
Spaun: A Perception-Cognition-Action Model Using Spiking Neurons

Terrence C. Stewart (tcstewar@uwaterloo.ca)
Feng-Xuan Choo (fchoo@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo,

Waterloo, ON, N2L 3G1

Abstract
We present a large-scale cognitive neural model called Spaun
(Semantic Pointer Architecture: Unified Network), and show
simulation results on 6 tasks (digit recognition, tracing from
memory, serial working memory, question answering,
addition by counting, and symbolic pattern completion). The
model consists of 2.3 million spiking neurons whose neural
properties, organization, and connectivity match that of the
mammalian brain. Input consists of images of handwritten
and typed numbers and symbols, and output is the motion of a
2 degree-of-freedom arm that writes the model’s responses.
Tasks can be presented in any order, with no “rewiring” of the
brain for each task. Instead, the model is capable of internal
cognitive control (via the basal ganglia), selectively routing
information throughout the brain and recruiting different
cortical components as needed for each task.

Keywords: Neural engineering; cognitive architecture;
spiking neurons; cognitive control; whole-brain systems

Introduction
In a forthcoming book, Eliasmith (2012) details a neural
architecture for biological cognition called the semantic
pointer architecture (SPA). This architecture, based on the
Neural Engineering Framework (Eliasmith & Anderson,
2003), uses groups of spiking neurons to form distributed
representations of high-dimensional vectors, which can in
turn encode symbol-like tree structures. Synaptic
connections between groups of neurons compute particular
functions on those vectors, allowing high-level cognitive
algorithms to be implemented in detailed spiking neuron
models.

In this paper, we present an overview of the Semantic
Pointer Architecture: Unified Network (Spaun) model and
discuss its behaviour on six different tasks. We demonstrate
that this biologically plausible spiking neuron model has the
following features:

Task Flexibility: No changes are made to the model
between tasks. Visual input indicates which task to do next.

Motor Plans: Model output provides a motor plan for a
simple 2-joint arm, giving hand-written digits as responses.

Visual Memory: Even after an input has been recognized
and classified as a particular symbol, details of the original
image can still be recovered and used.

Compositionality: Multiple items can be represented and
reliably bound together, allowing for the creation and
manipulation of symbol-tree-like structures.

Symbolic Induction: Language-like patterns in visual
input can be discovered after only a few presentations, and
used to guide subsequent responses.

Input to the model consists of idealized and hand-written
digits and symbols (Figure 1a). These images are given as a
28x28 grid of pixels. This input domain has the advantage
of including significantly variable, real-world input, while
also providing a reasonably limited semantics that the model
must reason about. Output from the model consists of the
motion of a 2-degree-of-freedom arm. The neural model
generates a sequence of target locations which directly drive
the controller for the arm. This provides the model with its
own handwriting output (Figure 1b).

Figure 1: Example visual input and arm-movement output
from Spaun. Input digits are from the MNIST database, and
input symbols are used to inform the model of details of the
current task. The model produces output by controlling a 2-

joint arm, and variation in the internal representations
produces the variation in its output hand-writing.

We can think of Spaun as having a single, fixed eye and a
single 2-joint arm. The eye does not move, but instead the
experimenter changes the image falling on it by showing
different inputs over time, with each input shown for
150ms, followed by 150ms of blank background. To begin a
specific task, Spaun is shown the letter “A” followed by a
number between zero and seven. The subsequent input is
then interpreted by the model in the context of the specified
task and processed accordingly, resulting in arm movements
that provide Spaun’s response. All internal processing is
performed using spiking neurons, with neural properties and
connectivity consistent with the mammalian brain.

1018

Neural Engineering Framework
While complete details on the construction of Spaun are
available elsewhere (Eliasmith, 2012; <http://nengo.ca>), it
is based on our continuing work on the Neural Engineering
Framework (NEF; Eliasmith & Anderson, 2003). The NEF
is a generic method for converting high-level algorithms
into realistic spiking neuron models.

Two basic principles of the NEF are that a) groups of
neurons form distributed representations of vectors, and b)
connections between groups of neurons specify a
computation to be performed on those vectors. Importantly,
the NEF provides a method for analytically solving for the
synaptic connection weights that will efficiently compute
any given function.

While the NEF supports any type of neural model, for
Spaun we use Leaky Integrate-and-Fire (LIF) neurons. The
various properties of the LIF model (refractory period,
capacitance, resistance, post-synaptic time constant, etc.) are
set to be consistent with known neurophsyiological results
for the various brain regions modelled.

To represent a vector using a group of neurons, the NEF
generalizes the idea of preferred direction vectors. Each
neuron in a group has a randomly chosen vector e for which
it will fire most strongly. In particular, the amount of
current J flowing into the neuron is the dot product of the
preferred vector e with the represented value x, times the
neuron's gain α, plus the background current Jbias (Eq. 1).

While Eq. 1 lets us convert x into neural activity, we can
also do the opposite by computing d via Eq. 2. This
produces a set of linear decoding weights that can be
multiplied by the activity of each neuron in the group. The
result is the optimal least-squares linear estimate of x. Thus,
given a spiking pattern we can estimate what value is
currently represented by those neurons.

Most crucially, we can use d to calculate the synaptic
connection weights that will compute particular operations.
To compute a linear operation where one group of neurons
represents x and a second group should represent Mx, where
M is an arbitrary matrix, we set the connection weights
between neuron i in the first group and neuron j in the
second group to ωij as per Eq. 3. For non-linear operations,
we need to compute a new set of d values via Eq. 4.

J = e⋅xJ bias (1)
d=−1   ij=∫ai a j dx  j=∫a j x dx (2)
 ij= j e jM d i (3)
d f x =−1  ij=∫ai a j dx  j=∫a j f x dx (4)

This approach allows us to convert a high-level algorithm
written in terms of vectors and computations on those
vectors into a detailed spiking neuron model. Importantly,
this approach works for recurrent connections as well. For
example, we can implement memory by connecting a group
of neurons back to itself with connections weights
determined by Eq. 3 where M is the identity matrix. If that
group of neurons is currently representing x, then given no
external input it will drive itself to keep representing x, thus
storing information over time.

Spaun
The Semantic Pointer Architecture: Unified Network model
consists of multiple modules, depicted in Figure 2. These
modules are considered to be cortical and subcortical areas
that implement different operations. All components consist
of LIF neurons connected via synaptic weights (Eq. 3), but
each area computes a different set of functions.

To perform a particular task, information must be
selectively routed between cortical areas, as each task uses a
different subset of the components. This is achieved
through an action selection system modelled after the
mammalian basal ganglia and thalamus. We have
previously shown that this model matches the anatomy and
timing behaviour of the basal ganglia (Stewart, Choo, &
Eliasmith, 2010) and provides enough flexibility to perform
planning and problem solving in our model of the Tower of
Hanoi task (Stewart & Eliasmith, 2011).

The model presented here is the first use of this neural
action selection system with multiple tasks and detailed
perceptual-motor systems. The action selection system is a
neural production system, allowing us to write rules of the
form “if cortical area X1 matches the vector a and cortical
area X2 matches the vector b, then send vector c to area X3

and route the vector from area X4 to area X5”. These rules
are implemented by converting the rules into functions,
applying Eq. 3, and using the resulting synaptic connection
weights between the cortex, basal ganglia, and thalamus.

Importantly, the set of rules is fixed across all the tasks,
giving a single, unified model. All input to Spaun is
through its perceptual system, and all behavioral output
from its motor system. The representational repertoire,
background knowledge, cognitive mechanisms, neural
mechanisms, etc. remain untouched while the system
performs any of the tasks in any order.

Figure 2: The Spaun architecture

The Spaun model (Figure 2) consists of three hierarchies,
an action selection mechanism, and five subsystems. The
first hierarchy is the visual system, which compresses an
input image into a high-level abstract representation of that
input. We adapt Hinton's (2010) Deep Belief Network to
use LIF spiking neurons (via the NEF) and use it to
compress a 28x28 image into a 50-dimensional vector we
refer to as a semantic pointer: it is semantic because the
high-level representation maintains similarity relationships
from the image space; and it is a pointer because, as we will

1019

see, the system can recover the original information from
the compressed form. Similarly, Spaun includes a motor
hierarchy which dereferences an output semantic pointer
representing a number into a motor plan to drive a two
degree-of-freedom arm (DeWolf, 2010). A third internal
hierarchy (discussed in more detail below in the serial
working memory section) forms a working memory capable
of binding and unbinding arbitrary semantic pointers,
providing the compositionality that is crucial for complex
cognition. The working memory component also provides
stable representations of intermediate task states, task
subgoals, and context. Anatomically, these functions cover
large portions of prefrontal and parietal cortex.

The five subsystems, from left to right in Figure 2, are
used to: 1) map the visual hierarchy output to a conceptual
representation as needed (information encoding); 2) extract
relations between input elements (transformation
calculation); 3) evaluate the reward associated with the
input (reward evaluation); 4) map output items to a motor
semantic pointer (information decoding); and 5) control
motor timing (motor processing). Several of the
subsystems and hierarchies consist of multiple components
needed to perform the identified functions. For instance, the
working memory subsystem includes eight distinct memory
systems, each of which can store semantic pointers. Overall,
the model uses 2,341,212 spiking leaky integrate-and-fire
(LIF) neurons. Additional details necessary to fully re-
implement the model, and a downloadable version of the
model can be found at <http://nengo.ca>.

Digit recognition
The simplest task for Spaun is digit recognition. We present
the input sequence A1[X?, where X is a randomly chosen
hand-written digit from the MNIST database. Each symbol
is shown for 150ms, with 150ms between symbols. To
perform this task, Spaun includes synaptic connections in
the action selection system to implement the following
algorithm:

• If visual input matches A, store ? in the state area
of the working memory. (This tells the system it is
about to start a new task.)

• If ? matches state, route the output of the visual
encoding system to the state area of working
memory. (This identifies and remembers which
task is to performed.)

• If the visual input is [, activate the routing between
the information encoding system and the general-
purpose working memory. (This tells Spaum to
store whatever digits appear next.)

• If the visual input is ? and state is 1, route the
pattern in working memory to the motor system.

Responses from this model for different inputs X are shown
in Figure 3. Recognition accuracy is 94%, which compares
well to humans on this task (~98%; Chaaban and
Scheessele, 2007). The model is thus capable of correctly
categorizing over a wide range of input variability.

Figure 3: Input-output pairs for 20 different inputs. Each
input (on the left) is correctly recognized by the model,

which produces the output (on the right) via motor control.

Tracing from memory
While the previous task showed that the model can treat
very different stimuli as tokens of the same type, we also
want the model to be able to be sensitive to the variations
within a type. To demonstrate this ability, we ask the model
to do digit recognition, but to draw its response in the same
style as the original input.

This is implemented by defining, for each digit, five
different motor control sequences that draw five visually
distinct versions of that digit. If the input pattern is X and
the motor sequence is Y, then we can define the tracing
function f(X)=Y. We build a neural connection between the
vision system and the motor system via Eq. 3, and allow it
to be selectively controlled via the action selection in the
basal ganglia. If we now present new input Xnew that was
not among the 5 original inputs, the resulting Ynew value will
be the model's linear extrapolation of what motor sequence
would be appropriate for that novel input pattern.

To use this system, we use the sequence A0[X? and add
a single rule to the basal ganglia action selection system:

• If the visual input is ? and state is 0, route the
pattern in working memory to the motor system via
the tracing function.

This rule, combined with the previous ones for digit
recognition, result in the behaviour shown in Figure 4. Note
that it is capable of drawing 2's both with and without loops,
6's where the loops join in different locations, and generally
following the slanting of the digits. It is not a perfect
reconstruction of the original input, but it does demonstrate
that while the internal neural representation of all 2's are
very similar (as shown by Spaun's success in the previous
task), there are still variations in the representation due to
different visual features, and those variations can be used to
successfully drive behaviour.

Figure 4: Input-output pairs for tracing from memory. The
inputs (on the left) are recognized by the model, and then

recreated from memory based on representational similarity
to five previously known example pairs for each digit.

1020

Serial Working Memory
For this task, Spaun is given a list of numbers and must
repeat them back, in order. The algorithm used here is
based on our previous work (Choo & Eliasmith, 2010) on a
special-purpose serial memory model.

The NEF gives us a method for representing vectors via
spiking neurons. The Semantic Pointer Architecture
approach maps symbols onto particular vectors, so one
vector might represent ONE while another vector represents
TWO. Each vector, when represented, would produce a
distinct firing pattern in that population of neurons.

To represent an ordered sequence, we cannot simply add
the vectors together, since we could not distinguish
ONE+TWO from TWO+ONE. Instead, we can perform
binding by creating a new vector from two different vectors.
We start by introducing new vectors for different positions:
P1, P2, P3, etc. We then store the sequence ONE, TWO by
representing the vector ONE⊗P1+TWO⊗P2. Many
mathematical operations can be used for ⊗; we choose
circular convolution since it is easy to accurately implement
in spiking neurons using the NEF. This approach to
representation using vectors is generally known as a Vector
Symbolic Architecture (Gayler, 2003), and has been shown
to scale well to adult-level vocabulary and grammar.

The action selection rules for this task are based on the
previous one, with the addition of the] marker to indicate
the end of a sequence. Figure 5 shows not only the input
and output of the model, but also the ongoing spiking
behaviour in various areas during the execution of the task.

Figure 5 also shows a method for interpreting what is
currently being represented in a particular cortical area. The
second working memory line shows how similar the current
pattern in the working memory is to various different ideal
patterns1. In particular, after the presentation of the final
digit (t=2 seconds), the value being represented is similar to
FOUR⊗P1, THREE⊗P2, TWO⊗P3, and SIX⊗P4. In
other words, this one group of neurons is capable of storing
any arbitrary sequence of digits. As the sequence gets
longer, accuracy decreases, and both primacy and recency
effects are seen (Choo & Eliasmith, 2010).

Question Answering
In addition to simply repeating a sequence, Spaun is capable
of answering questions about the sequence. In particular, it
can identify which digit is at a given location, and it can
identify the location of a given digit.

This is accomplished by adjusting the transformation
which takes the contents of working memory and routes it to
the motor area. Given the vector S=FIVE⊗P1+SIX⊗P2,
we can find the digit in position 1 by computing S⊘P1,
where ⊘ is circular correlation, since S⊘P1≈FIVE. The
accuracy of this approximation is dependent on the length of
the sequence, the number of neurons used, and the
dimensionality of the vectors.

1 Formally, this is the dot product between the ideal vector for
that symbol and the decoded value found using Eq. 2.

To implement this task, the sequence is presented in the
same manner as the serial working memory task. We then
present the symbol P for a query based on position, or the
symbol K for a query based on the kind of digit to look for
in the list. The action selection rules route the appropriate
transformation vector to the working memory area,
providing the required information to the motor system.

Figure 5: Serial recall of the sequence 4,3,2,6. Infero-
temporal cortex (IT) holds the compressed representation of

the visual input. Striatum (Str) activity determines how
good a match each rule is to the current state. Globus

pallidus internus (GPi) performs action selection, inhibiting
all but the current best-matching rule. Frontal cortex (FCtx)
holds task information, and working memory (WM) stores

the list as a single vector:
FOUR⊗P1+THREE⊗P2+TWO⊗P3+SIX⊗P4.

Figure 6: Answering questions about a list. The first case
presents the list 9,4,7,3,0 and asks what is position 5. The
model correctly answers 0. The second case presents the
list 8,6,9,4,7 asks where the 6 can be found. The model

correctly answers that it is in location 2.

1021

Addition by Counting
For the fifth task, we show that Spaun is capable of
performing sequences of internal actions, where there are a
multiple steps to go through before producing a final output.
This is demonstrated here by performing mental addition via
counting. That is, to compute 4+3, the model must go
through the steps of counting 4, 5, 6, and 7, entirely
internally, and then finally producing the output 7.

Spaun achieves this by having multiple, general-purpose
working memories. We use the first of these (WM1; the
same neurons that stored the list and the recognized
numbers in the previous task) to store the current value. A
second group of neurons (WM2) stores the number of
counting steps that are needed, and a third group (WM3)
stores how many steps have been made.

Figure 7 shows Spaun performing this task over time for
the specific case of 4+3. Importantly, the model produces
accurate results for any single-digit addition. Furthermore,
Spaun exhibits the expected linear relationship between
subvocal counting and response times, as seen in human
subjects (Cordes et al., 2001). That is, each counting step
requires 419±10ms, which is within the empirical range of
344±135ms for subvocal counting (Landauer, 1962).

Successful counting demonstrates that flexible action
selection is effectively incorporated into Spaun. It also
shows that the model has an understanding of order
relations over numbers, and can exploit that knowledge to
produce appropriate responses.

Figure 7: Adding 4+3 by mentally counting 4, 5, 6, 7
(WM1). WM2 keeps track of the fact that it should stop
counting when it reaches the third step, and WM3 keeps

track of what step it is at (0, 1, 2, 3).

Pattern Completion
Finally, we show that Spaun is capable of quickly
identifying and responding to patterns in its input via
inductive learning. This specifically targets a type of task
that has long been held to be problematic for connectionist
approaches: the ability to rapidly create and bind symbolic
variables (e.g. Marcus, 2001; Jackendoff, 2002). The
following example (from Hadley, 2009) shows a pattern
completion task that humans are readily able to solve given
only a few items. They are told that if they hear “biffle
biffle rose zarple”, the correct response is “rose zarple”.

After a three such examples, they must generalize to a new
case:

Training Set
• Input: Biffle biffle rose zarple. Output: rose zarple.
• Input: Biffle biffle frog zarple. Output: frog zarple.
• Input: Biffle biffle dog zarple. Output: dog zarple.

Test Case
• Input: Biffle biffle quoggie zarple. Output: ?

Hadley suggests that this task requires rapid variable
creation because the second last item in the list can take on
any form, but human cognizers can nevertheless identify the
overall syntactic structure and identify “quoggie zarple” as
the appropriate response. So it seems that a variable has
been created, which can receive any particular content, and
that will not disrupt generalization performance.

Figure 8 shows Spaun’s behavior on a stimulus sequence
with the same structure as that proposed by Hadley.
Importantly, this is done extremely quickly (~2 seconds,
consistent with human performance), and without changing
neural connection weights. In other words, there is no
learning rule; Spaun is able to learn to complete this pattern
without any neural rewiring.

To achieve this result, we use a simplification of our
earlier work with a neural model capable of performing
Raven's Matrices (Rasmussen & Eliasmith, 2011). We store
the representation of the first list in one area of working
memory (WM1) and a representation of the second list in
another area (WM2). Since we are using the semantic
pointer method of representing lists, these lists are encoded
as two high-dimensional vectors (V1 and V2). We can then
compute the transformation T which takes the first vector
(V2=V1⊗T, so T=V2⊘V1). We implement this is Spaun
by adding a cortical area which computes the transformation
between two working memory components, and adding
rules to the basal ganglia to route this information
appropriately when performing this task. As more examples
are given, the value T is built up as the average over all the
examples, improving accuracy.

Figure 8: Pattern completion solving Hadley' rapid variable
creation problem. The input consists of pairs of lists. After

seeing 0094→94, 0014→14, and 0024→24, it correctly
concludes that given 0074, it can complete the pattern by

outputting 74.

1022

Discussion
The basic components of the model presented here are not
new; we have previously published spiking neuron models
capable of exhibiting list memory (Choo & Eliasmith,
2010), pattern completion (Rasmussen & Eliasmith, 2011),
action selection (Stewart, Choo, & Eliasmith, 2010), and
sequential reasoning (Stewart & Eliasmith, 2011).
However, the work presented here is the first demonstration
of these capabilities in a single, unified model. There are no
adjustments made to the model between tasks, and indeed
the model can seamlessly go from one task to the next.

Furthermore, we feel that an important feature of this
cognitive model is that it includes the entire system: visual
perception, cognition, and motor action. The neural
representations used throughout the model are the same, as
are the underlying computational principles, and methods of
mapping to neural spikes. As a result, this single model has
neuron responses in visual areas that match known visual
responses, as well as neuron responses and circuitry in basal
ganglia that match known responses and anatomical
properties of basal ganglia, as well as behaviorally accurate
working memory limitations, as well as the ability to
perform human like induction, and so on. Spaun is thus both
physically and conceptually unified.

It should be noted that the current set of tasks Spaun can
perform are in a constrained semantic space – that of lists of
numbers. However, the basic principle of using high-
dimensional vectors that can be bound together (i.e.
semantic pointers) generalizes to more complex domains.

Furthermore, the model’s architecture is not tightly tied to
the set of tasks being implemented. That is, rather than
having particular components to perform each task, the
components presented here provide generic cognitive
capacities, and any given task can recruit these components
as needed. For example, the Pattern Completion task
requires use of a component that can find the transformation
that relates the information in two different areas of working
memory. This cortical component would also be useful for
performing other tasks, such as a Raven's Matrix task
(Rasmussen & Eliasmith, 2011).

For the model presented here, all synaptic connection
weights between neurons are analytically derived, rather
than having them be learned, as in traditional neural
network models. While this demonstrates that our model is
capable of learning without connection weight changes (as
in the pattern completion task), it leaves open the question
of how these connections are learned in the real brain.
While we do not have a complete developmental story for
the various cortical components, we have developed a
dopamine-based reinforcement learning system (Stewart,
Bekolay, & Eliasmith, 2012) that has been integrated with
Spaun in an n-arm bandit task, but the results are not
presented here due to space limitations. This system allows
Spaun to learn the connections between the cortical
components and the basal ganglia, allowing the model to
learn to recruit different components for different tasks.

Spaun presents a detailed spiking neural model capable of
visual recognition, cognitive control, working memory,
symbolic manipulation, and producing hand-written motor
outputs. This sort of model is required for connecting high-
level cognitive theory and behavioural data to the biological
constraints available from neuroscience.

References

Chaaban, I., & Scheessele, M. R. (2007). Human
performance on the USPS database. Technical Report,
Indiana University South Bend.

Choo, F., Eliasmith, C. (2010). A Spiking Neuron Model of
Serial-Order Recall. In Richard Cattrambone & Stellan
Ohlsson (Eds.), 32nd Annual Conference of the Cognitive
Science Society. Portland, OR: Cognitive Science Society.

Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J.
(2001). Variability signatures distinguish verbal from
nonverbal counting for both large and small numbers.
Psychonomic Bulletin & Review, 8(4), 698–707.

DeWolf, T. (2010). NOCH: A framework for biologically
plausible models of neural motor control. Masters Thesis.
University of Waterloo, Waterloo.

Eliasmith, C. (2012). How to build a brain: A neural
architecture for biological cognition. Oxford University
Press, New York, NY.

Eliasmith, C. & Anderson, C. (2003). Neural Engineering:
Computation, representation, and dynamics in
neurobiological systems. Cambridge: MIT Press.

Gayler, R. (2003). Vector Symbolic Architectures Answer
Jackendoff’s Challenges for Cognitive Neuroscience, in
Slezak, P. (ed). Int. Conference on Cognitive Science,
Sydney: University of New South Wales, 133–138.

Hadley, R. F. (2009). The problem of rapid variable
creation. Neural computation, 21(2), 510–32.

Hinton, G.E. (2010). Learning to represent visual input.
Phil. Trans. Roy. Soc. B, 365, 177-184.

Jackendoff, R. (2002). Foundations of language: Brain,
meaning, grammar, evolution. Oxford University Press.

Landauer, T. (1962). Rate of implicit speech. Perceptual
and Motor Skills, 1, 646.

Marcus, G. F. (2001). The algebraic mind. MIT Press,
Cambridge, MA.

Rasmussen, D., Eliasmith, C. (2011). A neural model of
rule generation in inductive reasoning. Topics in
Cognitive Science, 3(1), 140-153.

Stewart, T.C., Bekolay, T., Eliasmith, C. (2012). Learning
to select actions with spiking neurons in the basal ganglia.
Frontiers in Decision Neuroscience. 6.

Stewart, T.C., Choo, X., and Eliasmith, C. (2010). Dynamic
Behaviour of a Spiking Model of Action Selection in the
Basal Ganglia. 10th Int. Conf. on Cognitive Modeling.

Stewart, T.C., Eliasmith, C. (2011). Neural Cognitive
Modelling: A Biologically Constrained Spiking Neuron
Model of the Tower of Hanoi Task. In L. Carlson, C.
Haelscher, & T. Shipley (Eds.), 33rd Annual Conference
of the Cognitive Science Society.

1023

