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Abstract

We believe that a Standard Model of the Mind should take
into account continuous state representations, continuous
timing, continuous actions, continuous learning, and parallel
control loops. For each of these, we describe initial models
that we have made exploring these directions. While we
have demonstrated that it is possible to construct high-level
cognitive models with these features (which are uncommon
in most cognitive modeling approaches), there are many
theoretical challenges still to be faced to allow these features
to interact in useful ways and to characterize what may be
gained by including these features.

Introduction

Minds are extraordinarily complex and building models of
them is difficult. To create such models, we have to ap-
proximate and abstract from the real system. Importantly,
there is no one “correct” level of abstraction for the mind
(c.f. Eliasmith and Trujillo 2013). As with modeling any
system, the correct degree of abstraction depends on the
sorts of questions being asked and the kinds of behavior we
are trying to replicate or understand. As a result, when
considering a Standard Model of the Mind, the question
arises as to which abstractions are the right ones.

In this paper, we argue that two common abstractions
found in cognitive architectures should be avoided. In par-
ticular, we are interested in characterizing the mind as be-
ing continuous (as opposed to discrete) and parallel (as op-
posed to serial). These are not new ideas; indeed it has long
been clear that the mind is not purely discrete or serial.
However, we believe that the metaphor of the discrete and
serial Turing Machine as a theoretical source of under-
standing for minds is still prevalent, and worthy of explic-
itly challenging (Eliasmith 2003). Furthermore, we believe
that modern computational advances give us new possibili-
ties for investigating such models that would have been in-
feasible even a decade ago.

We believe that continuity and parallelism are essential
ingredients for a compelling theory of cognition, and hence
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should be a central part of a Standard Model of the Mind.
As well, both ideas are under-represented in the cognitive
architecture literature, and taking them into consideration
may lead to the discovery of new capabilities, algorithms,
and explanations that are not typically available to current
models of the mind.

Continuous State

Neural activity (i.e. spikes) are generally considered as dis-
crete events, and there are a finite number of neurons in the
brain. Consequently, there is a technical sense in which
neural states are discretely characterizable (Eliasmith
2001). Indeed, mathematically speaking, continuous states
carry an infinite amount of information which is generally
not considered a reasonable means of characterizing neural
states (Rieke et al. 1997). In the literature on cognitive ar-
chitectures, it is also often assumed that cognitive states are
usefully characterizable as discrete, typically using concep-
tual symbolic representations. However, mathematical dis-
creteness at the neural level should not be confused with
conceptual discreteness at the cognitive level.

Rather, in theoretical neuroscience it is generally agreed
that neurons are best characterized as forming distributed
representations (where multiple neurons redundantly code
for multiple values). Furthermore, the spikes from neurons
release neurotransmitters which are gradually reabsorbed.
As a result, there is a long tradition of considering neurons
as representing continuous values with finite precision
(Rieke et al. 1997; Eliasmith and Anderson 2003; Salinas
and Abbott 1994). These finitely accurate values are thus
most naturally described in terms of metric spaces, which
lack the kind of discreteness typical of symbolic characteri-
zations of conceptual spaces.

In fact, this kind of mapping of spiking neurons to met-
ric spaces also holds for most non-spiking neuron models
as well. In this context, the main difference between spik-
ing and non-spiking networks is the kind of noise that is



typical of the system. Unsurprisingly then, theoretical
frameworks, like the Neural Engineering Framework (Elia-
smith & Anderson, 2003), can be used to characterize dis-
tributed spiking or non-spiking neuron populations as gen-
erating a (noisy) representation of continuous real-valued
variables.

Of course, using real-valued representations raises the
question of how aspects of cognition that are heavily con-
ceptual, such as language (which seems to be very dis-
crete), may be represented. For this, we turn to the small
(but growing) field of Vector Symbolic Architectures
(Gayler 2003; Plate 2003; Eliasmith 2013), which uses
high-dimensional vectors as symbol-like representations in
syntactic structures. In VSAs, many of the compositional
aspects of symbol systems are combined with the smooth
generalization of nonsymbolic systems. This has led to
novel explanations of the gradual decay of working mem-
ory (Choo and Eliasmith 2010), the number of terms and
size of sentences in human language (Eliasmith 2013), and
how the brain might perform inductive reasoning on gen-
eral intelligence tests (Rasmussen and Eliasmith 2014). A
Standard Model of the Mind should allow for continuous
symbol-like representations, and VSAs are one good candi-
date for how that can be realized.

Continuous Time and Continuous Actions

The mind is a physical system, and physical systems do not
change state instantaneously. That is, cognitive models
should not jump instantly from one state to another. Rather,
state transitions (from one continuous-valued state to an-
other) take place over time, and during that time the con-
tinuous-valued representations gradually change. A Stan-
dard Model of the Mind should allow for continuous,
smooth state transitions.

In some situations, the time course of this temporal
process leads to predictions about the timing of cognitive
models. For example, we have previously shown that the
dynamics of changing values in a model of the cortex-basal
ganglia-thalamus loop can explain the 50ms cognitive cy-
cle time (Stewart, Choo, and Eliasmith 2010).

However, the introduction of these dynamics into mod-
els of the mind poses new challenges. We previously
adapted an existing production-system model of expert be-
haviour in the Tower of Hanoi task into a continuous-time
spiking-neuron-based model (Stewart and Eliasmith 2011).
While this was successful, it also involved careful balanc-
ing of timing by being concerned with the inherent dynam-
ics of the system. While one action is being performed
(e.g., shifting attention from one disc to the next), the sys-
tem must maintain the signal to perform that action, and it
must do so while the effects of that action are being imple-
mented. In this example, the representation of which disc
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is currently being attended to will gradually change (over a
few tens of milliseconds) from the neural representation of
one disc to that of another. The problem is that this change
results in the very action that is being performed to become
gradually less appropriate while the action is occurring.
Ideally, this leads to a natural way of smoothly stopping an
action as it completes. However, if there are other poten-
tial actions competing with the current one, balancing these
behaviors becomes complex because the action we are at-
tempting to complete becomes less important relative to
actions we may not yet want to perform. This kind of in-
terference is a result of smoothly changing actions, some-
thing avoided by discrete models, but inherent to real
brains.

While we do not have a panacea to alleviate these con-
cerns, we do believe that this is more than a “mere imple-
mentation” issue. If internal representations change gradu-
ally over time, the dynamics of these changes should be
exploitable by a cognitive system. Neurons can very effi-
ciently implement dynamical systems and attractor net-
works (Eliasmith 2005) and it seems likely to us that these
timing effects and continuously changing representations
would be used by a cognitive system to guide its behavior.

Continuous Learning

We believe that any learning processes within a Standard
Model of the Mind must be continuous in another sense:
the model must continue to learn over its entire lifetime.
While this fits well with many cognitive architectures (for
example, ACT-R’s declarative and procedural learning
mechanisms), it is concerning to us that many large con-
nectionist learning systems, including the majority of deep
neural networks, make use of a gradually diminishing
learning rate. This common practice of starting with a high
learning rate and slowly reducing it (i.e. simulated anneal-
ing) implies a distinct beginning and end to the learning
process, and seems suited only for environments whose
statistics do not change.

One way to address this issue without removing this
highly useful adjustment of the learning rate would be to
explicitly have the learning rate under the control of the
model itself. This would require having the model deter-
mine for itself the useful value of this learning rate parame-
ter, and that itself may be difficult, given that currently
many learning rate trajectories in neural networks are
hand-tuned for different circumstances by the researcher.

Furthermore, it should be noted that deep neural network
learning is frequently discontinuous in another way: deep
learning often makes use of batch learning, where learning
signals are collected for a period of time, and then applied
all at once. While this is often described as being similar
to the sleep/wake cycle in living creatures, it seems to us



that a more specific theory of the details of this relationship
would be needed if such a system were to be used in a
Standard Model of the Mind.

Our work in this direction has mostly focused on adapta-
tion in the motor system and reinforcement learning (RL).
In the motor system, we have shown that a continuously
learning system based on mammalian motor cortices and
the cerebellum can adjust to changes in the motor system
and the environment (DeWolf et al 2016). Importantly, this
learning is stable when given a fixed environment, but
adapts quickly when and if the environment changes (such
as dealing with the unexpected forces that occur when
picking up an object of unknown mass). The core underly-
ing learning algorithm has been proved to be stable (Slo-
tine and Li 1987), and also works for other systems such as
quadcopter control (Komer 2015).

However, adaptive motor control is not enough. A Stan-
dard Model of the Mind will also need to be continuously
learning in many other ways as well. Classical and operant
conditioning need to occur, including standard effects such
as second order conditioning (not learning new associa-
tions if existing associations sufficiently explain observed
effects) and spontaneous recovery (associations than have
been extinguished suddenly re-appearing when an agent is
placed in a new environment). While we have developed a
neural models of these effects (Kolbeck, Bekolay, and Elia-
smith 2013), more sophisticated forms of RL are also criti-
cal. For instance, we have developed methods for RL in
continuous time and continuous state settings, that can op-
erate in SMDP environments (where the time between an
event and related rewards is continuous and unknown) and
use hierarchical methods (Rasmussen, Voelker, and Elia-
smith 2017). We have used these hierarchical methods to
demonstrate transfer learning (Rasmussen, Voelker, and
Eliasmith 2017). It is also worth noting that the PRIMs
model (Taatgen 2013) makes extensive use of continuous
learning to deal with transfer of skills from one task to an-
other.

In addition, we have shown that you can use continuous
learning methods to learn the operators needed to imple-
ment the symbol-like structures mentioned above (Bekolay,
Kolbeck, and Eliasmith 2013).

A Standard Model of the Mind is likely to require many
different learning systems, all continuously running during
the lifetime of the model. These learning systems will in-
teract in possibly unexpected ways. We believe that mak-
ing this interaction stable over long time scales will be an
important challenge for large-scale cognitive modeling.

Parallel Control

As more and more systems are added to a Standard Model
of the Mind, a new challenge also arises. Many cognitive
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modeling architectures, including our own large-scale
modeling efforts (Eliasmith et al. 2012), make use of a sin-
gle serial bottleneck for controlling cognition. While there
is extensive behavioral evidence supporting such a bottle-
neck, it is likely not the only control loop that exists.

In particular, it is clear that complex automatic reflex ac-
tions are exhibited by cognitive systems, and that these re-
flexes can be both built-in and learned. These are often
thought of as purely stimulus-response systems, and may
be treated as direct connections from sensory systems to
motor systems (bypassing any central cognitive control).
However, we believe that similar systems also exist inter-
nally to the agent, leading to complex interactions with any
central serial bottleneck for cognition.

Indeed, neural evidence suggests that even in the basal
ganglia (often considered to be the neurological correlate
for the serial bottleneck), there are multiple parallel control
loops. The selection process appears to be separated into
different types of actions, including limbic, associative,
sensory, and motor actions (Alexander, DeLong, and Strick
1986). Furthermore, there is evidence that other structures
also perform similar control functions as the basal ganglia.
For example, the amygdala is sometimes seen as a coordi-
nation hub, receiving inputs from a wide range of cortical
structures, and providing specific output for thalamic rout-
ing and control of other regions (Bickart, Dickerson, and
Barrett 2014) and there is extensive evidence for other
loops as well (e.g. Solari and Stoner 2011).

Conclusions

We have identified a variety of challenges for a Standard
Model of Mind that have become salient as we have devel-
oped cognitive models that step away from the common
approach of assuming events are discrete, representations
are discrete, and control between modules is achieved with
a single serial bottleneck. We do not yet have solutions
that comprehensively deal with these challenges. However,
we have shown that it is possible to build large-scale inte-
grated continuous models (e.g. Eliasmith et al. 2012), and
we have shown that it is possible to take advantage of con-
tinuous representations to provide novel explanations of
cognitive behaviors (Rasmussen and Eliasmith 2014) and
timing (Stewart, Choo, and Eliasmith 2010). We have also
shown that continuous learning is useful for motor control
(DeWolf et al 2016) and extending reinforcement learning
(Rasmussen, Voelker, and Eliasmith 2017). Importantly,
we have shown that these continuous systems can also ex-
hibit behavior that seems symbolic and discrete, allowing
us to investigate continuous neural systems while consider-
ing the sorts of high-level cognitive behavior that inspires
most cognitive architecture research.



Our goal is to work towards cognitive architectures that
directly incorporate continuous representations, continuous
timing, continuous actions, and continuous learning sys-
tems, while combining multiple control systems of differ-
ent types. We believe this pushes the field of cognitive ar-
chitectures in novel and scientifically useful directions. In
particular, parallel and continuous characterizations of cog-
nition may be critical for explaining aspects of the mind
that have been difficult to characterize, such as how motor
and perceptual systems relate to higher-level cognition. In
summary, we strongly believe that a Standard Model of the
Mind should support continuous and parallel characteriza-
tions of cognition that are often avoided by contemporary
cognitive architectures.
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