
A neural reinforcement learning model for tasks with unknown time delays
Daniel Rasmussen (drasmuss@uwaterloo.ca)
Chris Eliasmith (celiasmith@uwaterloo.ca)

Centre for Theoretical Neuroscience, University of Waterloo
Waterloo, ON, Canada, N2J 3G1

Abstract

We present a biologically based neural model capable of per-
forming reinforcement learning in complex tasks. The model
is unique in its ability to solve tasks that require the agent to
make a sequence of unrewarded actions in order to reach the
goal, in an environment where there are unknown and vari-
able time delays between actions, state transitions, and re-
wards. Specifically, this is the first neural model of reinforce-
ment learning able to function within a Semi-Markov Decision
Process (SMDP) framework. We believe that this extension of
current modelling efforts lays the groundwork for increasingly
sophisticated models of human decision making.

Keywords: reinforcement learning; neural model; SMDP

Introduction
One of the most successful areas of cross-fertilization be-
tween computational modelling and the study of the brain has
been the domain of reinforcement learning (RL). This began
with the work of Schultz (1998), who demonstrated that the
well-defined computational mechanisms of models (e.g., TD
reinforcement learning) could provide insight into some of
the more opaque mechanisms of the brain (e.g., dopamine
signalling).

The models used in that early work were purely algorith-
mic, with little relation to the biological properties of the
brain. However, since that first demonstration many new
models have been developed, allowing novel or more de-
tailed comparisons to neural mechanisms—models that more
closely reflect the structures of the brain (Frank & Badre,
2012; Stewart et al., 2012), the behaviour of individual neu-
rons (Seung, 2003; Potjans et al., 2009), or synaptic learning
mechanisms (Florian, 2007; Baras & Meir, 2007).

In our work we seek to retain the neuroanatomical detail of
these models, but expand their functionality; that is, to build
models capable of more powerful learning and decision mak-
ing, enabling them to solve more complex problems. Here
we present some first steps in that direction. Specifically, we
will discuss the implementation and show early results from a
model that is able to solve tasks requiring extended sequences
of actions, in environments where there may be unknown and
variable time delays between actions and rewards.

Background
Sutton & Barto’s seminal introduction to reinforcement learn-
ing illustrates the important challenge for expanding the func-
tion of neural RL models: “Reinforcement learning is learn-
ing what to do—how to map situations to actions—so as to
maximize a numerical reward signal...In the most interesting
and challenging cases, actions may affect not only the imme-

diate reward but also the next situation and, through that, all
subsequent rewards (Sutton & Barto, 1998).”

Most existing neural models have performed only associa-
tive reinforcement learning, where there is no consideration
of future reward (Niv et al., 2002; Seung, 2003; Baras & Meir,
2007; Florian, 2007; Izhikevich, 2007; Frank & Badre, 2012;
Stewart et al., 2012). An example of this type of task is bandit
learning, where the agent selects one of n available options,
receives reward, then is reset back to the choice point. Each
trial is independent, so the agent only needs to learn the im-
mediate reward associated with each option, and then pick the
best one. This can be expressed in the RL notation as

Q(s,a) = r(s,a) (1)

where Q(s,a) is the agent’s estimate of the value of taking ac-
tion a in state s, and r(s,a) is the immediate reward received
for performing that action in that state. These Q values can
be learned by observing r(s,a) and then updating Q(s,a) to
bring it closer to the observation. The challenge addressed
by many of the models above is how to do that update in a
neurally plausible manner.

An example of a more complex reinforcement learning task
is a navigation problem, where an agent seeking to reach a
goal must choose a direction to move. The agent may receive
no immediate reward for making a choice, but there are still
good and bad choices (bringing it closer to or farther from the
goal). In order to make correct decisions, the agent needs to
be able to learn not only the immediate rewards, but the re-
wards to be expected in the future after taking a given action.
This can be expressed as

Q(s,a) = r(s,a)+ γQ(s′,a′) (2)

In other words, the value of taking action a is equivalent to the
immediate reward (as in the previous case), plus the expected
value of the action taken in the resulting state (indicating the
future reward expected from that state). The future value is
discounted by γ < 1 to indicate that future rewards are valued
less than immediate rewards. The Q values can be learned by
comparing the predicted value of action a to the observed val-
ues upon arriving in state s′. This is the temporal difference
(TD) learning formula1:

∆Q(s,a) = κ
[
r(s,a)+ γQ(s′,a′)−Q(s,a)

]
(3)

Most complex problems of the type faced by the brain require
the consideration of the future impact of a given action; thus

1More specifically, this is the SARSA learning update (Rummery
& Niranjan, 1994).



building models capable of this type of learning is an impor-
tant step in understanding the decision making processes in
the brain.

There have been models built that solve these types of
tasks, but often they take the TD error signal (Equation 3)
as given, or it is computed outside the model (Foster et al.,
2000; Strösslin & Gerstner, 2003). This reduces to a problem
very similar to Equation 1, where the agent has a signal com-
ing in and only needs to worry about the current value of that
signal. The challenging aspect of TD learning is how to learn
with only immediate rewards as input to the model.

Potjans et al. (2009) presented one of the most complete
neural models of reinforcement learning. In order to com-
pute the TD error they use two activity traces, one fast and
one slow, on the output of the neurons representing the Q val-
ues. For a brief window in time after the system transitions
from state s to state s′, the slow trace will still be represent-
ing Q(s,a) while the fast trace will be representing Q(s′,a′);
combining that information with the incoming reward enables
the neurons to calculate the equivalent of Equation 3.

The downside of this approach is that the necessary in-
formation is only present immediately after the state transi-
tion, within that window of time before the slow activity trace
catches up to the fast; if action selection occurs earlier than
the state transition, or if the rewards are not delivered within
that window, the system will not be able to learn. This is true
of all systems that rely on some type of activity/eligibility
trace to preserve the action values (e.g., Izhikevich, 2007;
Florian, 2007). These models rely on an environment that fol-
lows a reliable clock-like sequence of action selection, state
transition, and reward.

In some cases that may be a reasonable assumption, but in
our work we seek a more general mechanism that can learn
when there is an unknown and potentially variable delay be-
tween action selection and state transition or reward. This can
be expressed as a Semi-Markov Decision Process (SMDP;
Howard, 1971). Whereas in basic MDPs (the standard model
for RL tasks) states, actions, and rewards all occur instanta-
neously, SMDPs introduce the concept of a time delay be-
tween action selection and state transition, and rewards that
can be delivered at different points in time.

One way to address the problem of time delays in the MDP
environment (without resorting to SMDPs) is to imagine the
delay period as a series of state transitions. That is, the
states/actions/rewards continue to proceed in a regular clock-
like manner, and time delays are represented by multiple cy-
cles through that loop. However, this requires the learning to
propagate back through all the “decisions” made during the
delay period. This greatly complicates the learning process,
and for lengthy delay periods with many different decisions
it can render successful learning practically impossible. An
important advantage of the SMDP framework is that it en-
capsulates all the activity of the delay period within a single
learning update. This is particularly useful in situations such
as hierarchical decision making, discussed more in the con-

s

a1 a2 a3 a4

selection

environment

Q(s,a4)Q(s,a3)Q(s,a2)Q(s,a1)

s'

E
r

a*

Q(s,a*)

Figure 1: Overall architecture of the model, see text for de-
tails. The interior of the E component is shown in Figure 2.

clusion.
The learning update from Equation 3 can be reformulated

for an SMDP environment (Bradtke & Duff, 1994; Sutton et
al., 1999) as

∆Q(s,a) = κ

[
τ−1

∑
t=0

γ
tr(s,a, t)+ γ

τQ(s′,a′)−Q(s,a)

]
(4)

where t is the time elapsed since action a was selected,
r(s,a, t) is the reward received at time t, and the transition to
state s′ occurs at time τ. The obvious changes are that a) the
rewards received are summed over time, and b) the discount
is applied across the delay period. However, the more subtle
change is that the agent does not know τ. That is, it cannot
rely on the rewards or discount being limited to some spe-
cific time window, or the update being applied at a particular
time; it must simply wait, and be able to calculate Equation 4
whenever the state change occurs. For the sake of simplic-
ity we have expressed time here as consisting of discrete time
steps, but it can be expressed in the continuous case by tak-
ing the integral over the incoming reward signal (this is the
approach used in our model).

With the SMDP framework, an agent can learn to select ac-
tions in a more general environment, incorporating arbitrary
time delays into the reinforcement learning process. By tak-
ing this theory and implementing it in a neural model, we will
develop a more powerful and flexible model of reinforcement
learning in the brain.

Methods
Model architecture
The overall structure of the model is shown in Figure 1. At
the top is a population of neurons representing the current
state (we will discuss how the environmental state is trans-
lated into neural activities in the next section). Beneath are
populations associated with each available action (four in this



case, but the model can work with any number). The state
population is connected to each action population, and it is
in the synaptic weights of these connections that the Q val-
ues are calculated. Assuming that correct weights have been
learned, the output of the state neurons will cause each ac-
tion population to represent the value of taking its associated
action in that state (i.e., Q(s,an)).

In order to act, the model needs to make a decision based
on those Q values; this is the purpose of the selection compo-
nent. In our model the agent follows a simple greedy policy
of always selecting the highest value action. We compute
the max operation using the basal ganglia model described
in Stewart et al. (2010). That output is used to activate in-
hibitory gates within the network of the selection component,
so that neural populations corresponding to the non-selected
actions will not be active. The output of the selection com-
ponent is both the value of the selected action, which is sent
to the error calculation network (to be discussed later), and
the actual output of the agent (i.e., the action it sends to the
environment).

The operation of the agent is independent of the details of
the environment; this model is designed to function in any
task that can be described in the SMDP framework. All that
is required is that the environment somehow takes the output
of the agent (e.g., an action such as “move left”), calculates an
updated state (e.g., the new position of the agent), and sends
the new state and any reward received back to the agent. As
per the SMDP framework, the state transition can occur at
any time, and the rewards can be delivered at any time. When
the new state is sent to the agent, it will modify the activities
in the state population, a learning update will be performed
as in Equation 4, and the agent will decide on a new action.

Representing and computing with neural activities
The model operates entirely in neural activities, but it needs
to interact with environments and perform computations that
are defined in terms of abstract mathematical variables. To
translate back and forth between these two domains we use
the Neural Engineering Framework (NEF; Eliasmith & An-
derson, 2003).

The first component of the translation is encoding. For ex-
ample, the abstract state output by the environment needs to
be encoded into the activities of the state population. Sup-
pose the state is represented by a vector x (perhaps describing
the position of the agent). The model operates in continuous
time, so the changing state over time can be represented by
x(t). That input signal is encoded into the activities of the
state population as

si(x(t)) = Gi

[
αieix(t)+ Jbias

i

]
(5)

si(x(t)) represents the activity of neuron i in the state pop-
ulation. Gi is the neuron model; in our case we use leaky
integrate and fire (LIF) neurons. The components within
the braces represent the current that is input into the neuron
model. α and Jbias

i are parameters of the neuron, randomly

chosen from within biologically plausible ranges, represent-
ing the gain and background activity, respectively. The vector
ei identifies the neuron’s preferred stimulus, the area of the in-
put space to which this neuron is most sensitive (these are also
randomly chosen). Thus each neuron will respond to the input
according to its internal parameters and how close the input is
to the neuron’s preferred stimulus. The combined activity of
the whole population then comprises a distributed represen-
tation of where the current input is in the input space. Note
that while for demonstration purposes we have described this
here in terms of encoding the state, this is a general purpose
mechanism for encoding any input into the activities of a pop-
ulation of neurons.

The second aspect of the translation is decoding, translat-
ing the activities of a population of neurons back into an ab-
stract value. For example, this allows the activities of neurons
in the selection network to be interpreted as an action for the
environment, or the activities of the action populations to be
interpreted as Q values. This is accomplished by a weighted
summation of the neural activities:

x̂(t) = ∑
i

si(x(t))di (6)

The weights, or decoders, di, can be calculated by

d = Γ
−1

ϒ

where

Γi j =
∫

si(x)s j(x)dx

ϒ j =
∫

s j(x) f (x)dx (7)

f (x) gives the option of decoding a (possibly nonlinear) func-
tion of the encoded value. However, in most cases all that
is desired is the identity of the represented value, in which
case f (x) = x. With these two tools, encoding and decoding,
we can translate back and forth between the neural activities
of the model and the variables and computations of the RL
framework.

Learning
The basic process of TD reinforcement learning involves up-
dating the agent’s estimation of the value of each action, the
Q values. In the architecture of the model, this means modify-
ing the synaptic weights on the connections between the state
and action populations. To perform these updates we use an
error modulated neural learning rule developed by MacNeil
& Eliasmith (2011):

∆ωi j = κα je jEsi(x) (8)

∆ωi j is the change in the connection weight between neuron
i (in the state population) and neuron j (in an action popula-
tion). κ is the learning rate, α j and e j are properties of neuron
j (as shown in Equation 5), si(x) is the activity of neuron i,
and E is the error. For this model, the error is the desired
change in the Q value, i.e., ∆Q(s,a) from Equation 4. This is



integrator

discountstored value

current value

error
rΣr

Q(s',a')

Q(s,a)

E

Figure 2: Network to calculate the SMDP learning error (the
interior processing of the E component shown in Figure 1).
See text for details.

a neurally plausible weight update in that it only makes use of
information available locally at neuron j (assuming all neu-
rons also receive the error signal E). MacNeil & Eliasmith
(2011) show that this learning rule will cause the weights to
be adjusted so as to minimize E, meaning that over time the
weights will come to calculate the desired Q values.

Error calculation
The previous section raises the question of where the error,
E, comes from. That is, how is Equation 4 computed? The
network that performs this calculation is shown in Figure 2.
Note that this is the E component shown in Figure 1, and
receives the inputs shown there (the Q value of the selected
action, and the reward from the environment).

One challenge is the integration of the incoming reward
(the summation in Equation 4). This is accomplished by the
top-right component in the network. The central feature of
the integration population is the recurrent connection, which
allows it to maintain its activity in the absence of input. This
means that as new rewards enter the population they will be
added to the previous rewards already being represented, so
that the population represents the sum of the given rewards.
The details of how to set up a recurrent network to per-
form these kinds of computations are described in Eliasmith
(2005).

The “current value” population represents the value of the
currently selected action. When the action is first selected,
this value is transferred into the “stored value” population in
the bottom left. Again, this is a population that will main-
tain its represented value via its recurrent connections. When
a state transition occurs, the bottom population will then
be representing the value of the selected action in the new
state, Q(s′,a′), while the “stored value” population maintains
Q(s,a).

The discount is calculated by integrating the value repre-

goal

Figure 3: Example of policy learned by the agent. The arrows
represent the weighted sum of the four possible movement
directions, where each direction is weighted by the learned
Q value of that action. Contours indicate the state value (the
value of the highest-valued action).

sented in the “stored value” population, using the same recur-
rent setup as is used to integrate the incoming reward. This
value is then subtracted from the current Q input to calculate
a discounted action value. This is not identical to the discount
expressed in Equation 4, but it has a similar computational ef-
fect: it reduces the value of future states proportional to the
time elapsed and the value of the state.

The final “error” population thus has all the pieces it needs
to compute the SMDP learning update. It adds the accumu-
lated reward and the discounted Q(s′,a′) value, and subtracts
the stored Q(s,a) value, resulting in the error signal required
by the neural learning rule (Equation 8).

Results
We tested the model on a spatial navigation task (the same
task used in Potjans et al. 2009). The agent is randomly
placed in a 5× 5 grid, surrounded by walls. The agent’s
state is its x,y location in the grid, and the available actions
are movement in the four cardinal directions. Selecting any
of those actions will cause the agent to move one square in
that direction, unless it is attempting to move into a wall in
which case it remains in the same position. The agent’s time
in each state is randomly determined, ranging between 600
and 900ms. The task is to move to some fixed target location.
This is equivalent to a water-maze type task, where the agent
has no idea where the goal might be, and must find it by ex-
ploring the environment. When the agent finds the goal state
it receives a constant reward of 1 as long as it remains in the
state. After a brief period of time the agent is then moved to
a random location, and must find the target again.

Figure 3 shows an example of a policy learned by the
model after spending approximately 2hrs of simulated time



0 50 100 150 200 250 300
trial

0

5

10

15

20

25

la
te

n
cy

algorithmic
neural MDP
neural SMDP

Figure 4: Comparison of learning times between a) an algo-
rithmic implementation of RL (basic table-based Q-learning),
b) the neural MDP reinforcement learning model of Potjans et
al. (2009), and c) the model presented here. Latency is mea-
sured as the difference between the Manhattan distance from
start to goal and the number of steps taken by the model. Data
for b) from Potjans et al. (2009).

in the task. The arrows display the weighted sum of the four
movement directions, where the weights are the learned Q
values associated with each action. Since the agent picks the
highest valued action, it will move in whichever cardinal di-
rection is closest to the direction of the arrow. The contours
indicate the value of the highest valued action (i.e., the state
value function). It can be seen that the agent has successfully
learned a policy that will take it to the goal state from any
position, despite the random time delays.

Figure 4 shows a comparison between the learning times
of our model and that of Potjans et al. (2009), with a purely
computational RL implementation as a baseline. Each trial
begins when the agent is placed at a random location in the
grid, and ends when it reaches the goal (at which point it is
placed in a new location for the next trial). We have fol-
lowed Potjans et al. in using latency as a measure of how
well the agent has learned the task. Latency is defined as the
difference between the Manhattan distance between the start
and goal (startx− goalx + starty− goaly), which is the short-
est possible path length, and the number of steps taken by the
model. It can be seen that our model performs better than
that of Potjans et al., and roughly equivalently to the purely
computational solution. It is also worth noting that our model
is operating in the more challenging SMDP framework, with
random time delays; it is unlikely that the Potjans et al. model
would be able to perform this task at all.

SMDPs also provide a more powerful language with which
to describe problem domains, by allowing for the incorpora-
tion of time directly into the task description. For example,
Figure 5 shows a task similar to that in Figure 3, but certain
states (shown in grey) take a longer period of time for the
agent to move through (simulated by adding three seconds

goal

Figure 5: Policy learned by the system in a task where certain
states take longer periods of time to move through (shown
in grey). The agent has learned to avoid the slow areas even
though it requires taking a less direct route.

to the usual randomly determined state transition time). This
means that the most efficient route to the goal is no longer a
direct path; the agent has learned to trade off the cost of a de-
tour with the cost of moving through the slow areas. Time is
often an important part of real world tasks, thus the ability to
incorporate time directly into the agent’s learning is another
advantage of the SMDP framework.

Discussion
We have presented a novel neural model capable of au-
tonomous reinforcement learning. The model is able to solve
complex tasks that require an extended sequence of actions in
order to achieve the reward, rare for biologically based neural
models. In addition, it is able to solve these tasks in a real-
istic SMDP environment, where there are potentially random
and unknown delays between action selection, state transi-
tion, and reward. We believe this is currently the only neural
model capable of this type of performance.

This model is still only an early step on the path of expand-
ing the functional capabilities of neural RL models, and there
are a number of ways in which it can be improved. First,
more neural detail could be incorporated into the model. For
instance, incorporating more realistic spiking neurons would
allow for more detailed comparisons to neural recordings.
Another improvement to the model would be a more prin-
cipled approach to exploration. At the moment exploration is
accomplished by injecting random noise into the action val-
ues as they enter the selection component (a neural approxi-
mation of the standard ε-greedy approach). However, in the
future it would be desirable to have more control over the ex-
ploration process, so that, for example, the agent could make
decisions about how much exploration to pursue based on its
current knowledge.



Another avenue for future work is to incorporate the learn-
ing components of this system into a more complete agent
model. The inputs and outputs of this model are abstract, thus
it ignores the complexity of sensory processing and motor
output. However, recent work in our lab has developed an in-
tegrated brain model that is able to perceive visual input, pro-
cess it internally, and control motor outputs (Eliasmith et al.,
2012). That model was able to perform associative reinforce-
ment learning, but not the more complex learning displayed
here. Adding the abilities of this model into that detailed neu-
ral agent would allow for the study of the full reinforcement
learning process, from input through to output.

One of the most interesting possibilities opened up by this
model is the construction of a neural model capable of hierar-
chical reinforcement learning (Barto & Mahadevan, 2003). In
hierarchical RL the “actions” that an agent chooses between
can be augmented with subroutines that define whole new be-
haviours. For example, instead of the agent just choosing be-
tween “go left”, “go right”, and so on, one of its options could
be “go to the doorway”, which would then lead to a sequence
of decisions designed to take the agent to that location. What
all of the hierarchical approaches have in common is that they
use the SMDP framework as their underlying structure. The
unknown time delay between action and state transition can
be used to encapsulate the time when the high-level action
is executing. The SMDP framework allows the agent to in-
corporate those time delays and rewards, and learn how to
correctly select between its complex set of actions. A model
such as the one we present here is a step toward a functional
neural model capable of hierarchical learning and decision
making.

Acknowledgements
This work was supported by the Natural Sciences and En-
gineering Research Council of Canada, Canada Research
Chairs, the Canadian Foundation for Innovation, and Ontario
Innovation Trust.

References
Baras, D., & Meir, R. (2007). Reinforcement learning, spike-

time-dependent plasticity, and the BCM rule. Neural Com-
putation, 19(8), 2245–79.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hi-
erarchical reinforcement learning. Discrete Event Dynamic
Systems, 1–28.

Bradtke, S. J., & Duff, M. O. (1994). Reinforcement learning
methods for continuous-time Markov decision problems.
In Advances in Neural Information Processing Systems.

Eliasmith, C. (2005). A unified approach to building and
controlling spiking attractor networks. Neural Computa-
tion, 17(6), 1276–1314.

Eliasmith, C., & Anderson, C. (2003). Neural engineering:
Computation, representation, and dynamics in neurobio-
logical systems. Cambridge: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf,
T., Tang, C., & Rasmussen, D. (2012). A large-scale model
of the functioning brain. Science, 338(6111), 1202–1205.

Florian, R. V. (2007). Reinforcement learning through mod-
ulation of spike-timing-dependent synaptic plasticity. Neu-
ral Computation, 19(6), 1468–502.

Foster, D. J., Morris, R. G., & Dayan, P. (2000). A model of
hippocampally dependent navigation, using the temporal
difference learning rule. Hippocampus, 10(1), 1–16.

Frank, M. J., & Badre, D. (2012). Mechanisms of hierar-
chical reinforcement learning in corticostriatal circuits 1:
computational analysis. Cerebral Cortex, 22(3), 509–26.

Howard, R. A. (1971). Dynamic Probabilistic Systems. Dover
Publications.

Izhikevich, E. M. (2007). Solving the distal reward problem
through linkage of STDP and dopamine signaling. Cere-
bral Cortex, 17(10), 2443–52.

MacNeil, D., & Eliasmith, C. (2011). Fine-tuning and the
stability of recurrent neural networks. PloS ONE, 6(9),
e22885.

Niv, Y., Joel, D., Meilijson, I., & Ruppin, E. (2002). Evo-
lution of Reinforcement Learning in Uncertain Environ-
ments: A Simple Explanation for Complex Foraging Be-
haviors. Adaptive Behavior, 10(1), 5–24.

Potjans, W., Morrison, A., & Diesmann, M. (2009). A spik-
ing neural network model of an actor-critic learning agent.
Neural Computation, 339, 301–339.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning
using connectionist systems (Tech. Rep. No. September).

Schultz, W. (1998). Predictive reward signal of dopamine
neurons. Journal of Neurophysiology, 80, 1–27.

Seung, H. S. (2003). Learning in spiking neural networks by
reinforcement of stochastic synaptic transmission. Neuron,
40(6), 1063–73.

Stewart, T. C., Bekolay, T., & Eliasmith, C. (2012). Learning
to select actions with spiking neurons in the Basal Ganglia.
Frontiers in Decision Neuroscience, 6, 2.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic
behaviour of a spiking model of action selection in the
basal ganglia. In S. Ohlsson & R. Catrambone (Eds.), Pro-
ceedings of the 32nd Annual Conference of the Cognitive
Science Society (pp. 235–240). Austin: Cognitive Science
Society.

Strösslin, T., & Gerstner, W. (2003). Reinforcement learn-
ing in continuous state and action space. In International
Conference on Artificial Neural Networks.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learn-
ing. Cambridge: MIT Press.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112(1-2),
181–211.


