Introduction ﬂ

» [ he Cerebellum is essential for fine-motor
skills and tasks such as eyeblink conditioning.

» [ he cerebellum likely supports cognition.

» Marr suggested functional cerebellar circuitry
(Fig. 1; [1]).

» T his work: Novel spiking neural model of
eyeblink conditioning based on temporal basis
generated In the Granule-Golgi circuit.
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A Figure 1 Cerebellar microcircuit [2, 3]. Stimuli from pre-cerebellar nuclei pass through the Golgi-Granule
circuit, creating a high-dimensional representation. Training (“modulation”) of the parallel fibre synaptic weights
allows the circuit to learn complex functions of the input [1]. “Dashed” populations not included in our model.
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delay network. The LTI system defined by
the feedback and input matrices A and B
IS iImplemented using 1deal integrators.
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» [ he Granule-Golgi circuit can implement
flexible delays under biological constraints
(Dale's principle; time-constants; granule to

Golgi ratio; Fig. 3).

» [ he learned eyeblink trajectories of our model
qualitatively match empirical data (Fig. 4; [4]).

» Our technigues can be used to construct
biologically plausible NEF /SPA models.

» Model may be used to explore timing-related
cognitive phenomena In the cerebellum.

https://github.com/ctn-waterloo/cogsci2020-cerebellum
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» Goal: Model that learns to produce CR
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» CR ~
m = Am + Bu,

delayed CS = Delay Network [5]
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» Realize system in Granule-Golgi circuit (Fig. 2)
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A Figure 3 Delay network representation over time.

(A-C) Response to a rectangle input of the three delay
network implementations discussed above. Gray lines
correspond to individual spikes. (D) Decoding of a delay of
6 from the above representations.

<« Figure 4 Simulation
results compared to
empirical data.

(A) CR learned over time
as learned by the model.
(B) Empirical data for
comparison. [4]

(C) Shape of the CR

relative to the CS onset 2] Ito, M. (2010). Cerebellar Cortex. In G. Shepherd & S. Grillner
as learned by the model. (Eds.), Handbook of Brain Microcircuits (2nd ed.).
(D) Empirical data for 3] Llinds, R. R. (2010). Olivocerebellar System. In G. Shepherd & S.
comparison. [4] Gr_lllner (Eds.), Handbook of Brain Microcircuits (2nd ed.).
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