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Abstract

We provide a short proof that the uniform distribution of points for the n-ball is equivalent
to the uniform distribution of points for the (n+1)-sphere projected onto n dimensions. This
implies the surprising result that one may uniformly sample the n-ball by instead uniformly
sampling the (n + 1)-sphere and then arbitrarily discarding two coordinates. Consequently,
any procedure for sampling coordinates from the uniform (n+1)-sphere may be used to sample
coordinates from the uniform n-ball without any modification. For purposes of the Semantic
Pointer Architecture (SPA), these insights yield an efficient and novel procedure for sampling
the dot-product of vectors—sampled from the uniform ball—with unit-length encoding vectors.

1 Introduction
The Semantic Pointer Architecture (SPA; Eliasmith, 2013) is a cognitive architecture that has been
used to model what still remains the world’s largest functioning model of the human brain (Elia-
smith et al., 2012). Core to the SPA is the notion of a semantic pointer, which is a high-dimensional
vector that represents compressed semantic information. Consequently, the current compiler for the
SPA (Nengo; Bekolay et al., 2013) makes extensive use of computational procedures for uniformly
sampling vectors, either from the surface of the unit n-sphere (

{
s ∈ Rn+1 : ‖s‖ = 1

}
) or from the

interior of the unit n-ball ({b ∈ Rn : ‖b‖ < 1}). Furthermore, when building specific models, we
sometimes sample the dot-product of these vectors with arbitrary unit-length vectors (Knight et al.,
2016). In summary, the SPA requires efficient algorithms for uniformly sampling high-dimensional
vectors and their coordinates (Gosmann and Eliasmith, 2016).

To begin, it is worth stating a few facts. We use the term ‘coordinate’ to refer to an element
of some vector with respect to some basis. For uniformly distributed vectors from the n-ball or
n-sphere, the choice of basis for the coordinate system is arbitrary (and need not even stay fixed
between samples) – but it is helpful to consider the standard basis. Relatedly, the dot-product of
two vectors sampled uniformly from the n-sphere is equivalent to the distribution of any coordinate
of a vector sampled uniformly from the n-sphere. Similarly, the dot-product of a vector sampled
uniformly from the n-ball with a vector sampled uniformly from the n-sphere is equivalent to the
distribution of any coordinate of a vector sampled uniformly from the n-ball. These last two facts
hold simply because we may suppose one of the unit vectors is elementary after an appropriate
change of basis, in which case their dot-product extracts the corresponding coordinate.

Now there exist well-known algorithms for sampling points (i.e., vectors) from the n-sphere and
n-ball. We review these in sections §2.1 and §2.2 respectively. In §2.3 we briefly review how to
efficiently sample coordinates from the uniform n-sphere. Our main contribution is a proof in §3
that the n-ball may be uniformly sampled by arbitrarily discarding two coordinates from the (n+1)-
sphere. This result was previously discovered by Harman and Lacko (2010), specifically by setting
k = 2 in Corollary 1 and working through some details. We derived this result independently and
thus present it here in an explicit and self-contained manner. This leads to the development of
two algorithms: in §3.1 we provide an alternative algorithm for uniformly sampling points from
the n-ball, and in §3.2 we provide an efficient and novel algorithm for sampling coordinates from
the uniform n-ball by a simple reduction to the (n+ 1)-sphere.
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2 Preliminaries
To help make this a self-contained reference, we summarize some previously known results:

2.1 Uniformly sampling the n-sphere
To uniformly sample points from the unit n-sphere, defined as

{
s ∈ Rn+1 : ‖s‖ = 1

}
:

1. Independently sample n+ 1 normally distributed variables: x1, . . . , xn+1 ∼ N (0, 1).1

2. Compute their `2-norm: r =
√∑n+1

i=1 x
2
i .

3. Return the vector s = (x1, . . . , xn+1) /r.

This is implemented in Nengo as nengo.dists.UniformHypersphere(surface=True) with dimen-
sionality parameter d = n+ 1.

2.2 Uniformly sampling the n-ball
To uniformly sample points from the unit n-ball—defined as {b ∈ Rn : ‖b‖ < 1}—we use the
previous algorithm as follows:

1. Sample s ∈ Rn from the (n− 1)-sphere.

2. Uniformly sample c ∼ U [0, 1].

3. Return the vector b = c1/ns.

This is implemented in Nengo as nengo.dists.UniformHypersphere(surface=False) with di-
mensionality parameter d = n.

2.3 Uniformly sampling coordinates from the n-sphere
To sample coordinates from the unit n-sphere (i.e., uniform points from the sphere projected
onto an arbitrary unit vector) we could simply modify §2.1 to return only a single element – but
this would be inefficient for large n. Instead, we use nengo.dists.CosineSimilarity(n + 1)
to directly sample the underlying distribution, via its probability density function (Voelker and
Eliasmith, 2014; eq. 11):

f(x) ∝
(
1− x2

)n
2 −1

,

which may be expressed using the “SqrtBeta” distribution (Gosmann and Eliasmith, 2016).2

3 Results
Lemma 1. Let n be a positive integer, x1, . . . , xn+2 ∼ N (0, 1) be independent and normally
distributed random variables, then:3

c1/n
D
=

√∑n
i=1 x

2
i√∑n+2

i=1 x
2
i

, (1)

where c ∼ U [0, 1] is a uniformly distributed random variable.

Proof. Let X =
∑n

i=1 x
2
i and Y =

∑n+2
i=n+1 x

2
i . Observe that X ∼ χ2(n), Y ∼ χ2(2), and X ⊥⊥ Y

(i.e., X and Y are independent chi-squared variables with n and 2 degrees of freedom, respectively).
Using relationships between the chi-squared/Beta/Kumaraswamy distributions, we know that:

X

X + Y
∼ β (n/2, 1) =⇒ X

X + Y
∼ Kumaraswamy (n/2, 1) =⇒

(
X

X + Y

)n/2

∼ U [0, 1] .

Focusing on the final distribution, raise both sides to the exponent 1/n to obtain (1).
1The choice of variance for the normal distribution is an arbitrary constant.
2https://github.com/nengo/nengo/blob/614e7657afd1f16b296a06068f3d4673e5b575d2/nengo/dists.py#L431
3We use D

= to denote that two random variables have the same distribution.
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Theorem 1. Let n be a positive integer, b be a random n-dimensional vector uniformly distributed
on the unit n-ball, s be a random (n + 2)-dimensional vector uniformly distributed on the unit
(n+ 1)-sphere, and finally P ∈ Rn,n+2 be any rectangular orthogonal matrix,4 then:

b
D
= Ps. (2)

Proof. By §2.1, s = (x1, . . . , xn+2) /r, where x1, . . . , xn+2 ∼ N (0, 1) and r =
√∑n+2

i=1 x
2
i . Also

let r̃ =
√∑n

i=1 x
2
i . Since the uniform distribution for the sphere (and for the ball) is isomorphic

under change of basis, we may assume without loss of generality that P is the (n+2)-dimensional
identity with its last two rows removed:

Ps
D
= (x1, . . . , xn) /r

= (r̃/r) (x1, . . . , xn) /r̃

D
= c1/n (x1, . . . , xn) /r̃ (where c ∼ U [0, 1] by Lemma 1)
D
= b (by §2.2).

3.1 Uniformly sampling the n-ball (alternative)
As a corollary to Theorem 1, we obtain the following alternative to §2.2 for the n-ball:

1. Sample s ∈ Rn+2 from the (n+ 1)-sphere.

2. Return the vector b = (s1, . . . , sn).

3.2 Uniformly sampling coordinates from the n-ball
To efficiently sample coordinates from the uniform n-ball (i.e., uniform points from the ball pro-
jected onto an arbitrary unit vector), observe that in §3.1 the elements of b correspond directly to
elements of s. In other words, sampling coordinates from the uniform n-ball reduces to sampling
coordinates from the uniform (n+ 1)-sphere. Therefore, we simply reuse the method from §2.3 to
sample coordinates from the (n+ 1)-sphere: nengo.dists.CosineSimilarity(n+ 2).
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