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Abstract
We present a large-scale cognitive neural model called Spaun 
(Semantic Pointer Architecture: Unified Network), and show 
simulation results on 6 tasks (digit recognition, tracing from 
memory,  serial  working  memory,  question  answering, 
addition by counting, and symbolic pattern completion). The 
model consists of 2.3 million spiking neurons whose neural 
properties,  organization,  and connectivity  match that of the 
mammalian  brain.  Input  consists  of  images  of  handwritten 
and typed numbers and symbols, and output is the motion of a 
2 degree-of-freedom arm that writes  the model’s responses. 
Tasks can be presented in any order, with no “rewiring” of the 
brain for each task.  Instead, the model is capable of internal 
cognitive control (via the basal ganglia),  selectively routing 
information  throughout  the  brain  and  recruiting  different 
cortical components as needed for each task. 

Keywords: Neural  engineering;  cognitive  architecture; 
spiking neurons; cognitive control; whole-brain systems 

Introduction
In  a  forthcoming book,  Eliasmith  (2012)  details  a  neural 
architecture  for  biological  cognition  called  the  semantic  
pointer architecture (SPA). This architecture, based on the 
Neural  Engineering  Framework  (Eliasmith  &  Anderson, 
2003),  uses groups of spiking neurons to form distributed 
representations of  high-dimensional vectors,  which can in 
turn  encode  symbol-like  tree  structures.   Synaptic 
connections between groups of neurons compute particular 
functions  on  those  vectors,  allowing  high-level  cognitive 
algorithms  to  be  implemented  in  detailed  spiking  neuron 
models.

In  this  paper,  we present  an  overview of  the  Semantic 
Pointer Architecture:  Unified Network (Spaun) model and 
discuss its behaviour on six different tasks.  We demonstrate 
that this biologically plausible spiking neuron model has the 
following features:

Task  Flexibility: No  changes  are  made  to  the  model 
between tasks.  Visual input indicates which task to do next.

Motor Plans: Model output provides a motor plan for a 
simple 2-joint arm, giving hand-written digits as responses.

Visual Memory: Even after an input has been recognized 
and classified as a particular symbol, details of the original 
image can still be recovered and used.

Compositionality: Multiple items can be represented and 
reliably  bound  together,  allowing  for  the  creation  and 
manipulation of symbol-tree-like structures.

Symbolic  Induction: Language-like  patterns  in  visual 
input can be discovered after only a few presentations, and 
used to guide subsequent responses.

Input to the model consists of idealized and hand-written 
digits and symbols (Figure 1a).  These images are given as a 
28x28 grid of pixels.  This input domain has the advantage 
of including significantly variable,  real-world input,  while 
also providing a reasonably limited semantics that the model 
must reason about.  Output from the model consists of the 
motion of a 2-degree-of-freedom arm.  The neural  model 
generates a sequence of target locations which directly drive 
the controller for the arm.  This provides the model with its 
own handwriting output (Figure 1b).

Figure 1: Example visual input and arm-movement output 
from Spaun.  Input digits are from the MNIST database, and 
input symbols are used to inform the model of details of the 
current task.  The model produces output by controlling a 2-

joint arm, and variation in the internal representations 
produces the variation in its output hand-writing.

We can think of Spaun as having a single, fixed eye and a 
single 2-joint arm. The eye does not move, but instead the 
experimenter  changes  the image falling on it  by showing 
different  inputs  over  time,  with  each  input  shown  for 
150ms, followed by 150ms of blank background. To begin a 
specific task, Spaun is shown the letter “A” followed by a 
number between zero and seven. The subsequent input is 
then interpreted by the model in the context of the specified 
task and processed accordingly, resulting in arm movements 
that  provide Spaun’s  response.   All  internal  processing is 
performed using spiking neurons, with neural properties and 
connectivity consistent with the mammalian brain.
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Neural Engineering Framework
While  complete  details  on  the  construction  of  Spaun are 
available elsewhere (Eliasmith, 2012; <http://nengo.ca>), it 
is based on our continuing work on the Neural Engineering 
Framework (NEF; Eliasmith & Anderson, 2003).  The NEF 
is  a  generic  method  for  converting  high-level  algorithms 
into realistic spiking neuron models.

Two basic principles  of  the NEF are  that  a)  groups  of 
neurons form distributed representations of vectors, and b) 
connections  between  groups  of  neurons  specify  a 
computation to be performed on those vectors.  Importantly, 
the NEF provides a method for analytically solving for the 
synaptic  connection  weights  that  will  efficiently  compute 
any given function.

While the NEF supports any type  of  neural  model,  for 
Spaun we use Leaky Integrate-and-Fire (LIF) neurons.  The 
various  properties  of  the  LIF  model  (refractory  period, 
capacitance, resistance, post-synaptic time constant, etc.) are 
set to be consistent with known neurophsyiological results 
for the various brain regions modelled.

To represent a vector using a group of neurons, the NEF 
generalizes  the  idea  of  preferred  direction  vectors.   Each 
neuron in a group has a randomly chosen vector e for which 
it  will  fire  most  strongly.   In  particular,  the  amount  of 
current  J flowing into the neuron  is the dot product of the 
preferred vector  e with the represented value  x,  times the 
neuron's gain α, plus the background current Jbias (Eq. 1).

While Eq. 1 lets us convert x into neural activity, we can 
also  do  the  opposite  by  computing  d via  Eq.  2.   This 
produces  a  set  of  linear  decoding  weights  that  can  be 
multiplied by the activity of each neuron in the group. The 
result is the optimal least-squares linear estimate of x.  Thus, 
given  a  spiking  pattern  we  can  estimate  what  value  is 
currently represented by those neurons.

Most  crucially,  we  can  use  d to  calculate  the  synaptic 
connection weights that will compute particular operations. 
To compute a linear operation where one group of neurons 
represents x and a second group should represent Mx, where 
M is  an  arbitrary  matrix,  we  set  the  connection  weights 
between  neuron  i in  the  first  group  and  neuron  j in  the 
second group to ωij as per Eq. 3.  For non-linear operations, 
we need to compute a new set of d values via Eq. 4.

 

J = e⋅xJ bias (1)
d=−1   ij=∫ai a j dx  j=∫a j x dx (2)
 ij= j e jM d i (3)
d f x =−1  ij=∫ai a j dx  j=∫a j f x dx (4)

This approach allows us to convert  a high-level algorithm 
written  in  terms  of  vectors  and  computations  on  those 
vectors into a detailed spiking neuron model.  Importantly, 
this approach works for recurrent connections as well.  For 
example, we can implement memory by connecting a group 
of  neurons  back  to  itself  with  connections  weights 
determined by Eq. 3 where M is the identity matrix.  If that 
group of neurons is currently representing x, then given no 
external input it will drive itself to keep representing x, thus 
storing information over time.

Spaun
The Semantic Pointer Architecture: Unified Network model 
consists of multiple modules, depicted in Figure 2.  These 
modules are considered to be cortical and subcortical areas 
that implement different operations.  All components consist 
of LIF neurons connected via synaptic weights (Eq. 3), but 
each area computes a different set of functions.

To  perform  a  particular  task,  information  must  be 
selectively routed between cortical areas, as each task uses a 
different  subset  of  the  components.   This  is  achieved 
through  an  action  selection  system  modelled  after  the 
mammalian  basal  ganglia  and  thalamus.   We  have 
previously shown that this model matches the anatomy and 
timing behaviour  of  the  basal  ganglia  (Stewart,  Choo,  & 
Eliasmith, 2010) and provides enough flexibility to perform 
planning and problem solving in our model of the Tower of 
Hanoi task (Stewart & Eliasmith, 2011).  

The model presented here is the first  use of this neural 
action  selection  system  with  multiple  tasks  and  detailed 
perceptual-motor systems. The action selection system is a 
neural production system, allowing us to write rules of the 
form “if cortical area X1 matches the vector  a and cortical 
area X2 matches the vector b, then send vector c to area X3 

and route the vector from area X4 to area X5”.  These rules 
are  implemented  by  converting  the  rules  into  functions, 
applying Eq. 3, and using the resulting synaptic connection 
weights between the cortex, basal ganglia, and thalamus.

Importantly, the set of rules is fixed across all the tasks, 
giving  a  single,  unified  model.   All  input  to  Spaun  is 
through  its  perceptual  system,  and  all  behavioral  output 
from  its  motor  system.  The  representational  repertoire, 
background  knowledge,  cognitive  mechanisms,  neural 
mechanisms,  etc.  remain  untouched  while  the  system 
performs any of the tasks in any order. 

Figure 2: The Spaun architecture

The Spaun model (Figure 2) consists of three hierarchies, 
an  action  selection mechanism, and five subsystems.  The 
first  hierarchy is  the  visual  system,  which  compresses  an 
input image into a high-level abstract representation of that 
input.  We adapt Hinton's (2010) Deep Belief Network to 
use  LIF  spiking  neurons  (via  the  NEF)  and  use  it  to 
compress a 28x28 image into a 50-dimensional vector we 
refer  to  as  a  semantic pointer: it  is  semantic  because  the 
high-level  representation maintains similarity relationships 
from the image space; and it is a pointer because, as we will 
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see,  the system can recover the original  information from 
the compressed  form.  Similarly,  Spaun includes a  motor 
hierarchy  which  dereferences  an  output  semantic  pointer 
representing  a  number  into  a  motor  plan  to  drive  a  two 
degree-of-freedom arm (DeWolf,  2010).   A third  internal 
hierarchy  (discussed  in  more  detail  below  in  the  serial  
working memory section) forms a working memory capable 
of  binding  and  unbinding  arbitrary  semantic  pointers, 
providing the compositionality that is crucial  for complex 
cognition. The working memory component also provides 
stable  representations  of  intermediate  task  states,  task 
subgoals, and context. Anatomically, these functions cover 
large portions of prefrontal and parietal cortex. 

The five subsystems, from left to right in Figure 2, are 
used to: 1) map the visual hierarchy output to a conceptual 
representation as needed (information encoding); 2) extract 
relations  between  input  elements  (transformation 
calculation);  3)  evaluate  the  reward  associated  with  the 
input (reward evaluation); 4) map output items to a motor 
semantic  pointer  (information  decoding);  and  5)  control 
motor  timing  (motor  processing).  Several  of  the 
subsystems and hierarchies consist of multiple components 
needed to perform the identified functions. For instance, the 
working memory subsystem includes eight distinct memory 
systems, each of which can store semantic pointers. Overall, 
the model  uses  2,341,212 spiking leaky integrate-and-fire 
(LIF)  neurons.  Additional  details  necessary  to  fully  re-
implement the model,  and a downloadable  version of  the 
model can be found at <http://nengo.ca>. 

Digit recognition
The simplest task for Spaun is digit recognition.  We present 
the input sequence A1[X?, where X is a randomly chosen 
hand-written digit from the MNIST database.  Each symbol 
is  shown  for  150ms,  with  150ms  between  symbols.   To 
perform this task, Spaun includes synaptic  connections in 
the  action  selection  system  to  implement  the  following 
algorithm:

• If visual input matches A, store ? in the state area 
of the working memory. (This tells the system it is 
about to start a new task.)

• If  ? matches  state,  route the output of the visual 
encoding  system  to  the  state  area  of  working 
memory.  (This  identifies  and  remembers  which 
task is to performed.)

• If the visual input is [, activate the routing between 
the information encoding system and the general-
purpose  working  memory.   (This  tells  Spaum to 
store whatever digits appear next.)

• If  the  visual  input  is  ? and  state is  1,  route  the 
pattern in working memory to the motor system.

Responses from this model for different inputs X are shown 
in Figure 3.  Recognition accuracy is 94%, which compares 
well  to  humans  on  this  task  (~98%;  Chaaban  and 
Scheessele, 2007).  The model is thus capable of correctly 
categorizing over a wide range of input variability.

Figure 3:  Input-output pairs for 20 different inputs.  Each 
input (on the left) is correctly recognized by the model, 

which produces the output (on the right) via motor control.

Tracing from memory
While  the  previous  task  showed that  the model  can  treat 
very different stimuli as tokens of the same type, we also 
want the model to be able to be sensitive to the variations 
within a type.  To demonstrate this ability, we ask the model 
to do digit recognition, but to draw its response in the same 
style as the original input.

This  is  implemented  by  defining,  for  each  digit,  five 
different  motor  control  sequences  that  draw  five  visually 
distinct versions of that digit.  If the input pattern is X and 
the  motor  sequence  is  Y,  then we can  define  the  tracing 
function f(X)=Y.  We build a neural connection between the 
vision system and the motor system via Eq. 3, and allow it 
to be selectively controlled via the action selection in the 
basal ganglia.  If we now present new input Xnew that was 
not among the 5 original inputs, the resulting Ynew value will 
be the model's linear extrapolation of what motor sequence 
would be appropriate for that novel input pattern.

To use this system, we use the sequence  A0[X? and add 
a single rule to the basal ganglia action selection system:

• If  the  visual  input  is  ? and  state is  0,  route  the 
pattern in working memory to the motor system via 
the tracing function.

This  rule,  combined  with  the  previous  ones  for  digit 
recognition, result in the behaviour shown in Figure 4.  Note 
that it is capable of drawing 2's both with and without loops, 
6's where the loops join in different locations, and generally 
following  the  slanting  of  the  digits.   It  is  not  a  perfect 
reconstruction of the original input, but it does demonstrate 
that  while  the internal  neural  representation of  all  2's  are 
very similar (as shown by Spaun's success in the previous 
task), there are still variations in the representation due to 
different visual features, and those variations can be used to 
successfully drive behaviour.

Figure 4: Input-output pairs for tracing from memory.  The 
inputs (on the left) are recognized by the model, and then 

recreated from memory based on representational similarity 
to five previously known example pairs for each digit.
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Serial Working Memory
For  this task, Spaun is  given  a list  of  numbers  and must 
repeat  them  back,  in  order.   The  algorithm used  here  is 
based on our previous work (Choo & Eliasmith, 2010) on a 
special-purpose serial memory model.

The NEF gives us a method for representing vectors via 
spiking  neurons.   The  Semantic  Pointer  Architecture 
approach  maps  symbols  onto  particular  vectors,  so  one 
vector might represent ONE while another vector represents 
TWO.  Each  vector,  when  represented,  would  produce  a 
distinct firing pattern in that population of neurons.

To represent an ordered sequence, we cannot simply add 
the  vectors  together,  since  we  could  not  distinguish 
ONE+TWO  from TWO+ONE.   Instead,  we  can  perform 
binding by creating a new vector from two different vectors. 
We start by introducing new vectors for different positions: 
P1, P2, P3, etc.  We then store the sequence ONE, TWO by 
representing  the  vector  ONE⊗P1+TWO⊗P2.   Many 
mathematical  operations  can  be  used  for  ⊗;  we  choose 
circular convolution since it is easy to accurately implement 
in  spiking  neurons  using  the  NEF.   This  approach  to 
representation using vectors is generally known as a Vector 
Symbolic Architecture (Gayler, 2003), and has been shown 
to scale well to adult-level vocabulary and grammar.

The action selection rules for this task are based on the 
previous one, with the addition of the  ] marker to indicate 
the end of a sequence.  Figure 5 shows not only the input 
and  output  of  the  model,  but  also  the  ongoing  spiking 
behaviour in various areas during the execution of the task.

Figure  5  also  shows  a  method for  interpreting  what  is 
currently being represented in a particular cortical area.  The 
second working memory line shows how similar the current 
pattern in the working memory is to various different ideal 
patterns1.   In  particular,  after  the presentation of the final 
digit (t=2 seconds), the value being represented is similar to 
FOUR⊗P1,  THREE⊗P2,  TWO⊗P3,  and  SIX⊗P4.   In 
other words, this one group of neurons is capable of storing 
any  arbitrary  sequence  of  digits.   As  the  sequence  gets 
longer,  accuracy decreases,  and both primacy and recency 
effects are seen (Choo & Eliasmith, 2010).

Question Answering
In addition to simply repeating a sequence, Spaun is capable 
of answering questions about the sequence.  In particular, it 
can identify which digit is at a given location, and it can 
identify the location of a given digit.

This  is  accomplished  by  adjusting  the  transformation 
which takes the contents of working memory and routes it to 
the motor area.   Given the vector  S=FIVE⊗P1+SIX⊗P2, 
we can  find the  digit  in  position  1  by computing S⊘P1, 
where  ⊘ is circular correlation, since S⊘P1≈FIVE.  The 
accuracy of this approximation is dependent on the length of 
the  sequence,  the  number  of  neurons  used,  and  the 
dimensionality of the vectors.

1 Formally, this is the dot product between the ideal vector for 
that symbol and the decoded value found using Eq. 2.

To implement this task, the sequence is presented in the 
same manner as the serial working memory task.  We then 
present the symbol P for a query based on position, or the 
symbol K for a query based on the kind of digit to look for 
in the list.  The action selection rules route the appropriate 
transformation  vector  to  the  working  memory  area, 
providing the required information to the motor system.

Figure 5: Serial recall of the sequence 4,3,2,6.  Infero-
temporal cortex (IT) holds the compressed representation of 

the visual input.  Striatum (Str) activity determines how 
good a match each rule is to the current state.  Globus 

pallidus internus (GPi) performs action selection, inhibiting 
all but the current best-matching rule.  Frontal cortex (FCtx) 
holds task information, and working memory (WM) stores 

the list as a single vector: 
FOUR⊗P1+THREE⊗P2+TWO⊗P3+SIX⊗P4.

Figure 6: Answering questions about a list.  The first case 
presents the list 9,4,7,3,0 and asks what is position 5.  The 
model correctly answers 0.  The second case presents the 
list 8,6,9,4,7 asks where the 6 can be found.  The model 

correctly answers that it is in location 2.
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Addition by Counting
For  the  fifth  task,  we  show  that  Spaun  is  capable  of 
performing sequences of internal actions, where there are a 
multiple steps to go through before producing a final output. 
This is demonstrated here by performing mental addition via 
counting.   That  is,  to  compute  4+3,  the  model  must  go 
through  the  steps  of  counting  4,  5,  6,  and  7,  entirely 
internally, and then finally producing the output 7.

Spaun achieves this by having multiple, general-purpose 
working memories.  We use the first of these (WM1; the 
same  neurons  that  stored  the  list  and  the  recognized 
numbers in the previous task) to store the current value.  A 
second  group  of  neurons  (WM2)  stores  the  number  of 
counting steps that  are needed,  and a third group (WM3) 
stores how many steps have been made.

Figure 7 shows Spaun performing this task over time for 
the specific case of 4+3. Importantly,  the model produces 
accurate results for any single-digit addition.  Furthermore, 
Spaun  exhibits  the  expected  linear  relationship  between 
subvocal  counting  and  response  times,  as  seen  in  human 
subjects (Cordes et al., 2001).  That is, each counting step 
requires 419±10ms, which is within the empirical range of 
344±135ms for subvocal counting (Landauer, 1962).

Successful  counting  demonstrates  that  flexible  action 
selection  is  effectively  incorporated  into  Spaun.  It  also 
shows  that  the  model  has  an  understanding  of  order 
relations over numbers, and can exploit that knowledge to 
produce appropriate responses.

Figure 7: Adding 4+3 by mentally counting 4, 5, 6, 7 
(WM1).  WM2 keeps track of the fact that it should stop 
counting when it reaches the third step, and WM3 keeps 

track of what step it is at (0, 1, 2, 3).

Pattern Completion
Finally,  we  show  that  Spaun  is  capable  of  quickly 
identifying  and  responding  to  patterns  in  its  input  via 
inductive learning.  This specifically targets a type of task 
that has long been held to be problematic for connectionist 
approaches: the ability to rapidly create and bind symbolic 
variables  (e.g.  Marcus,  2001;  Jackendoff,  2002).   The 
following  example  (from  Hadley,  2009)  shows  a  pattern 
completion task that humans are readily able to solve given 
only a few items.  They are told that  if  they hear  “biffle 
biffle  rose  zarple”,  the  correct  response  is  “rose  zarple”. 

After a three such examples, they must generalize to a new 
case:

Training Set
• Input: Biffle biffle rose zarple. Output: rose zarple.
• Input: Biffle biffle frog zarple. Output: frog zarple.
• Input: Biffle biffle dog zarple. Output: dog zarple.

Test Case
• Input: Biffle biffle quoggie zarple. Output: ?

Hadley  suggests  that  this  task  requires  rapid  variable 
creation because the second last item in the list can take on 
any form, but human cognizers can nevertheless identify the 
overall syntactic structure and identify “quoggie zarple” as 
the  appropriate  response.  So it  seems that  a  variable  has 
been created, which can receive any particular content, and 
that will not disrupt generalization performance.

Figure 8 shows Spaun’s behavior on a stimulus sequence 
with  the  same  structure  as  that  proposed  by  Hadley. 
Importantly,  this  is  done  extremely  quickly  (~2  seconds, 
consistent with human performance), and without changing 
neural  connection  weights.   In  other  words,  there  is  no 
learning rule; Spaun is able to learn to complete this pattern 
without any neural rewiring.

To  achieve  this  result,  we  use  a  simplification  of  our 
earlier  work  with  a  neural  model  capable  of  performing 
Raven's Matrices (Rasmussen & Eliasmith, 2011).  We store 
the representation  of  the first  list  in  one area  of  working 
memory (WM1) and a representation of the second list in 
another  area  (WM2).   Since  we  are  using  the  semantic 
pointer method of representing lists, these lists are encoded 
as two high-dimensional vectors (V1 and V2).  We can then 
compute the transformation T which takes the first vector 
(V2=V1⊗T, so T=V2⊘V1).  We implement this is Spaun 
by adding a cortical area which computes the transformation 
between  two  working  memory  components,  and  adding 
rules  to  the  basal  ganglia  to  route  this  information 
appropriately when performing this task.  As more examples 
are given, the value T is built up as the average over all the 
examples, improving accuracy.

Figure 8: Pattern completion solving Hadley' rapid variable 
creation problem.  The input consists of pairs of lists.  After 

seeing 0094→94, 0014→14, and 0024→24, it correctly 
concludes that given 0074, it can complete the pattern by 

outputting 74.
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Discussion
The basic components of the model presented here are not 
new; we have previously published spiking neuron models 
capable  of  exhibiting  list  memory  (Choo  &  Eliasmith, 
2010), pattern completion  (Rasmussen & Eliasmith, 2011), 
action  selection  (Stewart,  Choo,  & Eliasmith,  2010),  and 
sequential  reasoning  (Stewart  &  Eliasmith,  2011). 
However, the work presented here is the first demonstration 
of these capabilities in a single, unified model.  There are no 
adjustments made to the model between tasks, and indeed 
the model can seamlessly go from one task to the next.

Furthermore,  we  feel  that  an  important  feature  of  this 
cognitive model is that it includes the entire system: visual 
perception,  cognition,  and  motor  action.   The  neural 
representations used throughout the model are the same, as 
are the underlying computational principles, and methods of 
mapping to neural spikes. As a result, this single model has 
neuron responses in visual  areas  that match known visual 
responses, as well as neuron responses and circuitry in basal 
ganglia  that  match  known  responses  and  anatomical 
properties of basal ganglia, as well as behaviorally accurate 
working  memory  limitations,  as  well  as  the  ability  to 
perform human like induction, and so on. Spaun is thus both 
physically and conceptually unified.

It should be noted that the current set of tasks Spaun can 
perform are in a constrained semantic space – that of lists of 
numbers.   However,  the  basic  principle  of  using  high-
dimensional  vectors  that  can  be  bound  together  (i.e. 
semantic pointers) generalizes to more complex domains.

Furthermore, the model’s architecture is not tightly tied to 
the  set  of  tasks  being  implemented.   That  is,  rather  than 
having  particular  components  to  perform  each  task,  the 
components  presented  here  provide  generic  cognitive 
capacities, and any given task can recruit these components 
as  needed.   For  example,  the  Pattern  Completion  task 
requires use of a component that can find the transformation 
that relates the information in two different areas of working 
memory.  This cortical component would also be useful for 
performing  other  tasks,  such  as  a  Raven's  Matrix  task 
(Rasmussen & Eliasmith, 2011).

For  the  model  presented  here,  all  synaptic  connection 
weights  between  neurons  are  analytically  derived,  rather 
than  having  them  be  learned,  as  in  traditional  neural 
network models.  While this demonstrates that our model is 
capable of learning without connection weight changes (as 
in the pattern completion task), it leaves open the question 
of  how  these  connections  are  learned  in  the  real  brain. 
While we do not have a complete developmental story for 
the  various  cortical  components,  we  have  developed  a 
dopamine-based  reinforcement  learning  system  (Stewart, 
Bekolay, & Eliasmith, 2012) that has been integrated with 
Spaun  in  an  n-arm  bandit  task,  but  the  results  are  not 
presented here due to space limitations.  This system allows 
Spaun  to  learn  the  connections  between  the  cortical 
components  and the basal  ganglia,  allowing the model  to 
learn to recruit different components for different tasks.

Spaun presents a detailed spiking neural model capable of 
visual  recognition,  cognitive  control,  working  memory, 
symbolic manipulation, and producing hand-written motor 
outputs.  This sort of model is required for connecting high-
level cognitive theory and behavioural data to the biological 
constraints available from neuroscience.
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