
Biologically Inspired Cognitive Architectures (2016) xxx, xxx–xxx
Avai lab le a t www.sc ienced i rec t .com

ScienceDirect

journal homepage: www.elsev ier .com/ locate /b ica
INVITED ARTICLE
Large-scale cognitive model design using the
Nengo neural simulator
http://dx.doi.org/10.1016/j.bica.2016.05.001
2212-683X/� 2016 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail addresses: s72sharm@uwaterloo.ca (S. Sharma), saubin@

uwaterloo.ca (S. Aubin), celiasmith@uwaterloo.ca (C. Eliasmith).

Please cite this article in press as: Sharma, S et al., Large-scale cognitive model design using the Nengo neural simu
Biologically Inspired Cognitive Architectures (2016), http://dx.doi.org/10.1016/j.bica.2016.05.001
Sugandha Sharma *, Sean Aubin, Chris Eliasmith
Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Received 23 February 2016; received in revised form 4 May 2016; accepted 18 May 2016
KEYWORDS
Neural models;
Neural Engineering Frame-
work;
Biologically plausible spik-
ing networks;
Semantic pointer
architecture
Abstract

The Neural Engineering Framework (NEF) and Semantic Pointer Architecture (SPA) provide the
theoretical underpinnings of the neural simulation environment Nengo. Nengo has recently
been used to build Spaun, a state-of-the-art, large-scale neural model that performs motor,
perceptual, and cognitive functions with spiking neurons (Eliasmith et al., 2012). In this tutorial
we take the reader through the steps needed to create two simpler, illustrative cognitive mod-
els. The purpose of this tutorial is to simultaneously introduce the reader to the SPA and its
implementation in Nengo.
� 2016 Elsevier B.V. All rights reserved.
1. Introduction

This paper explains, by tutorial demonstration, recent
state-of-the-art methods for building large-scale neural
models of cognition. The methods we introduce have
recently been used to build ‘‘Spaun”, which remains the
world’s largest functional brain model (Eliasmith et al.,
2012). Spaun, consists of 2.5-million spiking neurons,
includes twenty different brain areas, and is capable of per-
forming eight different cognitive tasks (including digit
recognition, list memory, addition, and pattern comple-
tion). Spaun receives input through a single eye with a 28
by 28 retina while controlling a simulated, three-joint,
six-muscle arm. The flow of information through cortex is
controlled internally using a cortex-basal-ganglia-thalamus
loop, allowing the same model to perform a variety of tasks.

In this tutorial, we first give an overview of Nengo, the
simulation package used to build Spaun. This is followed
by a brief introduction to the neural theory underlying
Nengo, the Neural Engineering Framework (NEF) (Eliasmith
& Anderson, 2004). Next, we describe the Semantic Pointer
Architecture (SPA) (i.e., a functional, neuroanatomical,
cognitive architecture that exploits the NEF (Eliasmith,
2013)), and its implementation in Nengo. Finally, to demon-
strate the utility of SPA, we explain how to implement a
simple cognitive model in Nengo in Section ‘Question
answering model’ followed by a more complex SPA model
in Section ‘Instruction following model’. We conclude by
lator ...,

http://dx.doi.org/10.1016/j.bica.2016.05.001
mailto:s72sharm@uwaterloo.ca
mailto:saubin@ uwaterloo.ca
mailto:saubin@ uwaterloo.ca
mailto:celiasmith@uwaterloo.ca
http://dx.doi.org/10.1016/j.bica.2016.05.001
http://dx.doi.org/10.1016/j.bica.2016.05.001
www.sciencedirect.com
http://www.elsevier.com/locate/bica
http://dx.doi.org/10.1016/j.bica.2016.05.001


2 S. Sharma et al.
reiterating the most important concepts and discussing
some of the features of Nengo omitted from this tutorial.

2. Nengo

Nengo is a Python-based neural simulation package which
uses a small set of simple objects to create functional spiking
neural networks. These objects, and their core behaviours
implement the NEF, but are also capable of implementing
generic spiking neural networks. A detailed description of
these objects can be found in Bekolay et al. (2013). In brief,
the objects are Ensembles (group of neurons), Nodes (non-
neural components, used to control abstract components
such as robots arms), Connections (connections between
any combination ensembles and nodes) and Networks
(groupings of all the aforementioned objects).

To aid in the design and testing of Nengo networks, a
Graphical User Interface (GUI) was created with a network
visualizer and a live-editing environment as shown in
Fig. 1. The examples in this tutorial are constructed in this
environment.

This tutorial assumes that you have Python, Nengo and
Nengo GUI installed. The latter two packages can be installed
on a computer with Python by running pip install nengo_
gui. Detailed instructions for installing these can be found at
the http://python.org, http://github.com/nengo/nengo
and http://github.com/nengo/nengo_gui.

3. The Neural Engineering Framework (NEF)

The NEF is based on three principles for the construction of
biologically plausible simulations of neural systems
(Eliasmith & Anderson, 2004). These are the principles of
Representation, Transformation and Dynamics.

NEF models are typically constrained by the available
neuroscience evidence to a significant extent. In particular,
tuning curves of neurons measured during experiments are
typically provided during model construction. Nengo
Fig. 1 Nengo GUI. (A) A live model script editor. (B) A console s
zoomed. (D) A minimap showing the whole network. (E) The simul

Please cite this article in press as: Sharma, S et al., Large-scale
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
provides flexibility to the modeller to set parameters on
ensembles, like the firing rates of neurons, representational
radius, intercepts, etc. to capture those tuning curves. It
also provides an option to set the synaptic time constants
on connections, to reflect known biological constraints
regarding neurotransmitters. As well, anatomical con-
straints can be enforced by structuring the model to respect
known connectivity. It is up to the modeller to choose these
parameters and methods of organization to enforce con-
straints based on neuroscience evidence for a given model
or part of the brain which they are modelling. The benefits
of biological plausibility are described in more detail in
Section ‘SPA models with the NEF’.

This section briefly demonstrates each of the three NEF
principles through basic examples. Additional pre-built
examples can be found in the nengo_gui/examples/tutorial
folder. Relevant examples contained in that folder are men-
tioned in each of the following sections with the heading
Relevant Examples.
3.1. Representation

Relevant Examples: 01-one-neuron.py, 02-two-neurons.py,
03-many-neurons.py, 07-multiple-dimensions.py.

Neural representations in NEF are defined by the combi-
nation of nonlinear encoding and weighted linear decoding.
These representations are considered to be encoding rela-
tively low-dimensional state vectors into high-dimensional
neural populations. Fig. 2 shows a group of 20 neurons rep-
resenting a scalar value. To construct a simulation of this
representation in Nengo, follow these steps:

� Create an empty Python file and open it with the Nengo
GUI.

� Type the code shown in Fig. 2 into the text editor of the
GUI. Notice that the corresponding objects start to
appear in the network visualizer as you create them in
the text editor.
howing compile errors. (C) The explorable network visualizer,
ator controls.

cognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://python.org
http://github.com/nengo/nengo
http://github.com/nengo/nengo_gui
http://nengo_gui/examples/tutorial
http://dx.doi.org/10.1016/j.bica.2016.05.001


Fig. 2 Ensemble of neurons representing a scalar value.

Large-scale cognitive model design using the Nengo neural simulator 3
� Now right click on both stim and ens objects and select
Value to display their corresponding value plots. Also
display the Slider from the right-click menu of stim
node, and the Spikes from the right-click menu of the
ens node.

� Run the simulation by pressing the play button and use
the slider to change the input value provided by the stim
node.

Notice that the value represented by the ensemble
tracks the input value. However, as you reduce the number
of neurons to 1, the representation becomes worse (i.e.,
the value represented by the ensemble doesn’t always
follow the input). As you increase the number of neurons,
the representation will improve. In this example, the non-
linear encoding of the first NEF principle is determined by
the spiking of the default leaky integrate-and-fire (LIF)
neurons generated in the ensemble. The neural spikes are
encoding the stim input. The linear decoding is automati-
cally computed for you, and used to generate the Value
plots. This principle naturally extends to multi-
dimensional vector representations (see the 07-multiple-
dimensions.py example).

The default parameters of LIF neurons in the ensemble
are randomly sampled from a uniform distribution for each
neuron. Specifically, encoders are sampled from a uniform
hypersphere i.e., an n-dimensional unit hypersphere,
intercepts and firing rates are sampled from a uniform
distribution from [�1,1] and [200,400] respectively. The
modeller has the ability to chose these distributions
according to the empirical data specific to the region of
the brain they want to model. They can set the range of
these distributions or even use other distributions which
are built into Nengo (or define their own distribution using
the Nengo interface).
Please cite this article in press as: Sharma, S et al., Large-scale c
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
3.2. Transformation

Relevant Examples: 10-transforms.py, 05-computing.py,
09-multiplication.py. The second principle of the NEF states
that both linear and non-linear functions can be computed
on the represented values by linear decodings. These linear
decodings are combined with the neural encodings to deter-
mine the connection weights between populations of neu-
rons. The function to be computed by the weights is
specified in Nengo when making a connection between
ensembles (the default function is identity, i:e: fðxÞ ¼ x).

Fig. 3 demonstrates two ways of specifying these func-
tions in Nengo. The first method allows any linear or nonlin-
ear function to be specified, the second allows only linear
transforms to be specified. It is often useful to specify linear
and non-linear transformations independently.

Because linear transforms, such as scaling, rotating, or
shearing, are common in neural models, Nengo has a
‘‘transform” parameter defined on the Connection object
for the purpose of defining these transforms. The example
in Fig. 3 shows the equivalence of these approaches. In this
example, b1 and b2 represent the same value i.e., the value
of ensemble a scaled by 0.5 as shown in their value plots.
However, b3 represents the square of the value of the
ensemble, illustrating a non-linear transformation.
3.3. Dynamics

Relevant Examples: 11-memory.py, 12-differential-eqns.
py, 13-oscillators.py, 14-controlled-oscillator.py, 15-
lorenz.py.

The third principle of the NEF states that the values rep-
resented by neural populations can be considered state
variables in a (linear or non-linear) dynamical system. These
ognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Fig. 3 Two ways of implementing transformations in Nengo. The first is demonstrated by the definition and use of the
simple_function. The second is demonstrated by setting the value of the transform parameter. The square_function shows a way of
implementing a non-linear transformation.

4 S. Sharma et al.
dynamical systems are built using recurrent connections,
which can be computed using the second principle. Fig. 4
shows an example of a recurrent network, where ensemble
b is connected back to itself, which means that it can store
data (i.e., values) over time. If the input is positive, the
stored value in b increases, and it decreases if the input is
negative (i.e. it integrates (sums) its input). When the input
is turned to zero, the value represented by b stays constant
thus indicating that neurons can be used to implement
stable dynamics. In general, the NEF provides a method
for directly converting any set of differential equations into
a spiking network approximation of the dynamics described
by those equations (Eliasmith & Anderson, 2004). However,
describing those methods is beyond the scope of this
tutorial.

3.4. SPA models with the NEF

Provided the resources of the NEF as encapsulated by
Nengo, it is possible to build large-scale neural models.
We have recently suggested a general architecture that aids
in structuring such models in a biologically constrained
manner (Eliasmith, 2013). We call this architecture the
Semantic Pointer Architecture (SPA), and have provided a
Python module in Nengo to assist in the construction of
SPA-based models. The SPA module adds a higher-level
set of objects to Nengo, as well implementing a domain-
specific language (discussed in greater detail in Section ‘In
struction following model’) designed for cognitive mod-
elling. The SPA describes cognitive function in terms of
vector-based algorithms allowing for structured informa-
tion in a representation distributed across neurons. In doing
so, the SPA employs a specific compression operator for
Please cite this article in press as: Sharma, S et al., Large-scale
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
cognitive representations (that is distinct from the com-
pression operator for vision, motor control, etc.). Specifi-
cally, the SPA uses circular convolution Plate (1991)
coupled with neural saturation to fulfill this role. Circular
convolution is one of a class of operators that have been
proposed to be able to fill such a role (including XOR, mul-
tiplication, and others). As a group, approaches using such
operators for modelling cognitive representations are often
referred to as Vector Symbolic Architectures (VSAs). In
short, the SPA adopts and slightly modifies the VSA that
uses circular convolution for the purposes of structured
cognitive representation. However, it also greatly expands
the intended target of VSAs, providing characterizations
of perceptual and motor representations, cognitive action
selection, and so on.

SPA is based on the ‘‘semantic pointer hypothesis” which
suggests that higher level cognitive functions in biological
systems are made possible by Semantic Pointers (SPs). SPs
are neural representations that carry partial semantic con-
tent and are composable into the representational struc-
tures necessary to support complex cognition. We have
argued elsewhere that the SPA combines scalability, inte-
gration of perception, cognition, and action, and biological
plausibility in a more convincing manner than past
approaches (Eliasmith, 2013). The Spaun model is a testa-
ment to these claims (Eliasmith et al., 2012).

In Nengo, the SPA module is used to create networks by
referring directly to SPs, while abstracting away from the
specifics of the NEF (although NEF details can be adjusted
later). In the cases we will consider here, this abstraction
allows the cognitive model designer to focus on symbol-
like information processing, while the overall model
remains implemented in a spiking neural network.
cognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Fig. 4 A Nengo network capable of storing information over time.

Large-scale cognitive model design using the Nengo neural simulator 5
Staying faithful to a neural substrate (e.g., by building
models using spiking neurons with appropriate synaptic time
constants between connections) beneficially applies biolog-
ical constraints to the kind of computations that can be per-
formed effectively in such models. Clearly, such models are
an abstraction since there are typically many missing details
about the brain regions being captured by the model. How-
ever, the additional details which must be added by the
modeller are often fertile ground for determining specific
predictions that come out of the proposed model
Eliasmith and Trujillo (2014).

Specifically, in larger models outside of the scope of this
tutorial, the neural substrate can manifest itself by generat-
ing experimental firing patterns (Stewart, Choo, &
Eliasmith, 2010b), physiological predictions (Stewart
et al., 2010b), behavioural predictions (Eliasmith, 2013),
allowing ablation experiments (Leigh, Danckert, &
Eliasmith, 2014), and other biological manipulations
(Rasmussen, 2010), while generating a variety of physiolog-
ical data, such as EEG, LFP, and fMRI data (Stewart &
Eliasmith, 2011).
4. Question answering model

In our first example demonstrating the SPA, we create a
model that is able to examine a simple visual scene repre-
sented with SPs and answer questions, formulated as other
SPs, about this scene. For example, imagine a person being
asked questions about a scene containing a blue square and
red triangle. If we ask: what colour is the square? Our
model, like a person, should answer blue. Note that this
example solves a simple instance of the so-called ‘binding
problem’ (Jackendoff, 2002).

What structure should we use to represent this visual
scene, assuming that the shape and colour vectors arrive
as separate vectors from our visual system? There are two
Please cite this article in press as: Sharma, S et al., Large-scale c
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
different compression operators defined for symbol-like
representation in the SPA, vector addition and circular con-
volution. Given that the SPA defines the components of our
visual scene as vectors (in all caps below), we could repre-
sent the scene with addition.

BLUE þ SQUARE þ REDþ TRIANGLE

However, this representation suffers from the binding-
problem: it does not distinguish between ‘‘blue square
and red triangle” and ‘‘red square and blue triangle”. We
need a new binding operator that associates two vectors,
by producing a third vector that is very dissimilar to the
original inputs (as opposed to vector addition which pro-
duces an output that is highly similar to the inputs). The
SPA uses the aforementioned circular convolution to fulfill
this role (Plate, 1991).

Denoting circular convolution as ~, we can represent the
visual scene S as follows:

S ¼ BLUE ~ SQUARE þ RED ~ TRIANGLE

It is also important to be able to decompress these rep-
resentations to determine the elements of the original
structure. For example, given the sentence S, we need to
be able to identify what the attribute of the SQUARE is.
The SPA uses circular correlation (i.e., circular convolution
with an inverse of the desired vector) for this operation.
Thus the colour of the SQUARE can be extracted from the
sentence S as follows:

S ~ SQUARE 0 � BLUE

where 0 indicates the approximate inverse (here, involution,
a linear operation).

Circular convolution also has the benefit of being an
instance of a linear transformation followed by multiplica-
tion. Specifically, circular convolution in frequency domain
is element-wise product of two vectors. Transforming to the
frequency domain is a linear transform (e.g. the discrete
ognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


6 S. Sharma et al.
Fourier transform matrix). As described in Section ‘Transfo
rmation’, smooth nonlinear functions of this sort can be nat-
urally and efficiently implemented in populations of neurons
(also see the 09-multiplication.py example mentioned in
Section ‘Transformation’; see Plate (1991) for details).

Given we now know the representations to be used in our
model, let’s open a new blank file in the Nengo GUI and start
building a model.

The results of the code that we walk through in the next
three paragraphs are shown in Fig. 5. You can type the code
into the text editor in the newly opened Nengo GUI browser
window. We start by creating the required networks.

First, we need to create a vocabulary for the components
to share. A vocabulary is a collection of SPs. By default, the
entire model has a common vocabulary (unless you explic-
itly create separate vocabularies for different components).
Since we want to quickly prototype our network and our
vocabulary is limited, 16 dimensional vectors should be
enough (Fig. 5, note A). Our vocabulary is created and pop-
ulated in Fig. 5, note B. Vocabularies can (and often) grow
as a model runs, so it is not necessary to define them ahead
of time, but it can help others understand your code.

In Nengo, a SPA network can be created by using
model = spa.SPA(), as shown in Fig. 5, note C. We have
also provided this network with the vocabulary just created
for initialization purposes, although this is not essential.
This line creates a network which supports modules that
use SPs and associated vocabularies in their definition.

Next, we require inputs for the question being asked, as
well as the visual scene being represented. Since all inputs
are assumed to arrive simultaneously, we do not require
any memory or a basal-ganglia-thalamus loop for action
selection, although we will require both in the next example
in Section ‘Instruction following model’. In this simple case,
we only need circular convolution (denoted as spa.Bind in
the code) and state networks for representing input and
output. We assume that the visual input arrives as two dis-
tinct feature sets ‘‘colour” and ‘‘shape”, which we need to
bind together (Treisman & Schmidt, 1982). So, in total we
Fig. 5 The code and resulting network graph. Note that the SPA
network elements have been manually re-arranged to enhance und

Please cite this article in press as: Sharma, S et al., Large-scale
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
need three state networks for the inputs (colour_in,
shape_in and question), and one state network for the
output (Fig. 5, note D). Additionally, we need two convolu-
tion networks: one to bind the colour and shape together
(Fig. 5, note E); and one convolution network to answer
the query (Fig. 5, note F).

The connections for this model are simple. The connec-
tion code and it’s results are shown in Fig. 6. The colour
and shape inputs are connected to the binding population
(Fig. 6, note A). The bound value and the question are
passed to the answering population (Fig. 6, note B), whose
results are forwarded to the output (Fig. 6, note C).

We can now simulate the model to check it is working
correctly:

� Right-click on all state networks individually and select
Semantic Pointer Cloud.

� Right-click on all the input-related SP Clouds to enter a
SP that will result in that ensemble representing the
specified SP. Set the shape value to TRIANGLE. Set both
the colour and query value to RED.

� For the bind network, right click on the SP Cloud and
select Show Pairs so we can see the binding results.

� Hit the play button in the bottom right corner of the
window.

A successful test is shown in Fig. 7.
To make the validation of our model easier, we need to

automatically provide input to the model, which we can
accomplish by using the spa.Input object. This object
associates state networks with input functions that change
over time. To ensure that the model is responding to both
colour and shape related queries, by getting both features
from RED*SQUARE and RED*TRIANGLE. The code to be
appended to your previous model code, is shown in Fig. 8,
note A.

� Right click on each of the SP Cloud plots and choose
Remove to remove them.
module is imported in the line from Nengo import spa. The
erstanding. See text for explanation of lettered annotations.

cognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Fig. 6 The network graph with connections. See text for explanation of lettered annotations.

Large-scale cognitive model design using the Nengo neural simulator 7
� Replace the removed plots by right clicking on each net-
work and choosing the Semantic Pointer Plot option from
the menu.

� You can now run the model to see the result.

Fig. 9 shows the SP plots, which display the similarity
(dot product) between the output vector and the original
vectors defined in the vocabulary.

To display a full second of data, instead of the default
0.5 s:

� Pause the simulator after running the model for at least a
simulation-time second by clicking the pause button in
the bottom right corner.
Fig. 7 Simulating the network, with a RED TRIANGLE as the visua
code pane has been hidden to show the result better. Confidence of
that the answer is paler than the question components. This is bec

Please cite this article in press as: Sharma, S et al., Large-scale c
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
� Drag the left edge of the transparent blue box (contained
in the timeline at the bottom of the screen) until it
reaches 1 s in width.

As shown in Fig. 9, the representations were bound and
unbound as expected.

This completes the first SPA tutorial in this paper. While
simple, this example has demonstrated how to construct a
vocabulary of semantic pointers for a model, how to bind
SPs into a syntactic structure, and how to unbind syntactic
structures into their constituent SPs. All of this is done in
a spiking neural network (to observe spikes in the model,
double-click on network components until you see ensem-
bles, and right-click on the ensembles to select the spike
l scene, RED as the question and TRIANGLE as the answer. The
results are shown by the size and opaqueness of the text. Note
ause of the lossiness of decompressing a SP.

ognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Fig. 9 The similarity plots after the model is run for one simulation-time second. The plots have been re-arranged for legibility.

Fig. 8 The code to provide automated input to the model and the new plots. See text for explanation of lettered annotations.

8 S. Sharma et al.

Please cite this article in press as: Sharma, S et al., Large-scale cognitive model design using the Nengo neural simulator ...,
Biologically Inspired Cognitive Architectures (2016), http://dx.doi.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Large-scale cognitive model design using the Nengo neural simulator 9
graphs). These basic operations will be expanded on and
integrated with new operations in the next tutorial
example.

5. Instruction following model

In this section we describe a more complex example, that is
capable of processing simple language commands and then
executing actions based on these commands. In this model,
the cortex-basal ganglia-thalamus loop is used to control
information flow through the model, much as it is thought
to in mammalian cortex (Redgrave, Prescott, & Gurney,
1999). Specifically, in this model information stored in cor-
tex is used by the basal ganglia as the basis for selecting
between a set of actions. When an action is selected by
the basal ganglia, it causes the thalamus to modify the
transmission of information between areas of the cortex
(Stewart, Choo, & Eliasmith, 2010a).

5.1. Model description

The function of our model is to obey sequential language
commands arriving as verb–noun pairs, by executing the
appropriate actions. The model receives language com-
mands via visual input and possible outputs are speech or
writing. For this tutorial, we will use a very limited vocabu-
lary: The verb is either SAY or WRITE; and the noun is either
HELLO or GOODBYE. For example, ‘‘SAY HELLO” is a verb–
noun pair that is supplied to the visual input of the model
one word at a time. This is followed by a period of no input
during which the model is expected to execute this com-
mand. Based on the visual input and the state of the cortex,
there are four actions (two internal and two physical) that
the model can perform.

Basal ganglia selects one of these four actions and the
thalamus routes them as shown in Fig. 10. We describe
these four actions next.

Internal actions: Internal actions modify the memory
contents of the cortex and do not cause any external
Fig. 10 Action selection by the basal ganglia and routing by
the thalamus.

Please cite this article in press as: Sharma, S et al., Large-scale c
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
behaviour. They are executed when the visual input is either
a noun or a verb as follows:

1. If the visual input is a verb, the model identifies and
stores the verb in the verb memory.

2. If the visual input is a noun, the model identifies and
stores the noun in the noun memory.

Physical actions: Physical actions are executed when the
visual input is neither a noun nor a verb (this is realized by
setting the visual input to NONE). The chosen action is
dependent on the current state of the cortex, which is
determined by the most recent language command supplied
to the model. Physical actions affect the motor areas of the
cortex, and cause the model to exhibit external behaviour
through either speaking or writing as follows:

1. If the verb was SAY, the speech network outputs the
noun in the command.

2. If the verb was WRITE, the hand network outputs the
noun in the command.

Once the basal ganglia selects one of the four actions,
based on the visual input, it sends the result to the thala-
mus. The thalamus then routes the information in cortex
(in this case, the phrase or the visual input) to implement
the effects of the selected action. The black dotted lines
in Fig. 10 show the routing connections from thalamus to
cortex. Consequently, some information is either sent to a
memory area or to a motor area in the cortex, leading to
information flow between cortical areas as shown by the
red dotted lines in Fig. 10. Note that the phrase network
in cortex is connected back to the basal ganglia, thus com-
pleting the cortex-basal-ganglia-thalamus loop. The phrase
network provides information that helps determine action
selection and routing.

Provided this description of the function of the model,
we can now build it using Nengo. We use the following
SPA modules:

� State – Represents a semantic pointer with optional
recurrent connection. It is used for representing and
transmitting information. It acts as a simple working
memory if the feedback parameter is set to 1.0, while
other non-zero values create a more rapidly decaying
or saturating recurrent memory. By setting the feedback
to 1, Nengo will introduce recurrent connections into the
population of neurons. These connections can then act to
preserve the activity of the population over time, provid-
ing a kind of memory. This is demonstrated further in
Section ‘Dynamics’.

� BasalGanglia – Performs action selection on a set of
given actions.

� Thalamus – Implements the effects of action selection
for an associated basal ganglia.

� Cortical – Used to form cortical connections between
other SPA modules.

� Actions – A collection of Actions which are commonly
used in two ways: 1. specified as actions to choose
between for the basal ganglia 2. connections to imple-
ment for the cortical modules that cause specific actions
(i.e., computations) to occur in cortex.
ognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


10 S. Sharma et al.
We will now proceed to use these SPA modules to build
the components of our model. After building the individual
components, we will put them together to implement our
full model (the final code is shown in Fig. 15). By using
the methods for setting inputs and visualizing outputs pre-
sented in Section ‘Question answering model’, each code
block can be tested separately.

As mentioned, the model receives a visual language com-
mand as an input (Fig. 11, Note X), which the basal ganglia
uses to select one of the actions. This implies that we need
a State component to represent the visual input (visual;
see Fig. 13). We also need a BasalGanglia (bg) with a list
of specified actions and a Thalamus (thal) to implement
the effects of those actions. When the input to the model
is either a verb or a noun, the input should be stored in
the memory area of the cortex (Fig. 11, Note A). Thus we
need two State components with feedback = 1 for storing
the noun (noun) and verb (verb). Splitting the language
command into a noun and a verb enables us to create a
structured representation of the phrase using binding, as
explained in Section ‘Question answering model’. This form
of representation makes it easier to later decompress the
phrase for extracting the noun or verb (an example of this
is shown later).
Fig. 11 Block diagram showing the input, outputs and key com
annotations.

Fig. 12 Code for building state components (visual, ve

Please cite this article in press as: Sharma, S et al., Large-scale
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
In the code shown in Fig. 12, the State components that
have feedback = 1 (line 2, 3) act as a working memory.
The Actions module takes a string definition of an action
where ‘ ’ is used to split the action into condition and
effect (line 6, 7), otherwise it is treated as having no condi-
tion and just an effect. The conditions are processed by the
basal ganglia to select the action with the maximum utility
(i.e., the action having the maximum value of the dot pro-
duct in its condition). The effects are used by the thalamus
to control routing within the cortex. In this example (line 6),
the basal ganglia checks to see whether the visual repre-
sentation is similar to either of the verbs, SAY or WRITE. If it
is similar to either of them, the thalamus routs the visual
representation to the verb memory network.

Similarly, if the input is similar to one of the nouns, the
visual representation is routed to the nounmemory network
(line 7). The list of these actions is passed to the basal ganglia
which performs action selection on these actions (line 9). The
basal ganglia (bg) is passed to the thalamus (thal) which
implements the effects for the basal ganglia (line 10).

In the code block shown in Fig. 13, we construct a State
component that represents a phrase formed out of the
noun and verb representations. The noun and verb

networks need to be connected to the phrase network so
ponents of the model. See text for explanation of lettered

rb and noun), BasalGanglia (bg) and Thalamus (thal).

cognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Large-scale cognitive model design using the Nengo neural simulator 11
that the full structure of the command is represented
(Fig. 11, Note C). We can build these connections using
the cortical. These cortical connections are the same
as standard Nengo connections, although they are simpler
to construct. In the code in Fig. 13, cortical actions are
passed to the Cortical module to form connections between
the state components (line 7). Cortical actions (lines 4–6)
are connections used for directing the flow of information
within the cortex. In this case, the contents of verb are
bound with constant SP VERB, and the contents of noun

are bound with constant SP NOUN. These bound representa-
tions are then added and passed to the phrase network
(line 5). This creates a structured representation of the
phrase, and clarifies the need to store the noun and verb
in separate State components. Thus, multiple operations
including binding, addition and forming connections are all
done in a single command using the Cortical module. Note
that the cortical actions cannot have conditions (line 5).

Recall that when the input to the model is not a verb or a
noun (Fig. 11, Note B), the command in phrase should be
interpreted to determine whether the model was instructed
to SAY or to WRITE the noun. Depending on the instruction,
the noun from phrase should be sent to either the speech
or the hand area of the cortex, causing a physical action
(Fig. 11, Note D). Thus we need two more State components
for representing the speaking (speech) and writing (hand)
outputs. The code in Fig. 14 provides an example of a basal
ganglia rule for executing these physical actions (lines 6–8).
In this example, the basal ganglia checks whether the
Fig. 14 Code for building state components (speech

Fig. 13 Code for building state components (phrase

Please cite this article in press as: Sharma, S et al., Large-scale c
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
instruction was to SAY, by computing the dot product
between the contents of phrase and the semantic pointer
SAY*VERB (line 6). Recall that the basal ganglia has access to
the contents of phrase through a feedback connection
from the cortex (Fig. 11, Note E). The basal ganglia also
ensures that the visual network is not currently receiving
any input that needs processing (line 7). If these conditions
are met, the thalamus unbinds the noun from phrase and
passes it to the speech network (line 8). The symbol ‘�’
is used to compute the inverse of NOUN for the
de-convolution or unbinding (line 8).

Note the use of the constant SP NOUN in facilitating the
extraction of the noun from phrase (line 8). A similar rule
can be used to check for the WRITE command and direct it
to thehand network. Thespeech orhand network then out-
puts the noun passed to it, simulating a physical action
(Fig. 11, Note Y).

We can now combine these code blocks into a single
model, removing any redundancies that were introduced
for the purposes of testing (e.g. have multiple basal
ganglia). Fig. 15 shows the full model implementation in
Nengo using SPA. To build and simulate the model using
Nengo GUI, follow these steps:

� Type the model implementation (Fig. 15) into the text
editor. Fig. 16 shows the network connections of the
model which appear in the network visualizer.

� Provide input to the model. Recall from Section ‘Question
answering model’, that you can either directly provide
and hand), BasalGanglia (bg) and Thalamus (thal).

, verb and noun) and the cortical connections.

ognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Fig. 15 Python code to construct the complete model using Nengo and SPA.

Fig. 16 Network layout and connectivity of the model. The Semantic pointer Clouds are shown from the time when the model is
instructed to SAY HELLO followed by a period of NONE input, during which the speech State outputs HELLO.

12 S. Sharma et al.
input to the model via the SP Cloud plot, or provide an
automatic input using a spa.Input object as shown
below:

def input_vision(t):
sequence = ‘SAY HELLO NONE WRITE GOODBYE n

NONE GOODBYE SAY NONE’.split()

index = int(t / 0.5) % len(sequence)

return sequence[index]

with model:
model.input = spa.Input

(visual = input_vision)
Please cite this article in press as: Sharma, S et al., Large-scale cog
Biologically Inspired Cognitive Architectures (2016), http://dx.doi.or
The above code provides input to the model which
changes after every 0.5 s (refer to Table 1 for details).
Additionally, the input sequence cycles repeatedly over
time (i.e., the same input sequence is repeated after
every 4.5 s). This code can be added to the text editor
immediately after the code in Fig. 15.

� Display the similarity plots of the visual, speech,

hand, verb and noun networks in the model, by
choosing Semantic pointer plot option from their
right-click menu. These plots (shown in Fig. 17) show
the similarity of the contents of a particular compo-
nent in the model to all the semantic pointers in the
model’s vocabulary while the model is running.

� Run the simulation by pressing the play button.
nitive model design using the Nengo neural simulator ...,
g/10.1016/j.bica.2016.05.001

http://dx.doi.org/10.1016/j.bica.2016.05.001


Table 1 Model behaviour over time when the model is run for 4.5 simulation-time seconds.

Simulation time Visual input Model behaviour

0 < t 6 0:5 SAY Action: verb ¼ visual
BG determines that the input is a verb and thalamus routes it to verb State

0:5 < t 6 1 HELLO Action: noun ¼ visual
BG determines that the input is a noun and thalamus routes it to noun State

1 < t 6 1:5 NONE Action: speech ¼ phrase� � NOUN
BG determines that the model has been instructed to speak HELLO, so speech outputs HELLO

1:5 < t 6 2 WRITE Action: verb ¼ visual
BG determines that the input is a verb and thalamus routes it to verb State

2 < t 6 2:5 GOODBYE Action: noun ¼ visual
BG determines that the input is a noun and thalamus routes it to noun State

2:5 < t 6 3 NONE Action: hand ¼ phrase� � NOUN
BG determines that the model has been instructed to write GOODBYE, so hand outputs GOODBYE

3 < t 6 3:5 GOODBYE Action: noun ¼ visual
BG determines that the input is a noun and thalamus routes it to noun State

3:5 < t 6 4 SAY Action: verb ¼ visual
BG determines that the input is a verb and thalamus routes it to verb State

4 < t 6 4:5 NONE Action: speech ¼ phrase� � NOUN
BG determines that the model has been instructed to say GOODBYE, so speech outputs GOODBYE

Large-scale cognitive model design using the Nengo neural simulator 13
5.2. Results

The first 4.5 s of the model behaviour is shown in Table 1
along with the visual inputs. It is clear that the model is
behaving as expected. The model ‘‘says hello” and then
‘‘writes goodbye” for the first two sets of verb–noun pairs
presented to it. However it is worth noting that for the third
set of verb–noun pair, the noun was presented to the model
before the verb. In other words, instead of providing the
command ‘‘SAY GOODBYE”, command is provided as
‘‘GOODBYE SAY”. However the model is still able to inter-
pret the command and perform the appropriate closest
action it knows of, i.e., it ‘‘says goodbye”.

The same results are shown using the similarity plots in
Fig. 17. The plots indicate that the model successfully
parses the language commands and executes the corre-
sponding actions. For example, when the model receives
the visual input SAY (Fig. 17, Note A), the action
verb ¼ visual is executed, and the verb plot shows that verb
network is now storing SAY (Fig. 17, Note B). Similarly, when
the model receives the input HELLO (Fig. 17, Note C), the
action noun ¼ visual is executed and the noun plot shows
that noun network is storing HELLO (Fig. 17, Note D). When
the model receives the input NONE (Fig. 17, Note E), the
action speech ¼ phrase� � NOUN (i.e., unbind the noun
from the phrase and speak it) is executed and the speech
plot shows HELLO (Fig. 17, Note F), indicating that the
model ‘‘says hello”.

This concludes our second example of constructing a sim-
ple cognitive model using the SPA in Nengo. While both
examples are highly simplified, they have allowed us to
demonstrate several of the features of the SPA module.
One especially promising aspect of these features is that
Please cite this article in press as: Sharma, S et al., Large-scale c
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
they have proven to be highly scalable, allowing the repre-
sentation of the structured relations in the more than
100,000 concepts in WordNet (Crawford, Gingerich, &
Eliasmith, 2015), and allowing many tasks to be executed
by a single model, as demonstrated by Spaun (Eliasmith
et al., 2012).

6. Features of Nengo/SPA

This tutorial has scraped the surface of all that Nengo and
the SPA are capable of. In particular, the Nengo GUI was
exclusively used to interface with Nengo, however it is pos-
sible to use Nengo from the command line and in iPython
notebooks (Pérez & Granger, 2007) to run repeated and
longer term experiments for empirical validation (timing,
spiking data, etc.). This is discussed in greater detail in
the Nengo documentation (https://pythonhosted.org/-
nengo/), as well as in the ‘‘Best Practices” repository
(https://github.com/ctn-waterloo/best-practices) where
we are currently in the process of establishing standards
for this type of model use.

There were also many components of the SPA that were
not used in this tutorial, such as Associative Memories and
networks that output similarity between SPs. More impor-
tantly, the connections in this tutorial were all static. How-
ever, Nengo gives the ability to learn associations (Voelker,
Crawford, & Eliasmith, 2014) and other functions (Bekolay &
Eliasmith, 2011) on the connection weights between mod-
ules using BCM, Oja and Prescribed Error Sensitivity learning
rules. Additionally, most of the computation in these exam-
ples focused on manipulations of symbolic vectors, but neu-
ral ensembles are also capable of representing function
spaces. This includes probability distributions, such as
ognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://https://pythonhosted.org/nengo/
http://https://pythonhosted.org/nengo/
http://https://github.com/ctn-waterloo/best-practices
http://dx.doi.org/10.1016/j.bica.2016.05.001


Fig. 17 Simulation results showing the SPA similarity plots after the model is run for 4.5 simulation-time seconds.

14 S. Sharma et al.
Gaussians, exponentials or any other function space that is
capable of being represented by vectors.

In this tutorial, all simulations were run on your com-
puter’s CPU, but Nengo supports a variety of different back-
end hardware including GPUs via OpenCL (Bekolay et al.,
2014) and neuromorphic hardware such as SpiNNaker
(Mundy, Knight, Stewart, & Furber, 2015) and Neurogrid
(Choudhary et al., 2012). These backends allow for much
faster simulation, and often with considerably lower power
consumption. In addition to these functional features,
Nengo also includes more detailed neuron models than the
LIFs and more detailed synaptic models than are used in this
tutorial. Recently, Nengo has been connected to Neuron
(i.e., a simulator that supports extremely detailed single
cell models) allowing for models with even greater biologi-
cal realism and more complex dynamics (Eliasmith,
Gosmann, & Choo, 2016).

7. Conclusion

In this tutorial, we demonstrated building two Nengo mod-
els: a simple question answering model; and a slightly more
Please cite this article in press as: Sharma, S et al., Large-scale
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
complex instruction following model. Each of these lever-
aged elements of the SPA to quickly prototype simple cogni-
tive behaviours (i.e., binding and rule following). We
believe that, as demonstrated by models like Spaun, these
tools can provide effective means of building large, biolog-
ically based cognitive models that capture a wide variety of
neural and behavioural data. Moreover, we hope that these
tools prove useful to others in the field for addressing inter-
esting tasks and cognitive behaviours that we have not yet
considered. To this end, we invite users to join the Nengo
mailing list (http://www.nengo.ca/contact), and partici-
pate in a vibrant community devoted to improving both
these tools and the models they are used to build. Addition-
ally, some of the existing Nengo models can be found at
http://models.nengo.ca/.
Acknowledgments

This work was supported by CFI and OIT infrastructure fund-
ing, the Canada Research Chairs program, NSERC Discovery
Grant 261453, ONR Grant N000141310419, AFOSR Grant
FA8655-13-1-3084 and OGS graduate funding.
cognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://www.nengo.ca/contact
http://models.nengo.ca/
http://dx.doi.org/10.1016/j.bica.2016.05.001


Large-scale cognitive model design using the Nengo neural simulator 15
References

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T.
C., Rasmussen, D., ... Eliasmith, C. (2013). Nengo: A Python tool
for building large-scale functional brain models. Frontiers in
Neuroinformatics, 7.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T.
C., Rasmussen, D., ... Eliasmith, C. (2014). Nengo: A Python tool
for building large-scale functional brain models. Frontiers in
Neuroinformatics, 7.

Bekolay, T., & Eliasmith, C. (2011). A general error-modulated STDP
learning rule applied to reinforcement learning in the basal
ganglia. Cognitive and Systems Neuroscience.

Choudhary, S., Sloan, S., Fok, S., Neckar, A., Trautmann, E., Gao,
P., ... Boahen, K. (2012). Silicon neurons that compute.
International conference on artificial neural networks (vol.
7552, pp. 121–128).

Crawford, E., Gingerich, M., & Eliasmith, C. (2015). Biologically
plausible, human-scale knowledge representation. Cognitive
Science, 40(4), 782–821.

Eliasmith, C. (2013). How to build a bra: A neural architecture for
biological cognition. Oxford University Press.

Eliasmith, C., & Anderson, C. H. (2004). Neural engineering:
Computation, representation, and dynamics in neurobiological
systems. MIT Press.

Eliasmith, C., Gosmann, J., & Choo, X. (2016). Biospaun: A large-
scale behaving brain model with complex neurons. http://arxiv.
org/abs/1602.05220.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T.,
Tang, Y., & Rasmussen, D. (2012). A large-scale model of the
functioning brain. Science, 338, 1202–1205.

Eliasmith, C., & Trujillo, O. (2014). The use and abuse of large-scale
brain models. Current Opinion in Neurobiology, 25, 1–6.

Jackendoff, R. (2002). Foundations of language: Brain, meaning,
grammar. Evolution.
Please cite this article in press as: Sharma, S et al., Large-scale c
Biologically Inspired Cognitive Architectures (2016), http://dx.doi
Leigh, S., Danckert, J., & Eliasmith, C. (2014). Modelling the
differential effects of prisms on perception and action in
neglect. Experimental Brain Research, 233(3), 751–766.

Mundy, A., Knight, J., Stewart, T. C., & Furber, S. (2015). An
efficient spinnaker implementation of the neural engineering
framework. In IJCNN.

Pérez, F., & Granger, B. E. (2007). IPython: A system for interactive
scientificcomputing.Computing inScience&Engineering,9, 21–29.

Plate, T. (1991). Holographic reduced representations: Convolution
algebra for compositional distributed representations. In IJCAI
(pp. 30–35). Citeseer.

Rasmussen, D. (2010). A neural modelling approach to investigating
general intelligence (Masters thesis).Waterloo, ON: University
of Waterloo.

Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal
ganglia: A vertebrate solution to the selection problem? Neuro-
science, 89(4), 1009–1023.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010a). Symbolic
reasoning in spiking neurons: A model of the cortex/basal
ganglia/thalamus loop. In Proceedings of the 32nd annual
conference of the cognitive science society (pp. 1100–1105).
TX: Cognitive Science Society Austin.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010b). Dynamic
behaviour of a spiking model of action selection in the basal
ganglia. In Proceedings of the 10th international conference on
cognitive modeling (pp. 235–240). Citeseer.

Stewart, T. C., & Eliasmith, C. (2011). Neural cognitive modelling: A
biologically constrained spiking neuron model of the Tower of
Hanoi task. In 33rd annual conference of the cognitive science
society.

Treisman, A., & Schmidt, H. (1982). Illusory conjunctions in the
perception of objects. Cognitive Psychology, 14, 107–141.

Voelker, A. R., Crawford, E., & Eliasmith, C. (2014). Learning large-
scale heteroassociative memories in spiking neurons. In Uncon-
ventional Computation and Natural Computation, London,
Ontario.
ognitive model design using the Nengo neural simulator ...,
.org/10.1016/j.bica.2016.05.001

http://refhub.elsevier.com/S2212-683X(16)30031-7/h0005
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0005
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0005
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0005
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0010
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0010
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0010
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0010
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0015
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0015
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0015
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0020
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0020
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0020
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0020
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0025
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0025
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0025
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0030
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0030
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0035
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0035
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0035
http://arxiv.org/abs/1602.05220
http://arxiv.org/abs/1602.05220
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0045
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0045
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0045
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0050
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0050
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0055
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0055
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0060
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0060
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0060
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0065
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0065
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0065
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0070
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0070
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0075
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0075
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0075
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0080
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0080
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0080
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0085
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0085
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0085
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0090
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0090
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0090
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0090
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0090
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0095
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0095
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0095
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0095
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0100
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0100
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0100
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0100
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0105
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0105
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0110
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0110
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0110
http://refhub.elsevier.com/S2212-683X(16)30031-7/h0110
http://dx.doi.org/10.1016/j.bica.2016.05.001

	Large-scale cognitive model design using the Nengo neural simulator
	1 Introduction
	2 Nengo
	3 The Neural Engineering Framework (NEF)
	3.1 Representation
	3.2 Transformation
	3.3 Dynamics
	3.4 SPA models with the NEF

	4 Question answering model
	5 Instruction following model
	5.1 Model description
	5.2 Results

	6 Features of Nengo/SPA
	7 Conclusion
	Acknowledgments
	References


