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Abstract. This study is an analysis of scene recognition in a pre-trained
convolutional network, to evaluate the information the network uses to
distinguish scene categories. We are particularly interested in how the
network is related to various areas in the human brain that are involved
in different modes of scene recognition. Results of several experiments
suggest that the convolutional network relies heavily on objects and fine
features, similar to the lateral occipital complex (LOC) in the brain,
but less on large-scale scene layout. This suggests that future scene-
processing convolutional networks might be made more brain-like by
adding parallel components that are more sensitive to arrangement of
simple forms.
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1 Introduction

It is remarkable that humans are able to perceive and interpret a complex scene
in a fraction of a second, roughly the same time needed to identify a single object.
When an image is briefly presented with less than 100 ms of exposure, observers
usually perceive global scene information, e.g. whether the image was outdoor
or indoor, well above chance. On the other hand, observers perceive details of
objects with a couple of 100 ms more exposure time [2]. It has also been found
that an exposure of 20–30 ms is enough for categorizing a scene as a natural or
urban place [4]. However, it takes twice of that time to determine the basic level
category of the scene, e.g. a mountain vs. a beach [3].

Studies in behavioral, computational and cognitive neuroscience suggest two
complementary paths of scene perception in humans [7]. First, an object-centered
approach, in which components of a scene are segmented and serve as scene
descriptors (e.g., this is a street because there are buildings and cars). Second,
a space-centered approach, in which spatial layout and global properties of the
whole image or place act as the scene descriptors (e.g. this is a street because it
is an outdoor, urban environment flanked with tall frontal vertical surfaces with
squared patterned textures).
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Several brain regions responsible for processing different scene properties have
been identified, particularly the parahippocampal place area (PPA; a region of
the collateral sulcus near the parahippocampal lingual boundary), the retros-
plenial complex (RSC; located immediately behind the splenium of the corpus
callosum), and the occipital place area (OPA; around the transverse occipital
sulcus). PPA and RSC are most studied and respond preferentially to pictures
depicting scenes, spaces and landmarks more than to pictures of faces or single
movable objects [6].

While both PPA and RSC show selectivity to the spatial layout of the scene
in various tasks, the responses of neither of them are modulated by the quantity
of objects in the scene i.e., both regions are similarly active when viewing an
empty room or a room with clutter [1].

The response of PPA is selective to different views of a panoramic scene,
suggesting a view-specific representation in PPA. On the other hand, RSC seems
to have a common representation of different views in a panorama, suggesting
that RSC may hold a larger representation of the place beyond the current
view [9]. However, scene representations in PPA have been found to be tolerant
to severe transformations i.e., reflections about the vertical axis [7].

PPA and LOC represent scenes in an overlapping fashion. While PPA con-
fuses scenes with similar spatial boundaries, regardless of the type of content,
LOC confuses scenes with the same content, independent of their spatial layout
[8]. LOC is not the only brain region involved in object processing, and thus mul-
tiple regions may represent different types of content and objects encountered
in a scene [7].

Convolutional networks have many structural parallels with the visual cortex.
Furthermore, they have recently begun to rival human performance in various
vision tasks, including scene recognition as well as object recognition, stereo-
scopic depth estimation, etc. We would like to understand how similar the deci-
sion mechanisms of convolutional networks trained for scene recognition are to
the corresponding mechanisms in the human cortex. As a first step, we analyze
here the sensitivity of a scene-recognition network to certain input perturbations,
to evaluate whether the network is more object-centred or space-centred.

2 Methods

We used the Places CNN [10], a network that has been previously trained for
scene recognition on the Places205 dataset. The network has the same struc-
ture as [5]. It receives an image of a scene as input (e.g. the bedroom image
in Fig. 1A). It has 205 outputs, corresponding to different scene categories.
It is trained to output a high value for the category to which a given input
image belongs (e.g. bedroom) and low values for other categories (e.g. assembly
line, etc.).
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2.1 Occlusion

We systematically occluded parts of the image in order to gauge how important
different parts of the scene were for the network’s prediction. To find which parts
of an image were most important for the network, we slid a square occlusion
window over an image. We set pixel values within the square to zero, passed the
occluded image through the network, and recorded the output of the softmax
output unit that corresponded to the correct category. In order to study the
effect of objects of various sizes in the image, this procedure was repeated with
squares of 9, 23, 39, 51, 87 and 113 pixels on a side. The full images had a fixed
resolution of 227 × 227.

2.2 Blurring

We randomly selected 50 images from different categories in the Places205
test set and blurred them with a Gaussian filter of standard deviation vary-
ing between 0 and 13, in steps of 0.5. Thus there were 26 filtered images for
each image in the original set of 50 images, leading to a total of 1300 images
which were fed to the network. The output probabilities for correct predictions
were normalized by dividing them by their maximum values across blur levels
(typically the maximum occurred with zero blur). This was done to map the
predictions for all the images to the same scale.

2.3 Spatial Boundaries

As discussed in Sect. 1, in the human visual system, PPA confuses scenes with
similar spatial boundaries, regardless of the type of content, whereas the LOC
makes the opposite errors, i.e. confusing scenes with the same content, indepen-
dent of their spatial layout [7].

We conducted an experiment to explore whether the network resembles either
PPA, LOC or both of them in terms of the kind of mistakes it makes. First, two
categories having similar spatial boundary were selected, ‘forest path’ and ‘cor-
ridor’. Ten images of each of these categories were selected, and the average
predicted probability (average of probability that it’s a forest/corridor over 10
images) for both categories was recorded. Then two categories having similar
content were selected, ‘classroom’ and ‘conference room’, and the average pre-
dicted probability for both categories was also recorded. All the images for this
experiment were taken from a Google images search, i.e. not from the Places205
dataset.

2.4 Panoramic Scenes

As discussed in Sect. 1, PPA is selective for different views of a panoramic scene,
while the response of RSC has a common representation of different views in a
panorama [9]. Motivated by this, we conducted an experiment to see whether
the response of the network was selective for different views in a panoramic
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scene. We collected 100 images from 12 different scene categories (images were
obtained from a Google Images search), and split them up into left and right
segments. These segments were then passed through the network and the corre-
lation between the unit activations for the left and right segments were averaged
over each layer and plotted as a function of layer number.

3 Results

3.1 Occlusion

Figure 1 shows heatmaps of occlusion effects over an image of a bedroom, for six
different occlusion-window sizes. It is clear from the heatmaps that the bed is
the most important object in the scene on which the model prediction is based.
Moreover, occluding small parts of the bed has little impact on the model pre-
diction, but occluding large areas has a large impact. This result was consistent
with other experiments (not shown) in which we occluded various parts of the
scene with unrelated pictures.

3.2 Blurring

Figure 2A visually shows the amount of blurring caused by the range of standard
deviations used, on one of the sample images. Figure 2B shows the effect of

Fig. 1. Heatmaps of the effect of occlusion on the bedroom scene. The right image in
each panel shows a heatmap superimposed on a black and white negative of the image.
The image and the heatmap are also shown individually for clarity (left and centre; the
left image is the same in each case). The red areas in the heatmap show the areas in
the scene which are important for classification (the plotted values are the probabilities
output by the bedroom node, with occlusion centred at the corresponding pixels; red is
the lowest probability, or highest “effect” of occlusion). A–F: heat maps obtained by
using occlusion windows of 9, 23, 39, 51, 87 and 113 pixels, respectively. (Color figure
online)
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Fig. 2. Results of the blurring experiment. A: Effect of blurring on a sample image
(shown for visual comparison). B: Effect of blurring on the confidence level of the
network. The vertical axis shows the confidence level of the network normalized to lie
within [0,1], averaged over 50 example images. The horizontal axis shows the standard
deviation of the Gaussian filter used to blur the image (in pixels). (Color figure online)

blurring on the confidence level of the network (averaged over 50 randomly
selected images). The confidence level of the model falls quickly with an increase
in the standard deviation of the Gaussian filter. This shows that the model is
not able to make predictions based on only the global features of the scenes, if
it can’t extract the local scene properties. This implies that the predictions of
the network are based on local scene properties.

Table 1. Results from the spatial boundaries experiment. Integers indicate category
indices (e.g. “Forest” is category 78).

Forest [78]
(Opponent:
corridor)

Corridor [54]
(Opponent: forest)

Classroom [44]
(Opponent:
conference room)

Conference room [51]
(Opponent:
classroom)

Categories
predicted

[78, 78, 78, 78, 78,
78, 78, 79, 78,
78]

[54, 54, 54, 54, 54, 54,
54, 54, 54, 54 ]

[51, 44, 44, 44, 44, 44,
51, 44, 44, 51]

[51, 51, 51, 51, 51, 51,
51, 51, 51, 51]

Avg. proba-
bility

0.570 (grayscale:
0.562)

0.892 (grayscale: 0.929) 0.612 (grayscale: 0.606) 0.733 (grayscale: 0.581)

Avg. proba-
bility (oppo-
nent)

2.935e-05
(greyscale:
1.327e-04)

8.343e-06 (greyscale:
4.869e-06)

0.159 (greyscale: 0.115) 0.018 (greyscale: 0.025)

Top 5 proba-
bility

[(0.570, ‘forest path
78’), (0.288,
‘forest road
79’), (0.043,
‘rainforest
149’), (0.0362,
‘bamboo forest
16’), (0.0129,
‘tree farm
186’)]

[(0.892, ‘corridor 54’),
(0.033, ‘locker room
144’), (0.025,
‘lobby 113’),
(0.015, ‘hospital
94’), ’(0.007,
‘jail cell 105’)]

[(0.6122, classroom
44’), (0.159,
‘conference room
51’), (0.0586,
‘conference center
50’), (0.0448,
‘cafeteria 37’),
(0.0375,
‘auditorium 12’)]

[(0.733,
‘conference room
51’), (0.064,
‘Conference center
50’), (0.029,
‘banquet hall 17’),
(0.025,
‘dinette/home 70’),
(0.021, ‘office 129’)]
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Fig. 3. Visualization of forest (bottom) and corridor (top) categories using a heatmap.
The two rows show the negative of the scene on the left, heatmap in the middle and
the heatmap superimposed on the scene on the right. The red areas are the most
important for scene prediction. The important areas include distinguishing features of
objects (e.g. tree trunks). (Color figure online)

3.3 Spatial Boundaries

We examined the extent to which the network confused scene categories with
similar boundaries (specifically, forest paths and corridors) and categories with
similar contents (classrooms and conference rooms).

The results are shown in Table 1. The network classified 3 of the 10 classrooms
as conference rooms. However, it did not confuse forest paths and corridors. The
average probability of the opponents is low for both forest and corridor, but
higher for classroom and conference room. This suggests that the model confuses
scenes with similar content but not the scenes with similar spatial boundaries.
This was confirmed by looking at the top-5 predictions of the model. For exam-
ple, for the ‘forest’ category, all top-5 predictions contained trees, but spatial
boundaries varied (e.g. forest path vs. tree farm). Figures 3 and 4 also show the
heatmaps for the four categories chosen in this experiment. The heatmaps sug-
gest that the network is using objects to make its predictions. For example, in
the classroom tables and chairs are important.

To test the extent to which colour differences accounted for the lack of con-
fusion between forest paths and corridors, we repeated the tests with greyscale
images. The results were similar to those with colour images (Table 1).

3.4 Panoramic Scenes

Figure 5 shows the correlations between the unit activations of the left and right
segments of the panoramic scenes averaged over the units in each layer, over 100
different images. As expected, the average correlation is low for the input layers
and increases for higher level layers.
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Fig. 4. Visualization of classroom (bottom) and conference room (top) categories using
a heatmap. The two images show the negative of the scene on the left, heatmap in the
middle and the heatmap superimposed on the scene on the right. The red areas are
the most important for scene prediction. (Color figure online)

Fig. 5. Average correlation for left and right segments plotted as a function of layer
number. Correlations were calculated between the activations of each unit in response
to left and right parts of the panoramic images. The correlations of all units within a
layer were then averaged to compute the average correlation for each layer. The later
layers respond similarly to different views of each scene, similar to RSC.

4 Discussion

Our experiments suggest that the network is more object-centered (reliant on
objects or local scene properties for its predictions) than space-centered (reliant
on global scene properties). Its performance is impaired by occlusion of specific
objects. It is sensitive to small amounts of blur (whereas humans can categorize
scenes using very low spatial frequencies). This suggests that it is not able to
make accurate predictions based only on the global scene properties, if it can’t
extract the local scene properties. Additionally, the network confuses scenes with
similar content (objects, e.g. chairs etc.), but it does not confuse scenes with
similar spatial boundaries but different textures. This further emphasizes the
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importance of objects in a scene for accurate predictions, and suggests the rel-
ative insignificance of spatial layout for distinguishing different scenes. It would
be worthwhile in future work to more specifically compare the effects of the same
image manipulations on human and network performance.

It may be possible to make convolutional networks for scene recognition more
robust, or at least more similar to the human visual system, by adding parallel
components that are specifically trained to encourage space-centered represen-
tations. One possible approach would be to train such a parallel network on
blurred images. The parallel networks might then complement each other in a
way that is similar to the multiple scene processing regions in the human brain.
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