales, due to the inherent challenge of globally optimizing the non-convex error function [2].

To bypass this problem, Reservoir Computing (RC) has taken a specialized approach to training
RNNs. The two major variants of RC networks are Echo State Networks (ESNs; [12)) and Liquid
State Machines (LSMs; [15)), which differ mainly by their use of rate-based and spiking neurons,
respectively. RC networks make a conceptual separation between a randomly connected recurrent
reservoir and a supervised feed-forward readout. The reservoir essentially extracts nonlinear temporal
features of its input signal (referred to as echoes), and the readout learns how to combine these features
to approximate the desired target. Since the readout is typically a linear combination of the reservoir
units, the optimal solution can be learned via least-squares approximation. In contrast, the reservoir
remains untrained with dynamical properties that are fixed independently of the desired task [[14].

Submitted to 29th Conference on Neural Information Processing Systems (NIPS 2016). Do not distribute.

celiasmi
Typewritten Text
Copyright 2016 Aaron Voelker & Chris Eliasmith

36
37
38
39
40
41
42
43

44
45
46
47
48
49
50

51
52
53
54
55
56
57

58
59
60
61

62

63

64
65
66
67
68
69
70

71

72
73
74

75
76
77
78
79

80
81
82

83

While RC solves the issue of training RNNSs, the problem of efficient scaling remains. Indeed, as
noted by RC theorists, “just simply creating a reservoir at random is unsatisfactory” and “setting
up the reservoir such that a good state expansion emerges is an ill-understood challenge in many
respects” [14]. Nevertheless, the computational power of RC generally relies on having a sufficiently
large reservoir in order to represent a superset of the required features, ultimately resulting in an
inefficient use of the neural substrate for certain functions. This is problematic considering the
simulation cost of conventional RC networks scale as O(n?), where n is the number of neurons, thus
making large-scale simulations of the brain computationally prohibitive.

The Neural Engineering Framework (NEF;[7, 18)) offers a principled way forward by providing methods
for mapping dynamical systems onto the latent representations of recurrently connected populations
of neurons. This method of training the recurrent weights results in low-dimensional dynamics,
which are commonly observed in biological systems [3]], that can be readily understood using the
mathematics of signal processing and control theory. The NEF has been used to implement various
algorithms using rate-based and spiking neuron models on both analog [6, 4] and digital [[L1} [16]]
neuromorphic hardware.

We begin with a review of the NEF, and generalize the theory to characterize the effect of the synaptic
model on the dynamical state of the network. We then proceed by further extending this theory within
the context of RC. This is used to build a network that computes delayed versions of its input as
accurately as ESNs [13]], with a factor O(n) speed-up in simulation time. The same network can then
be made spiking, which significantly outperforms LSMs (over 4x in our experiments). We attribute
these resource savings to having engineered prior knowledge of the desired low-dimensional function
into the recurrent weight matrix.

We argue that this novel approach retains the benefits of RC, while enabling us to understand the
representations being used by the network, the computations they afford, and therefore the dynamical
systems that can be accurately realized. We demonstrate the generation of a nonlinear trajectory and
the computation of a nonlinear filter (i.e., the power spectrum) as applications of these methods.

2 Structured recurrent neural networks

2.1 Neural Engineering Framework

The Neural Engineering Framework (NEF) is a set of three mathematical principles for describing
neural computation [8], each of which is described below. The NEF is most commonly applied
to building dynamic spiking neural networks, but also applies to non-spiking and feed-forward
networks. Recently, the NEF has been used to build what remains the world’s largest functioning
brain model [9]], capable of performing perceptual, motor, and cognitive tasks. Here we give a brief
overview of these methods applied to training both feed-forward and recurrent connection weights,
and then extend this framework to account for synaptic dynamics and to incorporate ideas from RC.

2.1.1 Principle 1 — Representation

We use x(t) € R¥ to denote a continuous time-varying vector that is represented by a population of
neurons. To describe this representation, we define a nonlinear (spiking or non-spiking) encoding and
a linear decoding which together determine how neural activity relates to the represented vector.

Specifically, we choose encoders E € R™F, gains o; > 0, and biases f3; as parameters for the
encoding, which map x(¢) to neural activities. These parameters can be chosen based on prior
knowledge (e.g., tuning curves, firing rates, sparsity, etc.), or randomly. Most often, we select
distributions from which to sample these parameters, incorporating known constraints on the system
under consideration. For a spiking neuron, the encoding is:

07 (t) = Gi [oi (B3, x(1)) + Bi - 0 <t <] (1)

where 6% is the neural spike-train generated by the 7*" neuron and G;[/] is the model for a single

neuron (e.g., a leaky integrate-and-fire (LIF) neuron, a conductance neuron, etc.). We then analytically

determine the firing rates of each neuron under constant inputs:
’I“i(V) = Etzo [5x X(t) = V} (2)

7

In the case of non-spiking neurons, we use its rate model in place of (2)).

84
85
86

87

88
89

90

91
92
93

94
95
96
97

98
99
100
101
102

103
104
105

106
107
108

109
110
111

112
113

114
115
116
17
118

In biological systems, any transfer of information between layers of a network are affected by a
post-synaptic response. Consequently we introduce a post-synaptic filter h(t), referred to as the
synapse model, that accounts for the temporal dynamics of a receiving neuron’s synapse.

For a purely representational relationship, we can then define the desired decoding as:

n

(X h)(t) = > (67« h)(t)D; 3)

i=1

To complete our characterization of a representation, we need to determine the linear decoders D;.
This determination is the same for the first and second principles, so we consider it next.

2.1.2 Principle 2 — Transformation

The second principle of the NEF addresses the issue of computing nonlinear functions of the vector
space. The encoding remains as defined in . However, we may decode nonlinear functions of x(t)
by the same linear combination of temporal basis functions:

n

(f() * h)(t) = D (67 * h)(t)D])

i=1

In general, we solve for the decoders D/ € R™! to compute a desired nonlinear function f : S — R!,
where S = {x(t) : t > 0} is the domain of the signal — typically the unit k-ball {v € R¥ : ||v|]y = 1}
or the k-cube [—1, 1]*. To account for fluctuations introduced by neural spiking, or other sources of
uncertainty, we introduce a noise term 7 ~ A/(0, o2) to regularize the solution:

n 2

DI = argmin, cpn . /S lf(v) - Z(rl(v) +n)D;| dv (5)

i=1

Note this training only depends on r;(v) for v € S. It does not depend on x(t). Performing this
regularized least-squares optimization provides the decoders needed by equations (3)) and (@) to repre-
sent the vector or compute transformations, respectively. We can use singular value decomposition
(SVD) to characterize the class of functions that can be accurately approximated by the chosen basis
functions [8: pp. 185-217].

The accuracy of this approach for spiking neurons relies on r;(v) being a suitable proxy for 6*
whenever x(¢) = v. This is clearly true for constant x, and is also a suitable model in practice for
low-frequency x ().

In general, we can use (T)) and (@) to derive the connection weight matrix between layers that computes
the desired function f. Specifically, the weight matrix WW € R™"™ which decodes from neuron ¢ and
encodes into neuron j is given by:

Wi = <Ej7 sz> = (B(D")T); (6)

That is, the matrices D and E are simply a low-dimensional factorization of V. This observation
implies that the process of decoding and then encoding is equivalent to the more familiar expression
for mapping activities between layers of neurons in a conventional neural network:

G [aW*(t) + 5] (7

The crucial difference is that a constant dimensionality k¥ means O(n) operations per time-step to
implement (7)) as compared to O(n?) operations for typical weight matrices, including those in RC.

In essence, structure is imposed by the choice of representing x(¢) in neural activities, which in
turn becomes latent within the factored weight matrix V. Notably, since we are free to choose the
representation, we do not lose computational power with this framework. Rather, this additional
structure gives us a way to constrain the model by describing its state, and therefore understand in
detail what the network is computing.

119

120
121
122

123
124

125
126
127
128
129
130

131
132
133
134
135

136
137

139
140
141

142
143
144
145
146
147
148
149

150
151

152

153
154

155
156
157

2.1.3 Principle 3 — Dynamics

Given our ability to compute nonlinear functions with Principle 2, the methods described here apply
to both linear and nonlinear dynamical systems. However, for simplicity of exposition, we focus our
discussion on linear time-invariant (LTT) systems:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (®)

where the time-varying vector x(t) represents the system state, y(¢) the output, u(¢) the input, and
the time-invariant matrices (A, B, C, D) fully define the system dynamics.

Principle 3 from the NEF states that in order to train the recurrent connection weights to implement (8)
using a continuous-time lowpass filter h(t) = %67% , we use Principle 2 to train the decoders for the
recurrent transformation f(x(t)) = (1A + I)x(t), input transformation f(x(t)) = 7Bx(t), output
transformation f(x(t)) = Cx(t), and passthrough transformation f(x(t)) = Dx(t) [8 pp. 221-225].
This provides a method for training the network to implement any dynamical system. Here we show
that this approach generalizes to other synaptic models.

For these purposes, the transfer function is a more useful description of the LTI system than (8]). The
transfer function is defined as the ratio of Y (s) and U(s), given by the Laplace transforms of y(t)
and u(t) respectively. The variable s denotes a complex value in the frequency domain, while ¢ is
non-negative in the time domain. The transfer function is related to the state-space representation by
the following:

F(s) = =C(sI-A)'B+D)

A transfer function can be converted into a state-space representation using (9) if and only if it can
be written as a proper ratio of finite polynomials in s. The ratio is proper when the degree of the
numerator does not exceed that of the denominator. In this case, the output will not depend on future
input, and so the system is causal. The order of the denominator corresponds to the dimensionality of
x, and therefore must be finite. Both of these conditions can be interpreted as physically realistic
constraints where time may only progress forward, and neural resources are finite.

In order to account for the introduction of a synaptic filter h(t), we replace the integrator s~* with
H (s). This new system has the transfer function C(H(s)™'I — A)™'B + D = F(H(s)™!). To
compensate for this change in dynamics, we must invert the change of variables s <+ H(s)~!. This
means finding the required F’(s) such that F’(H(s)~!) is equal to the desired transfer function,
F(s). Then the state-space representation of F’(s) provides (A’, B', C’, D") which implement the
desired dynamics. Thus the general problem reduces to solving this change of variables problem
for various synaptic models. We now provide results for three common synaptic models. Complete
derivations may be found in the supplementary material.

Continuous Lowpass Synapse Replacing the integrator with the standard continuous-time lowpass

filter so that H(s) = ﬁ—fl’ gives:

Fl(ts +1) = F(s) <= F'(s)=C(s[— (TA+1))"*(tB) + D (10)
which rederives the standard form of Principle 3 from the NEF [8]].

Discrete Lowpass Synapse Replacing the integrator with a discrete-time lowpass filter H(z) =

. . . . d .
1;‘; in the z-domain with time-step dt, where a = e, gives:

z—

zZ—a

_ _ 1 = _

/ o / _ _ _ —1
F(l_a)fF(z) — F'(2) =C(z] 1—a(A al)) (1_aB)+D (11)
where (A, B,C, D) is the result of discretizing (A, B, C, D) with the same time-step. This per-
mits an exact implementation of the desired system on digital hardware, even for large time-steps.

Consequently, we use this method in the simulations reported in this paper unless otherwise noted.

158

159

160
161
162
163

164

165

166
167
168
169

170
171
172
173
174

175
176
177
178
179

180
181
182
183
184
185

186
187
188
189

190
191
192
193
194
195

197
198
199
200

Delayed Continuous Lowpass Synapse Replacing the integrator with a continuous lowpass filter

with a pure delay of 8 seconds so that H(s) = j;—_:l, gives:
1 1 1
P20 = Fls) < Fls) = F(5Wolds) -) (12)
T

where d = geg and Wy(ze™) = x is the principal branch of the Lambert W function. Such a

synapse model can be used to account for possible transmission time-delays along presynaptic axons,
or feedback delays within a broader context of control. To demonstrate the case when a pure delay

o

of F(s) = e~ is the desired transfer function, we let ¢ = e~ and r = 5 to obtain the required
transfer function:

F/(S) :c(WO(dS))r :CZ M(*déﬁ)z (13)

ds _ 7!
1=0

2.2 The NEF and Reservoir Computing

Reservoir Computing (RC) takes a different approach to training RNNs. Here we show that this
alternative strategy may be leveraged by NEF networks (and vice-versa), by considering the two
most prominent varieties of RC networks: Echo State Networks (ESNs; [12) and Liquid State
Machines (LSMs;[15).

ESNs connect together sigmoidal activation units (most often tanh) using a randomly generated
weight matrix YV normalized by its spectral radius p(W). This so-called “reservoir” of rate neurons
essentially forms a discrete temporal feature representation of the input stimulus u(¢). The activities
are filtered using the same lowpass synapse h(t) discussed earlier, where the rate of decay 7 is a free
parameter which alters the effective length of input history [14]].

To compute a desired function y(¢) = f [u(t') : 0 < ¢/ < t], a “readout” is trained from the activity
of the reservoir using a feed-forward network. This readout is typically a linear matrix D, to facilitate
efficient optimal training via regularized least-squares approximation. We refer to this method of
explicit simulation followed by least-squares optimization as the “RC training method”, since LSMs
also take the same fundamental approach, but employ models of continuous-time spiking neurons.

Within the NEEF, the important distinction between ESNs and LSMs is captured simply by the choice
of G; [-] in equation . In either case, we can identify the neural activity of the output units in
response to the input stimulus with 6, where x(t) is some unknown state that depends on both u(t)
and the dynamical properties of the reservoir. Note that characterizing x(¢) is precisely the problem
faced when trying to understand what RC networks are representing. Now the linear readout amounts
to the following approximate nonlinear function of x(¢):

n

y(t) =D (6F«h)(t)D; (14)

=1

This has the same form as equation (3)) from Principle 2. The important difference lies in how the
decoders D are trained. Rather than solving for D using 7;(v) in (5), the network is explicitly
simulated to obtain exact values for the temporal basis functions. In general the RC training method
relies on an explicit simulation since the form of x(¢) is unknown.

From the perspective of the NEF, this method of training is more costly (especially as the time-step
dt becomes small), but has the benefit of automatically refining the distortion error in the decoding
induced by the rate-mode approximation (in the spiking case). In the rate-mode case, this is mainly
beneficial as a conceptual tool, and for applications where the mapping between the state x(t)
and the desired target y(¢) is either unknown or approximate (see Section for an example).
Similarly, as shown in Section[d.1] the readout can learn to compensate for approximation error or
mischaracterization of the state variable.

From the perspective of RC, the NEF provides a way to solve for the recurrent connection weights
by imposing a low-dimensional dynamical state x(¢) on the reservoir. By using Principle 3 we can
incorporate prior knowledge of the required function within this latent space, by “placing” temporal
basis functions throughout the state-space. The NEF provides a way to understand these dynamics,

201
202
203

204

205

207
208
209

210
211
212
213
214
215
216
217
218

219

220
221

222
223
224
225
226

227
228
229

231
232
233

while still permitting the readout to capture nonlinear interactions between the state and the input (as
characterized by Principle 2). Importantly, this reduces the cost of simulation by a factor of O(n) for
constant dimensionality k, since the number of connection weights for RC scale as O(n?).

3 Methods

3.1 Software

All networks were built and simulated using Nengo 2.1.0 [[1]], a Python tool for simulating large-scale
neural networks including those built using the NEF. Benchmarks were run on Intel® Core™ i7-
4770 CPU @ 3.40 GHz, using Numpy 1.10.4 and SciPy 0.17.0rc2 linked with the Intel Math Kernel
Library (MKL).

Weights were trained and validated using randomly sampled band-limited white-noise. In addition,
full-spectrum white-noise was added to the network during both training and testing. Accuracy
was measured by normalizing the root-mean squared error against the root-mean squared target
(NRMSE; 114). As well, 95% confidence intervals were bootstrapped and plotted using Seaborn [17].
The hyperparameters for all ESNs and LSMs (readout 7, recurrent 7, input gain, recurrent gain,
and regularization o2) were found using Hyperopt [3] by optimizing the validation error across 200
random configurations containing 5 trials each. LSMs were implemented by replacing the tanh
units with LIF spiking neurons, in the same manner as for NEF networks. Simulations used a 1 ms
time-step (except Fig. [I) with Nengo’s default configurations for tuning curves and encoders.

3.2 Approximating a pure delay

To implement a pure delay of « seconds we must approximate the irrational transfer function
F(s) = e~ ®* as aratio of finite-order polynomials. We do so using its Padé approximants,

ces - @olas) oSS (R (g =)
lp/de™ =0) m()—%(i) o) (15)

This gives the optimal approximation for a transfer function with order p in the numerator and order
g in the denominator. After choosing suitable values for p < ¢, we numerically find a normalized
state-space representation (A, B, C, D) that satisfies @) using standard methods, and then implement
this system given the synapse model using Principle 3. An expression for a normalized state-space
representation when p = ¢ can be found in the supplementary material.

Fig. [T]demonstrates that we can implement the delay using spiking LIF neurons while analytically
accounting for a continuous lowpass synapse (7 = 10 ms) or a delayed lowpass synapse (7 = 3 =
10 ms) using (T0) or (T3) respectively (to perform this comparison we do not use (TT)) here). This
simulation uses p = 5 and ¢ = 6. This shows that a synaptic delay can intuitively be “amplified” 10-
fold while improving the NRMSE by a factor of 3 compared to the continuous lowpass. Remarkably,
both networks use the same readout; only the recurrent connection weights are trained differently
using the NEF.

Implementing Delays using Different Synapses

e Target
Delayed Lowpass (=10 ms)

~—1;. Lowpass

ot

Output

; ; ; ; ; !
0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Figure 1: Computing a 100 ms delay of 15 Hz band-limited white-noise using a time-step of 0.01 ms
(10 ps) in 2,000 spiking LIF neurons. Recurrent weights are trained for two different synapse models.

234

236
237
238
239
240

241
242
243

244
245
246
247
248

249
250
251

252

253
254
255
256
257
258

259

260
261
262

264
265

267
268

4 Results

4.1 Delay line benchmark

We now explore how the performance of NEF networks (using the RC training method) compare to
traditional RC approaches. We consider the delay line task, in which we must compute a range of
pure delays using the same reservoir. This is a natural way to measure the system’s ability to maintain
history of its input signal, which is necessary when computing functions over past inputs. In fact,
ESNs presented this task as one of its first examples within the RC paradigm [13]].

We compare the short-term memory capacity of each approach (ESN, LSM, and NEF using various
neuron models for G; [-]) by constructing a reservoir of 500 neurons, and then training separate linear
readouts to compute delays ranging from 50-100 ms on 8 Hz band-limited white-noise.

For the NEF case, the prescribed dynamical system is a 100 ms delay using (T3), yet the readouts are
capable of computing many different delays without loss in accuracy (see Fig.[2). This demonstrates
that the state variable is robust to changes in the target function (i.e., the prior simply biases which
functions will be most accurate). The performance is comparable to that of ESNs for both LIF rate
neurons and tanh rate neurons, and 4x (or more) better than LSMs for spiking LIF neurons.

These network were also simulated while varying the number of neurons from 5 to 2,500 in order to
measure the real-time cost of simulation (see Fig. [3). We again note that traditional RC suffers from
scaling issues since the recurrent weight matrices have O(n?) coefficients.

0.9 Performance of RC Networks on Time Delays — 45 Simulation Efficiency of RC Networks
[
0.8 N E 40
0.7 p &35
0.6 ~® ESN $ 3.04 -® ESN
w " * * *
& 0.5 x LSM E 255 LSM
= * —=— NEF with Rate LIF = =~ NEF with Rate LIF
£ 044 = NEF with Rate Tan @209 @ NEF with Rate Tan
0.3 NEF with Spiking LIF o 1.5 NEF with Spiking LIF
0.2 E 101
ollF——a——%—a % —8—8—p—1 = 0.5
0.0 & o] R e e
" T T T T] r T T T T !
50 60 70 80 90 100 0 500 1000 1500 2000 2500
Delay Time (ms) Number of Neurons

Figure 2: Performance from training each reser- Figure 3: Cost of simulating each RC network
voir with 11 different linear readouts to compute for various numbers of neurons. Simulation time
delays between 50 — 100 ms. Performance is is averaged across 10 trials.

averaged across 20 trials.

4.2 Autonomous trajectory generation

We now consider the task of generating a fixed trajectory over time by training an RC readout. Here
we evenly space 5 delays apart by 100 ms with p = 3, ¢ = 4, and 100 - 7 spiking LIF neurons for
the i*" delay. Connections use a lowpass synapse with time-constant 7 = 50 ms. The combined
population of neurons then forms the reservoir that the readout uses, as in (I4)), to compute the desired
trajectory (see Fig.[d). The input is a unit impulse that triggers the trajectory. The network is therefore
autonomous in the sense that its responses are driven solely by internal state following each impulse.

4.3 Computing a spectrogram

The examples that we have seen thus far have been for relatively low-frequency inputs. Recall that in
the spiking case the accuracy of the NEF relies on 6 being well-approximated by a rate-model r;(v)
when decoding (3)), which is a poor assumption in general for higher frequencies and lower numbers
of neurons. For rate-based neuron models this is not an issue.

The transformations resulting from applying Principle 3 to the state-space representation of are
linear. Therefore, we can leverage the theory from Section [2.1|to compute continuous-time delays
arbitrarily well, provided the methods of Section [3.2]are numerically stable with respect to the input
frequency and the desired level of accuracy. We demonstrate this by sampling a sliding window of 20
points spaced evenly apart by 20 ms (i.e., a sampling rate of 50 Hz). The sampling is implemented

269
270
271
272

273
274
275

276

284

Autonomous Trajectory

Filtered Neural Responses

0.50 80
v 70
0.25 < 60 = = =
=1 c
> S 50
] 5
g 0.00 2 40 — — —
4 _ﬁ 30
-0.25 @ 20
2 - ———— ———— —]
c 10
~0.50 Y 0
r T T T T T T T) T T T T T T T)
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Time (s) Time (s)

Figure 4: Autonomous activity of a trained network. (Left) The network receives a unit impulse
every 500 ms and responds by autonomously generating a trajectory that connects a set of 5 discrete
points spaced evenly apart by 100 ms. (Right) Filtered activity of 80 uniformly sampled neurons,
sorted by time to peak activation.

using 20 independent delays with p = ¢ = 40, 7 = 1ms, and ¢ linear neurons per delay with
orthogonal encoders. This sliding window is then mapped by a linear transformation to compute
the discrete Fourier transform (DFT) of the input history, which is then encoded by a population of
22,000 LIF rate neurons to compute the nonlinear power by squaring each complex coefficient.

We test this on a randomly sampled 25 Hz band-limited white-noise signal (see Fig.[5). Notably,
both the recurrent connection weights and the linear readout of this network have been trained quite
accurately without explicitly simulating the network on any training signal.

Ideal Spectrogram

¥ 259 i 10 o—— W v \y 1 HM f o oy 2-0-
Z 204 I/ || i Jﬁ 1 ‘nm) 5.
Eig’ IWI' H] I{I" “ ler":hl m i ‘ITII 0 J L"H H i u"' i\ o ’” “"%ﬂn -'i. 1 8.27
§ 1 we mEd W nl in ‘In-h“ ! ulln 0.7-
g f,_.m'T"-‘ Tl R M H'..'ne.;mrkﬂRead b A T el as-
; 1:: |H|| mul |“I|| \::u‘ |||I|F|I|I\"u‘|l u”uuu‘ uul w “' = q“ L ||”‘-||, 0 Hu-llr ‘]“Wl #m H | I_n H‘\I\ zé:
RS Ly |y Rt A iR R
e ;: L el A T U e | |'|'|T|u [T ||m ! uuanhm u H\IIHHIIIIII‘w T TR
2 3 2 5 5 7 8 9 10
Time (s)

Figure 5: Simulation of a network trained to compute the power of its input at various frequencies
using the DFT. Each element of the decoded vector corresponds to the power at a particular frequency.

5 Conclusions and future work

We have demonstrated that NEF-based methods significantly outperform RC networks for dynamic
information processing with neural networks. In the rate neuron case, the accuracy is similar but
simulation times are reduced by a factor of O(n). In the spiking neuron case, the accuracy is 4x or
better with the same improvement in simulation time.

The proposed methods demonstrate how to account for synaptic dynamics while accurately imple-
menting system-level dynamics across a wide variety of synaptic models. Specifically, we showed
how to exploit synaptic model properties (i.e., a small delay) to improve system-level performance
(i.e., a long delay), which is a general challenge for dynamic information processing in neural
networks. We further demonstrated that the same principles can be used to generate autonomous
dynamics (i.e., movement between discrete points over an extended period). In addition, the methods
described are efficient and accurate for both digital and analog implementations. This allowed us
to demonstrate a spiking neural network computing a challenging nonlinear filter (i.e., the spectral
power).

Conceptually speaking, these methods also provide a more intuitive understanding of the state being
represented by the recurrent network, and the dynamics it is implementing. This understanding is
partly a result of being able to specify a desired structure for the system. Some structures, like delays,
are powerful constructs for implementing a wide class of useful dynamics.

294

295
296
297

298

300
301
302

303
304
305

306
307

308
309
310

311
312

314

315
316

317
318

319
320
321

322
323
324

325

326
327

328

330

331
332
333

334
335

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]
(14]

[15]

[16]

(17]

Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C Stewart, Daniel Rasmussen,
Xuan Choo, Aaron Russell Voelker, and Chris Eliasmith. Nengo: a python tool for building large-scale
functional brain models. Frontiers in neuroinformatics, 7, 2013.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. Neural Networks, IEEE Transactions on, 5(2):157-166, 1994.

James Bergstra, Daniel Yamins, and David Daniel Cox. Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th International
Conference on Machine Learning. ICML, 2013.

Federico Corradi, Chris Eliasmith, and Giacomo Indiveri. Mapping arbitrary mathematical functions
and dynamical systems to neuromorphic VLSI circuits for spike-based neural computation. In IEEE
International Symposium on Circuits and Systems (ISCAS), Melbourne, 2014.

John P Cunningham and M Yu Byron. Dimensionality reduction for large-scale neural recordings. Nature
neuroscience, 17(11):1500-1509, 2014.

Julie Dethier, Paul Nuyujukian, Chris Eliasmith, Terrence C Stewart, Shauki A Elasaad, Krishna V Shenoy,
and Kwabena A Boahen. A brain-machine interface operating with a real-time spiking neural network
control algorithm. In Advances in neural information processing systems, pages 2213-2221, 2011.

Chris Eliasmith and Charles H Anderson. Developing and applying a toolkit from a general neurocomputa-
tional framework. Neurocomputing, 26:1013-1018, 1999.

Chris Eliasmith and Charles H Anderson. Neural engineering: Computation, representation, and dynamics
in neurobiological systems. MIT press, 2003.

Chris Eliasmith, Terrence C Stewart, Xuan Choo, Trevor Bekolay, Travis DeWolf, Yichuan Tang, and
Daniel Rasmussen. A large-scale model of the functioning brain. science, 338(6111):1202-1205, 2012.

Ken-ichi Funahashi and Yuichi Nakamura. Approximation of dynamical systems by continuous time
recurrent neural networks. Neural networks, 6(6):801-806, 1993.

Francesco Galluppi, Christian Denk, Matthias Meiner, Terrence C Stewart, Luis Plana, Chris Eliasmith,
Steve Furber, and Jorg Conradt. Event-based neural computing on an autonomous mobile platform. In
Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014.

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks. Bonn,
Germany: German National Research Center for Information Technology GMD Technical Report, 148:34,
2001.

Herbert Jaeger. Short term memory in echo state networks. 2002.

Mantas LukoSevicius. Reservoir computing and self-organized neural hierarchies. PhD thesis, Jacobs
University Bremen, 2012.

Wolfgang Maass, Thomas Natschldger, and Henry Markram. Real-time computing without stable states: A
new framework for neural computation based on perturbations. Neural computation, 14(11):2531-2560,
2002.

Andrew Mundy, James Knight, Terrence C Stewart, and Steve Furber. An efficient spinnaker imple-
mentation of the neural engineering framework. In Neural Networks (IJCNN), 2015 International Joint
Conference on, pages 1-8. IEEE, 2015.

Michael Waskom, Olga Botvinnik, Paul Hobson, Jordi Warmenhoven, John B. Cole, Yaroslav Halchenko,
Jake Vanderplas, Stephan Hoyer, Santi Villalba, Eric Quintero, and et al. seaborn: v0.6.0, June 2015.

	Introduction
	Structured recurrent neural networks
	Neural Engineering Framework
	Principle 1 – Representation
	Principle 2 – Transformation
	Principle 3 – Dynamics

	The NEF and Reservoir Computing

	Methods
	Software
	Approximating a pure delay

	Results
	Delay line benchmark
	Autonomous trajectory generation
	Computing a spectrogram

	Conclusions and future work

