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Abstract—The Neural Engineering Framework (NEF) is a
theory for mapping computations onto biologically plausible
networks of spiking neurons. This theory has been applied to a
number of neuromorphic chips. However, within both silicon and
real biological systems, synapses exhibit higher-order dynamics
and heterogeneity. To date, the NEF has not explicitly addressed
how to account for either feature. Here, we analytically extend
the NEF to directly harness the dynamics provided by heteroge-
neous mixed-analog-digital synapses. This theory is successfully
validated by simulating two fundamental dynamical systems in
Nengo using circuit models validated in SPICE. Thus, our work
reveals the potential to engineer robust neuromorphic systems
with well-defined high-level behaviour that harness the low-
level heterogeneous properties of their physical primitives with
millisecond resolution.

I. THE NEURAL ENGINEERING FRAMEWORK

The field of neuromorphic engineering is concerned with
building specialized hardware to emulate the functioning of
the nervous system [1]. The Neural Engineering Frame-
work (NEF; [2]) compliments this goal with a theory for
“compiling” dynamical systems onto spiking neural networks,
and has been used to develop the largest functioning model
of the human brain, capable of performing various perceptual,
cognitive, and motor tasks [3]. This theory allows one to map
an algorithm, expressed in software [4], onto some neural
substrate realized in silicon [5]. The NEF has been applied to
neuromorphic chips including Neurogrid [5], [6] and a VLSI
prototype from ETH Zurich [7].

However, the NEF assumes that the postsynaptic current
(PSC) induced by a presynaptic spike is modelled by a
first-order lowpass filter (LPF). That is, by convolving an
impulse representing the incoming spike with an exponentially
decaying impulse-response. Furthermore, the exponential time-
constant is assumed to be the same for all synapses within
the same population. In silicon, synapses are neither first-
order nor homogeneous and spikes are not represented by
impulses.1 Synapse circuits have parasitic elements that re-
sult in higher-order dynamics, transistor mismatch introduces
variability from circuit to circuit, and spikes are represented by
pulses with finite width and height. Previously, these features
restricted the overall accuracy of the NEF within neuromorphic
hardware (e.g., in [5], [6], [7]).

The silicon synapses that we study here are mixed-analog-
digital designs that implement a pulse-extender [9] and a first-
order LPF [10], modelled as a second-order LPF to account

1These statements also hold for real biological systems [8].

for parasitic capacitances. We also account for the variability
(i.e., heterogeneity) introduced by transistor mismatch in the
extended pulse’s width and height, and in the LPF’s two time-
constants. In §II, we demonstrate how to extend the NEF to
directly harness these features for system-level computation.
This extension is tested by software simulation in §IV using
the circuit models described in §III.

II. EXTENDING THE NEURAL ENGINEERING
FRAMEWORK

The NEF consists of three principles for describing neural
computation: representation, transformation, and dynamics [2].
This framework enables the mapping of dynamical systems
onto recurrently connected networks of spiking neurons. We
begin by providing a self-contained overview of these three
principles using an ideal first-order LPF. We then extend these
principles to the heterogeneous pulse-extended second-order
LPF, and show how this maps onto a target neuromorphic
architecture.

A. Principle 1 – Representation

The first NEF principle states that a vector x(t) ∈ Rk may
be encoded into the spike-trains δi of n neurons with rates:

ri(x) = Gi [αiei · x(t) + βi] , i = 1 . . . n, (1)

where Gi is a neuron model whose input current to the soma
is the linear encoding αiei · x(t) + βi with gain αi > 0, unit-
length encoding vector ei (row-vectors of E ∈ Rn×k), and
bias current βi. The state x(t) is typically decoded from spike-
trains (see Principle 2) by convolving them with a first-order
LPF that models the PSC triggered by spikes arriving at the
synaptic cleft. We denote this filter as h(t) in the time-domain
and as H(s) in the Laplace domain:

h(t) =
1

τ
e−

t
τ ⇐⇒ H(s) =

1

τs+ 1
. (2)

Traditionally the same time-constant is used for all synapses
projecting to a given population.2

B. Principle 2 – Transformation

The second principle is concerned with decoding some
desired vector function f : S → Rk of the represented
vector. Here, S is the domain of the vector x(t) represented
via Principle 1—typically the unit k-cube or the unit k-ball.
Let ri(x) denote the expected firing-rate of the ith neuron in

2See [11] for a recent exception.



τ +

1
τs+1 G [·] Dg(x)

u

w x

Dτf(x)+x

δ y

Fig. 1. Standard Principle 3 (see (6)) mapped onto an ideal architecture to
implement a general nonlinear dynamical system (see (5)). The state-vector
x is encoded in a population of neurons via Principle 1. The required signal
w is approximated by τu plus the recurrent decoders for τ f(x) + x applied
to δ, such that the first-order LPF correctly outputs x. The output vector y is
approximated using the decoders Dg(x).

response to a constant input x encoded via (1). To account
for noise from spiking and extrinsic sources of variability,
we introduce the noise term η ∼ N (0, σ2). Then the matrix
Df(x) ∈ Rn×k that optimally decodes f(x) from the spike-
trains δ encoding x is obtained by solving the following
problem (via regularized least-squares):

Df(x) = argmin
D∈Rn×k

∫
S

∥∥∥∥∥f(x)−
n∑
i=1

(ri(x) + η)di

∥∥∥∥∥
2

dkx (3)

=⇒
n∑
i=1

(δi ∗ h)(t)df(x)
i ≈ (f(x) ∗ h)(t). (4)

The quantity in (4) may then be encoded via Principle 1 to
complete the connection between two populations of neurons.3

C. Principle 3 – Dynamics

The third principle addresses the problem of implementing
the following nonlinear dynamical system:

ẋ = f(x) + u, u(t) ∈ Rk

y = g(x). (5)

Since we take the synapse (2) to be the dominant source
of dynamics for the represented vector [2, p. 327], we must
essentially “convert” (5) into an equivalent system where the
integrator is replaced by a first-order LPF. This transformation
is accomplished by driving the filter h(t) with:

w := τ ẋ + x = (τ f(x) + x) + (τu) (6)
=⇒ (w ∗ h)(t) = x(t), (7)

so that convolution with h(t) achieves the desired integration.
Therefore, the problem reduces to representing x(t) in a
population of neurons using Principle 1, while recurrently
decoding w(t) using the methods of Principle 2 (Fig. 1).

D. Extensions to Silicon Synapses

Consider an array of m heterogeneous pulse-extended
second-order LPFs (in the Laplace domain):

Hj(s) =
γj (1− e−εjs) s−1

(τj,1s+ 1) (τj,2s+ 1)
, j = 1 . . .m, (8)

where εj is the width of the extended pulse, γj is the
height of the extended pulse, and τj,1, τj,2 are the two time-
constants of the LPF. Hj(s), whose circuit is described in

3The effective weight-matrix in this case is W = E
(
Df(x)

)T
.
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Fig. 2. Using extended Principle 3 (see (11)) to implement a general
nonlinear dynamical system (see (5)) on a neuromorphic architecture. The
matrix representation Φ is linearly transformed by Γj to drive the jth synapse.
Dashed lines surround the silicon-neuron array that filters and encodes x into
spike-trains (see Fig. 3).

§III, is an extended pulse γj (1− e−εjs) s−1 convolved with
a second-order LPF ((τj,1s+ 1) (τj,2s+ 1))

−1. These higher-
order effects result in incorrect dynamics when the NEF is
applied using the standard Principle 3 (e.g., in [5], [6], [7]),
as shown in §IV.

From (7), observe that we must drive the jth synapse with
some signal wj(t) that satisfies the following (W(s) denotes
the Laplace transform of w(t) and we omit j for clarity):

X(s)

W(s)
= H(s)

⇐⇒W(s)
(
1− e−εs

)
s−1

= γ−1(1 + (τ1 + τ2)s+ τ1τ2s
2)X(s). (9)

To solve for w in practice, we first substitute 1 − e−εs =
εs − (ε2s2)/2 + O(ε3s3), and then convert back to the time-
domain to obtain the following approximation:

w = (εγ)−1(x + (τ1 + τ2)ẋ + τ1τ2ẍ) +
ε

2
ẇ. (10)

Next, we differentiate both sides of (10):

ẇ = (εγ)−1(ẋ + (τ1 + τ2)ẍ + τ1τ2
...
x) +

ε

2
ẅ,

and substitute this ẇ back into (10) to obtain:

w = (εγ)−1(x + (τ1 + τ2 + ε/2)ẋ +

(τ1τ2 + (ε/2)(τ1 + τ2))ẍ) +

(εγ)−1(ε/2)τ1τ2
...
x + (ε2/4)ẅ.

Finally, we make the approximation (εγ)−1(ε/2)τ1τ2
...
x +

(ε2/4)ẅ� w, which yields the following solution to (9):

wj = ΦΓj , (11)
Φ := [x ẋ ẍ] ,

Γj := (εjγj)
−1
[

1
τj,1 + τj,2 + εj/2

τj,1τj,2 + (εj/2)(τj,1 + τj,2)

]
,

where εjγj is the area of the extended pulse.4 We compute
the time-varying matrix representation Φ in the recurrent con-
nection (plus an input transformation) via Principle 2 (similar

4This form for (6) is Φ = [x ẋ] and Γj = [1, τ ]T . Further generalizations
are explored in [12].
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Fig. 3. Silicon synapse and soma. The synapse consists of a pulse-extender
(MP1,2) and a LPF (ML1-6). The pulse-extender converts subnanosecond digital-
pulses—representing input spikes—into submillisecond current-pulses (IPE).
Then the LPF filters these current-pulses to produce the synapse’s output (Isyn).
The soma integrates this output current on a capacitor (CS) and generates a
subnanosecond digital-pulse—representing an output spike—through positive-
feedback (MS2-5). This pulse is followed by a reset pulse, which discharges
the capacitor. This schematic has been simplified for clarity.

to Fig. 1). We then drive the jth synapse with its time-invariant
linear transformation Γj (Fig. 2).

A more refined solution may be found by expanding
1 − e−εs to the third order, which adds ε2/12 to the third
coordinate of Γj .5 However, this refinement does not improve
our results. Some remaining details are addressed in §IV.

III. CIRCUIT DESCRIPTION

We now describe the silicon synapse and soma circuits
(Fig. 3) that we use to validate our extensions to the NEF.
An incoming pulse discharges CP, which Iε subsequently
charges [9]. As a result, MP2 turns on momentarily, producing
an output current-pulse IPE with width and height:

ε = CPVγ / Iε, γ = Iγ,

where Vγ is the gate-voltage at which MP2 can no longer pass
Iγ. This current-pulse is filtered to obtain the synapse’s output,
Isyn, whose dynamics obeys:

τ1
dIsyn

dt
+ Isyn = A IPE,

where τ1 = CL1UT / Iτ1, A = Iτ2 / Iτ1, and UT is the thermal
voltage. The above assumes all transistors operate in the
subthreshold region and ignores all parasitic capacitances [10].
If we include the parasitic capacitance CL2, a small-signal
analysis reveals second-order dynamics:

τ1τ2
d2Isyn

dt
+ (τ1 + τ2)

dIsyn

dt
+ Isyn = A IPE,

where τ2 = CL2UT / κIτ2, and κ is the subthreshold-slope
coefficient. This second-order LPF and the aforementioned
pulse-extender are modelled together in the Laplace domain
by (8) after scaling by A.

The dynamics of the soma are described by:

CSUT

κIm

dIm

dt
= Im + Isyn,

where Im is the current in the positive-feedback loop, assuming
all transistors operate in the subthreshold region [13], [14].

5In general, the coefficients 1, ε/2, ε2/12, and so on, correspond to the
[0/q] Padé approximants of

∑q
i=0

(−ε)i
(i+1)!

.
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Fig. 4. Log-normally distributed parameters for the silicon synapses. τ1 (µ ±
σ = 31 ± 6.4ms) and τ2 (0.8 ± 0.11ms) are the two time-constants of
the second-order LPF; ε (0.4 ± 0.06ms) and γ (1.0 ± 0.29ms−1) are the
widths and heights of the extended pulse, respectively (see (8)).

This equation may be solved to obtain the trajectory of Im,
and hence the steady-state spike-rate:

r(Isyn) =
κIsyn

CSUT
ln

(
Isyn / I0 + 1

Isyn / Ithr + 1

)−1
,

where I0 and Ithr are the values of Im at reset and threshold,
respectively. These values correspond to the leakage current of
the transistors and the peak short-circuit current of the inverter,
respectively.

IV. VALIDATION WITH CIRCUIT MODELS

We proceed by validating the extended NEF neuromorphic
architecture (see Fig. 2) implemented using the circuit models
(see §III) on two fundamental dynamical systems: an integrator
and a controlled oscillator. We use Nengo 2.3.1 [4] to simulate
this neuromorphic system with a time-step of 50µs. Test data
is sampled independently of the training data used to optimize
(3) via regularized least-squares. For comparison with (5)—
simulated via Euler’s method—spike-trains are filtered using
(2) with τ = 10ms. For each trial, the somatic parameters
and synaptic parameters (Fig. 4) are randomly sampled from
distributions generated using a model of transistor mismatch
(validated in SPICE). These parameters determine each linear
transformation Γj , as defined in (11).

A. Integrator

Consider the one-dimensional integrator, ẋ = u, y = x.
We represent the scalar x(t) in a population of 512 modelled
silicon neurons. To compute the recurrent function, we use
(11), and assume ẍ = u̇ is given. To be specific, we optimize
(3) for Dx, and then add u and u̇ to the second and third
coordinates of the representation, respectively, to decode:

Φ = [x, u, u̇] .

To evaluate the impact of each extension to the NEF, we
simulate our network under five conditions: using standard
Principle 3, accounting for second-order dynamics, accounting
for the pulse-extender, accounting for the transistor mismatch
in τ1, and our full extension (Fig. 5). We find that the last
reduces the error by 63%, relative to the first, across a wide
range of input frequencies (5–50Hz).

B. Controlled 2D Oscillator

Consider a controllable two-dimensional oscillator,

ẋ = f(x) + u, y = x,

f(x1, x2, x3) = [−ωx3x2, ωx3x1, 0]T ,
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Fig. 6. Output of controlled 2D oscillator with ω = 5Hz (mean spike-rate
140Hz). The control (x∗3) is changed from 0.5 to −0.5 at 1 s to reverse the
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RMSE of 0.188 with 95% CI of [0.166, 0.210] compared to the ideal (y),
while our extension (ŷ) achieves 0.050 with 95% CI of [0.040, 0.063]—a
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where ω is the angular frequency in radians per second, x3
controls this frequency multiplicatively, and x∗3 is the fixed-
point target supplied via input u3 = x∗3−x3. The inputs u1 and
u2 initiate the oscillation with a brief impulse. We represent
the three-dimensional state-vector x(t) in a population of 2048
modelled silicon neurons.6 To compute the recurrent function,
we again use (11). For this example, u(t) ≈ 0 for most t
(apart from initial transients and changes to the target x∗3),
and so ẍ = Jf (x) · ẋ + u̇ ≈ Jf (x) · f(x) (where Jf denotes
the Jacobian of f ). We then optimize (3) for Dx, Df(x), and
DJf (x)·f(x), and add u to the second column of the matrix
representation to decode:

Φ = [x, f(x) + u, Jf (x) · f(x)] .

We find that this solution reduces the error by 73% relative to
the standard Principle 3 solution (Fig. 6).

V. SUMMARY

We have provided a novel extension to the NEF that di-
rectly harnesses the dynamics of heterogeneous pulse-extended
second-order LPFs. This theory is validated by software simu-
lation of a neuromorphic system, using circuit models with

6We use this many neurons in order to minimize the noise from spiking.

parameter variability validated in SPICE, for two fundamental
examples: an integrator and a controlled oscillator. When
compared to the previous standard approach, our extension is
shown to reduce the error by 63% and 73% for the integrator
and oscillator, respectively. Thus, our theory enables a more
accurate mapping of nonlinear dynamical systems onto a
recurrently connected neuromorphic architecture using non-
ideal silicon synapses. Furthermore, we derive our theory in-
dependently of the particular neuron model and encoding. This
advance helps pave the way toward understanding how non-
ideal physical primitives may be systematically analyzed and
then subsequently exploited to support useful computations in
neuromorphic hardware.
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