
HOW TO TRAIN

SPAUN’S VISUAL SYSTEM
Nengo Vision Tutorial

Eric Hunsberger

Monday, June 15, 2015



Autoencoders

Autoencoder

An artifical neural network with one hidden layer that learns to
reconstruct its input in its output layer. Often used for
dimensionality reduction.



RBMs

Restricted Bolzmann Machine (RBM)

Two-layer generative neural network that learns a statistical
model of the training data

H

W

V



RBMs

Representational: can calculate hidden nodes (encoding)
from visual nodes (image)

hj = f

(∑
i

wijvi + cj

) h1

v2 v3v1



RBMs

Generative: can calculate visual nodes (image) from hidden
nodes (encoding)

vi = f

∑
j

wijhj + bi


h1

v3

h2 h3



RBMs

Nonlinear: The logistic sigmoid function is often used for the
neural nonlinearity

σ(x) =
1

1 + e−x

hj = σ

(∑
i

wijvi + cj

)

vi = σ

∑
j

wijhj + bi





RBM Training

I Unsupervised training on a set of images

I Form a generative statistical model of the images

I We will use the MNIST dataset: 60000 handwritten digits



RBM Training

Training an RBM corresponds to minimizing an energy
function

E(v,h) = −vTWh− bTv − cTh

The energy function gives the probability of the visual and
hidden nodes being active

p(v,h) =
e−E(v,h)

Z
where the partition function is given by

Z =
∑
v,h

e−E(v,h)



RBM Training

The log probability is given by

log p(v,h) = −E(v,h)− logZ

Taking the derivative w.r.t. Wij we get

∂ log p(v,h)

∂Wij
= vihj −

1

Z

∑
v,h

vihje
−E(v,h)

= vihj −
∑
v,h

p(v,h)vihj



Contrastive Divergence

∆wij = ε (〈vihj〉data − 〈vihj〉model)

1. Compute and sample hidden layer

2. Re-compute and sample visual layer

3. Re-compute and sample hidden layer

4. Repeat steps 2 and 3 (Gibbs sampling)

5. Update weights



DBNs

Deep Belief Network (DBN)

A stack of RBMs, such that the output of one RBM forms the
input to the next

I DBNs learn ”features on
features”

I High-level features encode
(partly) for category

I Some categories require
supervised training

H1

W1

V

H2

W2



Deep autoencoders and classifiers

I Just stacking RBMs means that the layers might not
work together as well as they could

I Training the whole network as an autoencoder or classifier
improves overall performance

I This is done using backpropagation (easy with Theano)
I Compute network forward, propagate errors backward

I Why do pretraining at all?



Backpropagation

yj = f(ŷj) ŷj =
∑
i
xiwij + cj

zk = g(ẑk) ẑk =
∑
j
yjvjk + bk

r = 1
2

∑
k

(zk − tk)2

dr

dvjk
=

∂r

∂zk

∂zk
∂vjk

= (zk − tk)g′(ẑk)yj

dr

dvjk
=
∑
k

∂r

∂zk

∂zk
∂yj

∂yj
∂wij

=
∑
k

(zk − tk)g′(ẑk)vjkf ′(ŷj)xi



Convolutional networks

I Use the same filters at each location

I Fewer parameters means learning is faster

I Successful on much harder and larger datasets
(CIFAR-10, ImageNet)



Training with LIF functions

I Substitute more biologically-plausible functions for
sigmoid

I LIF response function has infinite derivative
I Soft LIF neuron has bounded derivative, and can be made

arbitrarily close to LIF

0.6 0.8 1.0 1.2 1.4
input current (j)

0

5

10

15

20

25

30

fi
ri

n
g
 r

a
te

 (
r)

 [
H

z]

LIF
soft LIF

0.6 0.8 1.0 1.2 1.4
input current (j)

0

50

100

150

200

250

300

fi
ri

n
g
 r

a
te

 d
e
ri

v
a
ti

v
e
 (
d
r/
d
j)



Training with noise

I Filtered spikes result in variability in the network
I Noise on the neuron output during training simulates this

variability
I Reduces error when network is transferred to spiking

neurons

0 2 4 6 8 10
input current (j)

50

0

50

100

150

200

250

300

fi
lt

e
re

d
 r

e
sp

o
n
se


