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ABSTRACT | Braindrop is the first neuromorphic system

designed to be programmed at a high level of abstrac-

tion. Previous neuromorphic systems were programmed at

the neurosynaptic level and required expert knowledge of

the hardware to use. In stark contrast, Braindrop’s computa-

tions are specified as coupled nonlinear dynamical systems

and synthesized to the hardware by an automated proce-

dure. This procedure not only leverages Braindrop’s fabric

of subthreshold analog circuits as dynamic computational

primitives but also compensates for their mismatched and

temperature-sensitive responses at the network level. Thus,
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a clean abstraction is presented to the user. Fabricated in

a 28-nm FDSOI process, Braindrop integrates 4096 neurons

in 0.65 mm2. Two innovations—sparse encoding through ana-

log spatial convolution and weighted spike-rate summation

though digital accumulative thinning—cut digital traffic drasti-

cally, reducing the energy Braindrop consumes per equivalent

synaptic operation to 381 fJ for typical network configurations.

KEYWORDS | Analog circuits; artificial neural networks; asyn-

chronous circuits; neuromorphics.

I. INTRODUCTION

By emulating the brain’s harnessing of analog signals
to efficiently compute and communicate, we can build
artificial neural networks (ANNs) that perform dynamic
computations—tasks involving time—much more energy
efficiently.

Harnessing analog signals in two important ways
enables biological neural networks (BNNs) to save energy
by using much more energetically expensive digital com-
munication sparingly [1]. First, BNNs exploit the nerve
membrane’s local capacitance to continuously and dynam-
ically update their analog somatic potentials, sparsifying
their digital axonal signaling in time. Second, BNNs exploit
local fan-out to reduce long-range communication by prop-
agating their analog dendritic signals across O(n) distance
to O(n2) somas,1 sparsifying their digital axonal signal-

1The cortical sheet’s third dimension is much shorter than its first
two (2–3 mm versus tens of centimeters).
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ing in space. This complementary relationship between
analog dendritic signaling and digital axonal signaling is
completely lost in traditional ANN implementations that
replace discrete spike trains by continuous rates, dynamic
neuronal behavior with static point nonlinearities, and
spatially organized neuron arrays mimicking BNNs’ local
connectivity with globally connected neurons.

The price to be paid for mimicking the BNNs’
energy-efficient mixed-signal approach with modern
CMOS process technology is the uncertainty in manu-
facturing. This uncertainty results in exponentially mis-
matched responses and thermal variability in analog (i.e.,
physically realized) neuron circuits. Because these circuits
are not time-multiplexed, they must be sized as small as
possible to maximize neuron count, and because these
circuits constantly conduct their bias current, they must be
biased with as little current as possible to minimize (sta-
tic) power consumption. However, these two requirements
make designing analog circuits in modern CMOS processes
even more challenging; smaller transistors have more mis-
matched threshold voltages, and minuscule currents are
exponentially sensitive to this mismatch [2] as well as to
the ambient temperature [3].

Thus, while using analog signaling promises energy
efficiency because of its potential to sparsify the digital
communication in space and time, analog circuits’ inher-
ent heterogeneity and variability impede programmabil-
ity and reproducibility. This heterogeneity and variability
are directly exposed to the user when the mixed-signal
neuromorphic systems are programmed at the level of
individual neuronal biases and synaptic weights [4]–[6].
Because each chip is different, for a given computation,
each must be configured differently. In addition, the silicon
neurons inherit their transistors’ thermal variation, requir-
ing further fine-tuning of programming parameters. This
lack of abstraction and reproducibility limits adoption to
experts who understand the hardware at the circuit level.
To ease programmability and guarantee reproducibility,
some recent large-scale neuromorphic systems adopt an
all-digital approach [7], [8].

This paper presents Braindrop (see Fig. 1), the first
mixed-signal neuromorphic system designed with a clean
set of mismatch- and temperature-invariant abstrac-
tions in mind. Unlike previous approaches for analog
computation [9]–[12], which use fewer, bigger analog cir-
cuits biased with large currents to minimize mismatch (and
its associated thermal variation), Braindrop’s hardware
and software embrace mismatch, working in concert to
harness the inherent variability in its analog electronics to
perform computation, thereby presenting a clean abstrac-
tion to the user. Orchestrating hardware and software
automatically is enabled by raising the level of abstraction
at which the user interacts with the neuromorphic system.

The user describes their computation as a system of
nonlinear differential equations, agnostic to the underly-
ing hardware. Automated synthesis proceeds by charac-
terizing the hardware and implementing each equation
using a group of neurons that are physically colocated

Fig. 1. Mapping a computation onto Braindrop. (a) Desired

computation is described as a system of coupled dynamical

equations. (b) NEF describes how to synthesize each

subcomputation using a pool of dynamical neurons. (c) User uses

Nengo, the NEF’s Python-based programming environment,

to translate the equations into a network of pools. (d) Computation

is implemented on Braindrop (blue outer outline indicates the

package; inner outline indicates the die’s core circuitry). Nengo

communicates with Braindrop through its driver software to provide

a real-time interface.

(called a pool). This computing paradigm, theoretically
underpinned by the Neural Engineering Framework
(NEF) [13], is not only tolerant of, but also reliant on,
mismatch; neuron responses form a set of basis functions
that must be dissimilar and overcomplete. Dissimilarity
enables arbitrary functions of the input space to be approx-
imated by a linear transform. Overcompleteness ensures
that the solutions exist in the null-space of the set’s thermal
variation. Thus, these two properties enable us to abstract
the analog soma and synapse circuits’ idiosyncrasies away.

Section II briefly reviews the NEF, the level of abstrac-
tion at which a user interacts with the Braindrop sys-
tem. Section III highlights accumulative thinning and
sparse encoding, novel hardware implementations of
the NEF’s linear decoding and encoding that sparsify
digital communication in time and space, respectively.
Section IV describes Braindrop’s architecture and dis-
cusses its hardware implementation and software sup-
port. Section V characterizes and validates the hardware’s
decoding and encoding operations. Section VI demon-
strates the performance of several example applications
currently running on the Braindrop. Section VII intro-
duces an energy-efficient metric for spiking neural net-
work (SNN) architectures with different connectivities—
energy per equivalent synaptic operation—and determines
it for Braindrop over varying operating configurations.
Section VIII compares Braindrop’s energy and area efficien-
cies with other SNN architectures. Section IX presents our
conclusions.

II. N E U R A L E N G I N E E R I N G F R A M E W O R K

The NEF provides a way to translate a computation spec-
ified as a differential equation into a network of somas and
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Fig. 2. Emulating the nonlinear dynamical system

τ��� ẋ�t� � f �x� � u�t� with a SNN. This system’s dynamics are

matched by the SNN’s state vector, x(t), when D�
i

and c(t) are

assigned such that
�
i D
�
i
δxi ≈ τ���/τ���f �x� � x (after synaptic

filtering) and c�t� � τ���/τ���u�t�. Branches of a soma’s dendrite and

axon realize weighting. Line thickness depicts weight magnitude.

Sign may be positive (green line), negative (purple line), or zero

(gray line).

synapses interconnected via dendrites and axons. A soma
is viewed as implementing a static nonlinear function,
whose argument is a continuous current and whose value
is the soma’s spike train. A synapse is viewed as the
implementing leaky integration (i.e., low-pass temporal
filtering), thereby converting these spike trains back into a
continuous current. A differential equation’s state variable
(x), which may be multidimensional, is represented by
a vector of d current signals. The equation specifies a
transformation [f(x)] of this vector of d input current
signals into another vector of d output current signals. This
transformation is realized—and temporally integrated—by
a collection (or pool) of N somas and d synaptic filters in
four steps (see Fig. 2).

First, differently weighted sums of the d input currents
are fed into each of the N somas (one per soma), a linear
mapping known as encoding. Based on its particular
weighting, each soma in the pool will provide a stronger
response for a particular set of input vectors. A soma
is excited (receives positive current) when the vector
points in its preferred direction, and it is inhibited
(receives negative current) when it points away. The NEF
chooses these directions—specified by encoding vectors—
randomly to ensure that all directions are represented
with equal probability.

Second, these N current inputs are transformed by the
somas’ static nonlinearities into N spike trains, a pointwise

nonlinear mapping. Before passing the input current
through its static nonlinearity, each soma scales it by a
gain and adds a bias current. The NEF assigns somas gains
and biases drawn from a wide distribution, resulting in
a heterogenous set of nonlinearities. Compounded with
their randomly drawn encoding vectors, the somas’ non-
linear responses—called tuning-curves—form a dissimilar
and overcomplete basis set for approximating the arbitrary
multidimensional transformations of the input vector.

Third, these N spike trains are converted into d

weighted sums, another linear mapping known as decod-
ing. For the weights, a decoding vector is assigned to each
soma by solving a least-squares optimization problem (see
Fig. 3). When each spike is viewed as a delta function with
unit area, replacing it with a delta function with area equal
to a component of the decoding vector and merging the
resulting delta trains together yields the desired weighted
sum for one of the d dimensions.

Finally, the synaptic filters’ leaky integration is cleverly
exploited to integrate the transformed vector, a critical
difference between the NEF, and other random-projection
networks, such as Extreme Learning Machines [14]–[16],
which cannot realize a dynamic transformation. This oper-
ation is accomplished by feeding the merged, scaled delta
trains to the synaptic filters and adding their d output
currents to the d input currents through (recurrent) feed-
back connections (see Fig. 2). Thus, nonlinear differential
equations of arbitrary order may be implemented by a
single pool [13].

More elaborate computations are first decomposed into
a coupled system of differential equations, and then, each
one is implemented by one of an interconnected set of
pools. These pools are interconnected by linking one pool’s
decoder to another pool’s encoder to form large network
graphs. Linear transforms may be placed between decoders
and encoders (see Fig. 4). The resulting SNN’s connectivity
is defined by encoding vectors, decoding vectors, and

Fig. 3. Transformation y � �/����	�πx� � �� (black curve) is

approximated by 
y � AD (yellow curve), where each of A’s columns

represent a single neuron’s spike rates over x’s range (blue curve

for negative- and red curve for positive preffered directions) and D

is a vector of decoding weights, or, more generally, a matrix of

decoding vectors. D is obtained by solving for

argminD ||AD − y ||�� � λ||D||��. To produce each panel, a basis pursuit is

first performed on 1024 neurons’ tuning curves collected from

Braindrop to select the best sets of 3, 8, and 30 neurons’ responses

to form A, thereby demonstrating the effect of using more neurons

on performance. Error bars represent 10th and 90th percentiles

when sampling for 0.3 s/point.
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Fig. 4. Operations and signal representations for an NEF network with two pools of neurons connected by decode-transform-encode

weights. Unlike Fig. 2, filtering takes place after encoding, leveraging these two linear operations’ commutativity. Three neurons emit three

deltas each. Their areas are equal to the weights: �/�, �/�, and −�/�, from top to bottom. Merges (∨) conserve deltas and fan-out replicates

them, and thus, the original nine deltas turn into 36 deltas by the time they reach the four synaptic filters.

transform matrices, which occupy much less memory than
fully connected synaptic weight matrices, an appealing
feature of the NEF.

The following five features make the NEF a particularly
appealing synthesis framework for mixed-signal neuro-
morphic hardware.

1) Heterogeneous neuronal gains and biases—due
to transistor threshold-voltage mismatch—naturally
yield a diverse set of basis functions, which is desir-
able for function approximation.

2) This set’s overcompleteness may be exploited to mit-
igate the tuning curves’ thermal variation by finding
solutions in the null-space [17], [18].

3) Analog synaptic filtering provides a native dynamical
primitive, which is necessary for emulating arbitrary
dynamical systems.

4) Theoretical extensions enable mismatch in synaptic
filters’ time constants as well as their higher order
dynamics to be accurately accounted for [19], [20].

5) Communicating between neurons using spikes
increases scalability because digital signaling is
resilient to noise—unlike analog signaling.

III. M A P P I N G T H E N E F T O
N E U R O M O R P H I C H A R D WA R E

In a large-scale neuromorphic system, digital commu-
nication constitutes the largest component of the total
system’s power budget. Therefore, to improve energy effi-
ciency, we have focused on reducing the digital communi-
cation in both time and space (i.e., making it more sparse,
spatiotemporally). For temporal sparsity, we invented accu-
mulative thinning, and for spatial sparsity, we invented
sparse encoding (see Fig. 5).

Accumulative thinning is a digitally implemented,
linear-weighted-sum operation that sparsifies digital

communication in time. This operation is performed in
three steps: 1) translate spikes into deltas with area equal
to their weights; 2) merge these weight-area deltas into
a single train; and 3) convert this train into a unit-area
delta train (i.e., back to spikes),2 whose rate equals the
weighted sum of input-spike rates. For the usual case of
weights smaller than 1, this method reduces total delta
counts through layers, communicating more sparsely than
prior approaches, which used probabilistic thinning, while
achieving the same signal-to-noise ratio (SNR).

Sparse encoding represents the encoder not as a dense
matrix but as a sparse set of digitally programmed loca-
tions in a 2-D array of analog neurons. Each location,
called a tap point,3 is assigned a particular preferred
direction, called an anchor-encoding vector. The diffusor—a
transistor-based implementation of a resistive mesh—
convolves the output of these tap points with its kernel to
realize well-distributed preferred directions. Thus, neurons
can be assigned with encoding vectors that tile the multidi-
mensional state space fairly uniformly using tap points as
sparse as one per several dozen neurons.

Using digital accumulators for decoding and analog
convolution for encoding supports the NEF’s abstractions
while sparsifying digital communication spatiotemporally,
thereby improving Braindrop’s energy efficiency.

A. Decoding by Accumulative Thinning

Matrix-multiply operations lead to the traffic explosion
when the weighted spike trains—represented by delta
trains—are combined by merging. One merge is associated
with each output dimension. When a spike associated

2Only a spike’s time of occurrence carries information, whereas a
delta’s area carries information as well as its timing.

3Meant to evoke the taproot of some plants, a thick central root from
which smaller roots spread.
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Fig. 5. Braindrop’s computational model replaces merges in Fig. 4 with accumulators (�) and its encoding with sparse encoding followed

by convolution. The nine original deltas are thinned to two before being sparsely fanned out, delivering four deltas to the synaptic filters

instead of 36, while still reaching all the somas.

Algorithm 1 Accumulator Update

Require: input w ∈ [−1, 1]
x := x + w
if x ≥ 1 then

emit +1 output
x := x − 1

else if x ≤ −1 then
emit −1 output
x := x + 1

end if

with a particular input dimension occurs, the matrix’s
corresponding column is retrieved and deltas with area
equal to each of the column’s components are merged
onto the output for each corresponding dimension,
multiplying the traffic. As a result, O(din) spikes entering
a matrix M ∈ R

din×dout result in O(dindout) deltas being
the output. This multiplication of traffic compounds with
each additional weight-matrix layer. Thus, O(N) spikes
entering a N × d × d × N decode-transform-encode
multiply to O(N2d2) deltas (see Fig. 4).

Accumulative thinning computes a linearly weighted
sum of spike rates while reducing the number of deltas
that must be fanned out. The deltas’ areas—set equal to the
weight—are summed into a two-sided thresholding accu-
mulator to produce a train of signed unit-area deltas (see
Algorithm 1). Because this operation is area-conserving,
the synaptic filter’s leaky integration produces virtually
the same result as it does for the merged weight-area
delta trains. For the usual case of weights smaller than
one, however, the accumulator’s state variable x (see
Algorithm 1) spaces output deltas further apart (and more

evenly).4 Thus, it can cut a N × d × d × N decode-
transform-encode network’s delta traffic from O(N2d2) to
O(Nd) (compare Figs. 4 and 5), sparsifying its digital
communication in time by a factor Nd.

In practice, the total traffic is dictated by point-process
statistics of delta trains fed to synaptic filters and desired
SNR of their outputs. Traditionally, spike-train thinning-
as-weighting for neuromorphic chips has been performed
probabilistically as Bernoulli trials [21], [22], which also
produce unit-area-delta trains, but with Poisson statis-
tics, whereas the accumulator operates as a deterministic
thinning process (i.e., decimation), which produces trains
with periodic statistics (when the weights are small and
assumed to be equal). With the Poisson statistics, SNR
scales as

√
λ, where λ is the rate of deltas, whereas with

periodic statistics, it scales as λ. Thus, the accumulator
can preserve most of its input’s SNR while outputting
much fewer deltas than prior probabilistic approaches
(see Fig. 6), thereby sparsifying digital communication in
time. (For a mathematical analysis, see Appendix A.)

Replacing the merging of inhomogeneous-area deltas
with the accumulation of their areas not only avoids traffic
explosion but also enables us to use a much simpler
analog synaptic filter circuit. For 8-bit weights, delta’s
areas are represented by 8-bit integers. If these multibit
values serve as input, a digital-to-analog converter (DAC)
is needed to produce a proportional amount of cur-
rent. This analog operation must be performed with the
requisite precision, making the DAC extremely costly in

4For an output-delta rate of Fout, the accumulator’s step response
is jittered in time by up to 1/Fout due to variation in its initial state.
This jitter is negligible if it is much shorter than the synaptic filter’s
time constant, τ , because the filter’s delay is of the order of τ . Its step
response rises to 63% (1 − 1/e) of its final value in τ s.

148 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019



Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

Fig. 6. Standard Decoding versus Accumulator versus Bernoulli

Trials. Top: deltas (vertical lines) generated by an inhomogeneous

Poisson process are synaptically filtered (orange curve); the ideal

output is also shown (green curve). Middle: accumulator fed the

same deltas yields a similar SNR� E
Z�/
�
var�Z�, calculated for the

filtered train Z over a longer run. Its state (first inset) increments by

w � �.� with each input delta and thresholds at 1, triggering an

output delta. Bottom: biased coin (p � �.�) is flipped for each delta.

When the coin returns heads (second inset), an output delta is

generated. This method accomplishes the same weighting but yields

poor SNR.

area. To avoid using it, compact silicon-synapse circuit
designs take in unit-area deltas with signs denoting excita-
tory and inhibitory inputs [23]. The accumulator produces
the requisite unit-area deltas—modulating only their sign
and rate to convey the decoded quantity.

In summary, the accumulator produces a unit-area-
delta train with statistics approaching a periodic process,
yielding higher SNR—for the same output delta rate—
than Bernoulli weighting, which only produces Poisson
statistics.

B. Sparse Encoding by Spatial Convolution

We use convolution, implemented by analog circuits,
to efficiently fan-out and mix outputs from a sparse set
of tap points, leveraging the inherent redundancy of NEF
encoding vectors. In the NEF, encoding vectors that uni-
formly tile a d-sphere’s surface are generally desirable.
Because these encoding vectors form an overcomplete
basis for the d-D input space, the greatest fan-out takes
place during encoding (see Fig. 4). Performing this high
fan-out efficiently as well as reducing the associated large
number of digitally stored encoding weights motivated us
to use convolution (see Fig. 5).

The diffusor—a hexagonal resistive mesh implemented
with transistors—convolves synaptic filter outputs with a
radially symmetric (2-D) kernel and projects the results
to soma inputs (see Fig. 7). It interfaces the synaptic

filter’s output currents with the somas’ input currents. The
output currents decay exponentially as they spread among
nearby somas [24]. The space constant of decay is tuned
by adjusting the gate biases of the diffusor’s transistors.

We leverage the commutativity of synaptic filtering and
convolution operations in our circuit design. By performing
synaptic filtering before convolution, and recognizing that
a kernel need not be centered over every single neuron,
we may reduce the number of (relatively large) synaptic
filter circuits. Hence, the diffusor acts on temporally fil-
tered subthreshold currents, and there is only one synaptic
filter circuit for every four neurons. Through these two
operations’ commutativity, this solution is equivalent to the
NEF’s usual formulation (compare Figs. 4 and 5).

By choosing the adjacent tap points’ anchor-encoding
vectors to be orthogonal, it is possible to assign varied
encoding vectors to all neurons without encoding each
one digitally. The diffusor’s action implies that nearby
neurons receive similar input currents and, therefore,
have similar encoding vectors (i.e., relatively small angles
apart). Hence, neighboring anchor-encoding vectors that
are aligned with each other yield similarly aligned encod-
ing vectors for the neurons in between. This redun-
dancy does not contribute to tiling the d-sphere’s surface.
Conversely, vectors between tap points with orthogonal
anchors span a 90◦ arc, boosting coverage.

For 2-D and 3-D input spaces, just four and nine
tap points, respectively, provide near-uniform tiling
(see Fig. 8). Coverage may be quantified by plotting the
distribution of angles to the nearest encoding vector for
points randomly chosen on the unit d-sphere’s surface

Fig. 7. Diffusor operation. Somas are colored according to the

proportion of input received from the red or green delta trains and

shaded according to the total input magnitude received.
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Fig. 8. Encoding 2-D (left) and 3-D (right) spaces in a �� × �� array

of neurons. Top: for 2-D and 3-D, encoding vectors are generated

using four and nine tap points (black dots, labeled with their

anchor-encoding vector), respectively. For 2-D, vector direction

maps to hue. For 3-D, the first dimension maps to luminance (white

to black) and the other two to hue. Shorter vectors are more

transparent. Middle: resulting vectors are plotted. Bottom: vectors

are normalized, showing that they achieve reasonable radial

coverage.

(see Fig. 9). By doing digital fan-out to four or nine
tap points and leveraging analog convolution, we achieve
performance nearing that of the reference approach that
digitally fans out to all 256 neurons.5 It is not surprising
that the diffusor’s 2-D metric space efficiently tiles 2-D
and 3-D encoders that sit on 1-D and 2-D surfaces and,
thus, can be embedded with little distortion of relative
distances.6

Beyond 3-D, there are no longer clever arrangements of
a constant number of tap points that yields good coverage.
Achieving good coverage becomes challenging because the
encoders can no longer be embedded in the diffusor’s

5All distributions are approximated by the Monte Carlo method:
generate a large number of random unit vectors (max(1000, 100 · 2d))
and find each vector’s largest innerproduct among the normalized
encoding vectors.

6In general, a d-D encoder sits on a (d − 1)-D surface. Thus,
the easily embeddable spaces could be extended to 4-D by building
a 3-D diffusor, for instance, by stacking the thinned die and intercon-
necting them using dense thru-silicon vias.

2-D metric space without distorting the relative distances.
Furthermore, the number of neurons a single-pool network
needs to approximate arbitrary functions of d dimensions is
exponential in d [25]. Therefore, we simply make adjacent
anchor encoders as orthogonal as possible and increase
their number exponentially. (For empirical results, see
Section V-B.)

In summary, using the diffusor to implement encoding is
a desirable tradeoff. Encoding vectors are typically chosen
randomly, so the precise control of the original R

N×d

matrix is not missed. In exchange, we sparsify digital
communication in space—and reduce memory footprint—
by a factor equal to the number of neurons per tap point.

IV. B U I L D I N G B R A I N D R O P

Braindrop implements a single core of the planned
Brainstorm chip, architected to support building a
million-neuron multicore system. As a target application
to guide our design, we chose the Spaun brain model [26],
which has an average decode dimensionality of eight.
Thus, we provisioned the core with 16 8-bit weights per
neuron, leaving ample space for transforms. Braindrop’s
digital logic was designed in a quasidelay-insensitive
asynchronous style [27], whereas its analog circuits
were designed using subthreshold current-mode
techniques [28]. Automated synthesis software supports
translating an abstract description of a dynamic nonlinear
transformation into its robust implementation on
Braindrop’s mismatched, temperature-variable analog
circuits.

A. Architecture

To maximize utilization of the core’s resources,
4096 neurons, 64 KB of weight memory (WM), 1024
accumulator buckets, and 1024 synaptic filters, two small

Fig. 9. Angle-to-nearest-encoder CDFs, evaluated over the surface

of the d-sphere (orange curve) for the 2-D (left) and 3-D (right)

tap-point-and-diffusor encoders in Fig. 8. The 90th percentiles are

0.07 and 0.20 rad, respectively, implying that 90% of the space has

gaps in coverage no bigger than these angles. For reference, CDFs

for an equal number (256) of encoding vectors distributed uniformly

randomly on the d-sphere’s surface (green curve) and for four (2-D)

or six (3-D) vectors aligned with the positive- or

negative-dimensional axes (red curve) are also shown.
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Fig. 10. Traffic flow in a decode-transform-encode network (see Fig. 5) mapped onto Braindrop.

memories, named Pool Action Table (PAT) and Tag Action
Table (TAT), provide a level of indirection (see Fig. 10).
By programming PAT, indexed by neurons’ addresses,
the neuron array is flexibly divided up into pools, and each
pool’s decoders and accumulator buckets are allocated
space in WM and Accumulator Memory (AM), respectively.
By programming TAT, indexed by a tag, which is emitted
by each accumulator when it crosses threshold,7 arbitrary
mappings from accumulators to accumulators (transform)
or from accumulators to synaptic filters (sparse encode)
are configured.

PAT has 64 entries that enable the 4096-neuron array
to be divided into sixty-four 64-neuron subarrays. This
division implies a pool-size granularity of 64, slightly more
than the NEF rule-of-thumb of 50 neurons per dimension
for linear functions. Spikes emitted by somas are multi-
plexed into an address-event stream by a novel bit-serial
Address-Event Representation Transmitter (AER:TX) [29].
These address events identify a neuron using two fields:
subarray index and neuron index (within that subarray).
The former field indexes PAT, retrieving a base address in
WM, corresponding to the first column of D, the subar-
ray’s decoding matrix, and another base address in AM,
corresponding to the state of the first accumulator bucket.
The latter field indexes D’s columns, retrieving a decoding
vector to add to the buckets.

TAT has 2048 total entries that redirect incoming tags
to a (listed) subset of accumulator buckets, synaptic filters,
or other cores (by retrieving a stored global route). Each
input tag triggers a series of actions on one of these three
output types. Retrieved base addresses specify transforms
(stored in WM) and their associated bucket states (stored

7These tags are individually programmable, thereby providing an
additional level of indirection.

in AM), similar to the PAT entries. Retrieved synaptic filter
addresses specify tap points, realizing compact storage
of the sparse encode (its zeros do not take up space).
This address-event stream is demultiplexed into synaptic-
filter-targeting spikes by a novel bit-serial Address-Event
Representation Receiver (AER:RX) [29]. Unlike PAT, how-
ever, where neurons in the same subarray share a single
entry, TAT does not share its entries among multiple tags.
This redundancy is acceptable because there are far fewer
multidimensional quantities than neurons.

B. Physical Implementation

Asynchronous digital logic’s active power–work rate pro-
portionality is particularly desirable, because Braindrop’s
digital computation and communication are sparse in time.
Such proportionality is difficult to achieve in synchronous
design. The implementation challenge is that the asyn-
chronous intellectual property blocks are not available.
Subthreshold analog circuits’ ability to sparsify digital com-
munication in time (by serving as dynamic computational
primitives) and to sparsify digital communication in space
(by providing efficient local fan-out) is particularly desir-
able for maximizing energy efficiency. The implementation
challenge is that in the subthreshold region, current signals
are exponentially sensitivity to threshold-voltage mismatch
between transistors (and to changes in ambient tempera-
ture).

To minimize static (i.e., idle) power dissipation and
enable deep subthreshold operation, Braindrop is imple-
mented in a 28-nm FDSOI process that supports reverse
body bias (RBB). Reverse biasing a transistor’s body ter-
minal reduces its leakage current, letting us trade peak
throughput for exponentially lower static power dissipa-
tion. Unfortunately, the foundry SRAM bit cell, which was
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Fig. 11. Layout of the core. Inset shows the detail of 16-neuron

tile (red outline). A: 4096-neuron array, B: digital datapath, C: WM,

D: AM, E: PAT, F: FIFO, G: TAT, H: AER tree logic, I: AER leaf logic, J:

CM, K: neuron, L: synaptic filter, M: 12 DACs and two ADCs, and N:

routing between neuron array, datapath, and IO pads.

used to implement all the memories [except Configuration
Memory (CM); explained in the following] and dominates
digital transistor count, does not take advantage of this.
RBB also enables the subthreshold analog circuits to oper-
ate with mere femtoamps of current. These minuscule cur-
rents not only consume negligible power but also reduce
the sizes of capacitors, whose area dominates the soma’s
and synaptic filter’s layout.

We minimized the silicon neuron’s overall area by
optimizing the transistor sizes in concert with a few
locally stored programmable bits that adjust its offset and
gain. Heterogeneity in the neurons’ responses provides a
diverse set of basis functions for smooth nonlinear function
approximation. For low-order polynomials, neuron spik-
ing thresholds ought to be distributed uniformly across
the function’s domain [13]. This uniformity is difficult
to achieve by relying on the threshold-voltage mismatch
alone. With really small transistors, mismatch is exces-
sive, causing many neuron’s thresholds to fall outside the
domain (i.e., they either always spike or remain silent).
However, sizing up the transistors is not the way to go;
it reduces area density drastically while unevenly con-
centrating thresholds in the middle of the domain. Using
medium-sized transistors augmented with digital correc-
tion to rescue outliers proved optimal.

Equipping each soma with six bits of digital correc-
tion effectively reduced silicon area by 38%, compared

Table 1 Areas of Braindrop’s Major Components

to relying on mismatch alone [23]. These bits are stored
in a 128-bit write-only CM added to the 16-neuron tile
(8 bits/neuron). An additional inverter in each SRAM
bit-cell drives a switch in the soma circuit, allowing us
to choose among seven offsets ([−3, 3] units of a bias
current) and four attenuations (1, 1/2, 1/3, 1/4), or to kill
that soma.8 We determined the optimal combination of
bit count and transistor size using a detailed model of
tuning-curve variability, based on an in-house, compact
device model validated with SPICE simulations [3]. These
correction bits also enabled us to compensate for devia-
tions in the threshold voltage’s standard deviation from its
nominal value, which proved to be a useful postfabrication.

The core’s overall area is dominated by the neuron array,
its associated DACs, and WM (see Fig. 11 and Table 1).9

Other memories were designed to be large enough that
their associated resources were unlikely to cause mapping
constraints but not so large that they had a large impact on
the total system area. Because no async-compatible mem-
ory designs are available from the foundry, we designed
the entirety of Braindrop’s memories (except for the bit
cell). Due to time constraints, all of our memories use some
standard-cell layout in their peripheries and, thus, have
high overhead (peripheral logic takes up about 50% of the
area).

C. Software Stack

Automated synthesis software supports translating an
abstract description of a computation into its implemen-
tation on Braindrop’s mismatched, temperature-variable
analog circuits. Nengo is a software environment that
realizes the NEF [30]. It consists of a frontend, which
provides a set of objects (pools, nodes, connections, and
so on) that the user’s computation is mapped onto, and
a back end, which provides a means to execute those
objects. Nengo also provides a GUI to make interaction
with the frontend more user friendly. The back end inter-
faces with Braindrop’s driver software, which provides

8The remaining switches are used to kill synaptic filters, cut the
diffusor at pool boundaries, or feed a soma’s or synaptic filter’s output
to the on-chip ADC.

9Areas listed include unused space inside bounding boxes. Datapath
memory unit areas are reported as area per bit.
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its own set of objects, nearly isomorphic to the hard-
ware itself, and also provides methods to communicate
with and control an attached Braindrop chip through a
field-programmable gate array (FPGA). This software gives
access to Braindrop’s hardware using Python—the same
implementation-agnostic Nengo abstraction used by other
back ends [7], [31].

V. VA L I D AT I N G B R A I N D R O P

We now characterize the accumulator’s performance,
which depends on how nonlinear the function being
decoded is, and extend our analysis of encoder coverage
beyond 3-D spaces, where the anchor-encoding vectors
must increase as 2d to preserve near-uniform tiling.

A. Accumulative Thinning

With the NEF, computational errors arise from two
sources: poor function approximation and spurious
spike coincidences. Function approximation is generally
improved by increasing the number of basis functions [i.e.,
allotting more neurons to the pool (see Fig. 3)] and made
more difficult as the function becomes more nonlinear
(i.e., has more peaks and throughs).10 Spurious spike
coincidences produce fluctuations in the decoded state
variable. These fluctuations’ relative amplitude decreases
as the total spike rate increases and as the synaptic fil-
ter’s time constant τsyn gets longer.11 Hence, having more
neurons mitigates both effects, improving performance.
To decrease an NEF network’s error by a factor of 4,
neuron count (N) has to increase fourfold to sixteenfold,
as function-approximation and spike-coincidence errors
drop as 1/N and 1/

√
N, respectively [13].

When decoding is performed with the accumulator,
however, additional considerations come into play. Because
of the restriction that |wi| ≤ 1, Fmax, which sets the
accumulator output’s range of delta rates, must be chosen
wisely. For larger Fmax (or fewer neurons), more weights
will saturate, limiting the usefulness of the associated
neurons and also increasing approximation error.12 Fur-
thermore, although the merged spike trains fed to the
accumulator are well-approximated by a Poisson process
for low spike rates and equal weights, both assumptions
are broken in practice with opposite effects on SNR. On the
one hand, individual spike rates are high, which makes the
accumulator’s input pseudoperiodic, helping SNR. On the
other hand, weights have both positive and negative signs,
which increases the variance but not the mean (fixed

10Thermal sensitivity also increases for more nonlinear functions
because slight perturbations in tuning curves have larger impact;
advanced techniques compensate for this [17].

11One must also consider the time constant, τdyn, of the dynamical
system being implemented (see Fig. 2): 1) τdyn > τsyn requires gain
τsyn/τdyn < 1, which will attenuate the fluctuations; and 2) τdyn <
τsyn requires gain τsyn/τdyn > 1, which will amplify them. Hence,
if τdyn is short, pool size must be increased to further reduce (relative)
fluctuation amplitude.

12This effect could be offset if we could tune the mean spike rate,
but no such control was implemented.

Fig. 12. Braindrop function approximations and decode-weight

distributions for increasingly higher frequency sinusoidal functions

of a single dimension [left to right: yf �x� � F��	��.� � ��	�f πx��, for

f ∈ {�, �, �}�. Top: 1024 neurons. Bottom: 256 neurons. Decodes are

performed for three different Fmax ∈{500 Hz (orange curve), 1000 Hz

(green curve), 1500 Hz (blue curve)}. RMSEs (normalized by Fmax)

are reported (see plot titles). Histograms show weight distributions

for the decodes directly above. For the 256 and 1024 pool sizes,

respectively, 46% and 42% of the neurons did not fire in the 
−�,��
range. Thus, these neurons did not contribute much to decode.

by decode), hurting SNR. (For an in-depth analysis, see
Appendix B.)

In practice, we found that a fourfold increase in function
nonlinearity (measured by number of extrema in −1 <

x < 1) was only mitigated to some extent by a fourfold
increase in neuron count (see Fig. 12). For sinusoids with
two extrema, as Fmax varied from 500 to 1500 Hz, Brain-
drop’s root-mean-square error (RMSE) varied from 3.9%
to 2.5% for 256 neurons and from 1.2% to 2.4% for 1024
neurons (normalized by Fmax). Whereas for sinusoids with
eight extrema, as Fmax varied from 500 to 1500 Hz,
Braindrop’s RMSE varied from 21.7% to 25.5% for 256
neurons and from 10.1% to 15.3% for 1024 neurons. The
latter error (10.1%–15.3%) is four times higher than that
for one-quarter the number of neurons (256) decoding a
function four times simpler (2.5%–3.9%).

B. Sparse Encoding

Anchor-encoding vectors are picked to be orthogonal to
their neighbors using a greedy method. The algorithm tra-
verses the tap-point grid from left to right and, then, from
top to bottom. It picks an anchor vector in the null-space
of a set of one to min(4, d − 1) anchor vectors already
assigned to the current location’s nearest neighbors. The
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Fig. 13. Performance of a greedy tap-point algorithm for varying

dimensionality (d) and density (ρ). Left: with ideal diffusor kernels,

simulated by solving the circuit equations without mismatch. Right:

with actual diffusor kernels measured from Braindrop. For each

value of ρ, minimum coverage over 90% of the space (as defined in

Section III-B) is plotted as a line (median) or shading ([5%,95%]

intervals). Performance varies trial-to-trial due to the greedy

algorithm’s heuristic, random nature. Two limiting cases are also

shown: N uniformly randomly distributed (green curve) and

�× d-D-axis aligned or antialigned (red curve) encoding vectors.

Savings in digital communication and memory relative to fully

specified encoding vectors is �/ρ.

anchors’ directions are specified by a ρN × d transform
matrix, where ρ is the tap-point density. As d, the input
space’s dimensionality, increases, anchor-encoding vectors
must increase as 2d to preserve near-uniform tiling.

For the results reported here, we increased neuron count
as N = 16× 2d (i.e., 16 per quadrant) and swept tap-point
density ρ from 1/4 to 1/64. Tap points were placed on
a regular grid, evenly dividing the neuron array; the dif-
fusor’s space constant varied inversely (∝�1/ρ). As the
diffusor’s kernel decays exponentially, encoding vectors of
neurons further away have much smaller norms. These
weakly sensitive neurons are much less useful in decoding,
as our decode weights have only 8-bit dynamic range. For
this reason, we discarded any neuron whose spike rate
changed by less than 50 Hz over the input range.

For the moderate values of d studied (2–8), when
neuron and tap point’s counts increase exponentially,
our sparse-encoding scheme trades off modest drops in
coverage for linear reductions in communication costs
(see Fig. 13). Thus, it is very advantageous to decompose
the high-dimensional functions into stages of lower dimen-
sional functions as much as possible to minimize total
resources. With this strategy, performance on functions of
smaller d is most important.

VI. A P P L I C AT I O N P E R F O R M A N C E

We previously demonstrated Braindrop’s most basic
functionality: approximating nonlinear static functions of
a single input dimension (see Fig. 12). Its approximation
error decreases with larger numbers of neurons or for

smoother functions. Here, we explore its capability to
approximate static functions of multiple dimensions (2-
D-vector rotation) as well as dynamic transformations of
order one and three (an integrator and a delay line).

To demonstrate nonlinear static function approxima-
tions involving more than one input dimension, we imple-
mented 2-D vector rotation: x′ = x cos θ − y sin θ and
y′ = x sin θ + y cos θ. Both x′ and y′ are 3-D functions
(of x, y, and θ), but each decomposes along its sum
into two 2-D functions (of x and θ or y and θ). Hence,
we implemented four 2-D pools with 256 neurons each,
merging their decodes to compute the summations; Fmax

was set to 500 Hz. For angles spanning half a cycle (θ ∈
[−π/2, π/2]), these 2-D functions were approximated with
error (see Fig. 14) similar to that obtained across a full
cycle of a 1-D sinusoid (see Fig. 12, lower left, orange).

To validate Braindrop’s ability to model dynamical sys-
tems, we implemented an integrator, a basic building block
for higher dimensional, nonlinear, dynamical systems,
widely used in applications, such as adaptive robot-arm
control [32]. The integrator is described by τunitẋ(t) =

u(t), where τunit is the unit of time (e.g., 1 s). Thus,
the network’s state, x(t), must equal the integral of its
input, u(t), scaled by 1/τunit.

To implement the integrator’s dynamics precisely,
we applied a theoretical extension to the NEF,
which accounts for mismatch between synaptic time

Fig. 14. Braindrop implements 2-D-vector rotation. For each

rotation angle θ (one per panel), x and y are varied in a spiral pattern

(thin gray line). Braindrop’s output (green line) is ideally a rotated

version of the input spiral (black line). Arrows show the error of

individual points. Errors [reported as NRMSE=RMSE���′, �′�/F
���]
tend to be made in certain directions (e.g., in 
�,−�, π/��), suggesting
poor neuron sensitivity in that direction.
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Fig. 15. Braindrop implements an integrator. The state is decoded

from a 1024-neuron network’s spiking activity using a synaptic filter

with τ � 0.2 s. We used bootstrapping to visualize the mean and

95% confidence interval from 200 trials. Training and testing signals

are independently sampled from the derivative of a 1-Hz

band-limited white-noise process.

constants [19]. First, we characterized each tap point’s
synaptic filter by applying a step function to its input
and recording its closest neurons’ responses. Fitting
an exponential to these step responses yielded its time
constant, τsyni (μ± σ =179±54 ms). Next, we determined
the gain, τsyni /τunit, that effectively drives each tap
point with (τsyni /τunit)u(t) + x̂(t) [i.e., setting f(x) = 0

in Fig. 2], where x̂(t) ≈ x(t) is decoded from the pool’s
spike trains. In total, we provided recurrent feedback
to 1024 neurons through 72 calibrated tap-point filters
(1/ρ = 14.2). Performance is extremely close to ideal: the
ideal target falls within a 95% confidence interval of the
network’s mean performance, averaged across 200 trials
(see Fig. 15).

To provide an example of a more sophisticated dynam-
ical system, we implemented a delay network that buffers
a continuous-time rolling window of its input [20]. This
network approximates a θ-s delay-line’s transfer function,
F (s) = e−θs. We analytically derive state-space matrices,
A and B, corresponding to this system’s Padé approximant
of order [(q − 1)/q], for some chosen dimensionality q,
and, then, numerically compute its balanced realization.
Then, we determine a linear transformation, Cθ′/θ, from
the state vector, x(t) ∈ R

q, to a delayed version of its input,
c(t − θ′).13 In summary, we have

θẋ(t) = Ax(t) + Bc(t)

c(t − θ′) ≈ Cθ′/θx(t), 0 ≤ θ′ ≤ θ

where the approximation error is O((θs)2q).
We have mapped our approximation to a delay line onto

Braindrop with θ = 0.1 s and q = 3 using three 1-D

13Alternatively, different linear transformations can be determined
to approximate the input’s continuous-time convolution with any linear
kernel—or integral transform—up to the window’s length.

pools,14 with 128 neurons each, for a total 384 neurons
(see Fig. 16). In this case, we set tap-point density to
1/4 (the maximum) and found performance to be robust.
Hence, we did not need to compensate for time constant
mismatch. Across the 0.1-s time window, the normalized
RMSE is 14.6%.

VII. B R A I N D R O P ’ s E N E R G Y E F F I C I E N C Y

Without a clear set of benchmarks, the efficiency of neu-
romorphic architectures is typically quantified by energy
per synaptic operation [7], [33], but what exactly con-
stitutes a synaptic operation differs from one architec-
ture to another. Importantly, the work involved varies
depending on how weight matrices are represented (e.g.,
sparse, low-rank versus dense, and full-rank), whether
the network size necessitates intercore communication,
and what signal representations are used—physical ana-
log versus integer-valued digital versus unary spikes—
each choice yields a different energy–precision scaling [1].
Here, we introduce a metric useful for comparing Brain-
drop’s N×d×N decode–encode architecture with the more
common N ×N neurosynaptic architecture (i.e., direct all-
to-all connectivity).

14In the NEF, multidimensional pools are only necessary to decode
a nonlinear function of the state vector (e.g., as in the Lorenz attractor).

Fig. 16. Braindrop implements a delay line. Top: linear

transformation of the (3-D) state vector yields the input signal

delayed by 0–0.1 s. Across this time window, the normalized

RMSE (insert) ranged between 0% and 20%. The test signal is white

noise, band limited to 3 Hz. Bottom: state vector, decoded from the

384-neuron network’s spiking activity (using a synaptic filter with

τ � 18.3 ms) closely matches the numerical solution (obtained with

zero-order hold and 1-ms time step).
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Fig. 17. Braindrop’s minimum energy per equivalent synaptic

operation. Dynamic power consumed by an N × d × N decode–encode

network is divided by the throughput an N × N neurosynaptic

network requires to achieve the same SNR (R
). This energy (top)

and k’s optimal value (bottom) are plotted versus R
 for various

numbers of neurons per dimension (N/d � �
�d ). As N ∝ �d ,

the exponent (�d) approximately equals the pool’s dimensionality (d).

Braindrop is most efficient when d � N and R
 	 �.

To compare SNNs’ with different weight-matrix repre-
sentations, we define the energy per equivalent synaptic
operation (E

�op) metric. An N × d × N decode–encode
network’s E

�op is its dynamic power consumption divided
by the throughput (TFC), an N×N neurosynaptic network
requires to achieve the same SNR. This definition relies on
the fact that, in general, an N×d×d×N decode-transform-
encode network is mathematically identical to an N × N

neurosynaptic network with weights W = ETTD. Here,
E’s and D’s columns specify encoding and decoding vec-
tors, while T specifies a transform. For simplicity, we drop
T and calculate E

�op for an N×d×N network on Braindrop.
We determine Braindrop’s minimum energy per equiva-

lent synaptic operation (Ě
�op) in four steps. First, we deter-

mine the throughputs a given SNR (Rg) observed at the
input to each soma in the second N -neuron pool implies
in the decoding (Td), FIFO (Tf), and encoding (Te) stages.
Second, we multiply these throughputs by the decode’s,
FIFO’s, and encode’s energies per operation, Ed, Ef, and
Ee, respectively, to compute the total power consumed.
Third, we optimize k to obtain Braindrop’s minimum
power consumption, P̌BD, for any desired output SNR,
Rg. Finally, we divide our expression for P̌BD by TFC,
the neurosynaptic network’s throughput, to obtain

Ě
�op ≈ 1

2

d

N

�
�1 +

�
1 + 2

�
K

Rg

�2/3
�
�	1 +

�
K

Rg

�2/3



Ed

(1)

where K =
�

2/3E1/k/Ed, with E1/k = Ef + PEe, and P

is the number of tap points per dimension. For Rg � K,
Ě
�op scales as R

−2/3
g because P̌BD scales as R

4/3
g , while TFC

scales as R2
g. For Rg � K, Ě

�op asymptotes to 1/2Ed/(N/d)

because P̌BD and TFC both scale as R2
g. (For a complete

derivation, see Appendix C.)
Equation (1) predicts that as the number of neurons per

dimension (N/d) increases, Braindrop’s minimum energy
per equivalent synaptic operation, Ě

�op(Rg), reaches a
lower and lower asymptote and takes longer and longer
to get there. It reaches a lower asymptote because each
first-pool soma’s spike evokes d weighting operations in the
N × d × N network versus N in the N × N one. It takes
longer to get there because K is (roughly) proportional
to N/d. Recall that K =

�
2/3(E1/k/Ed) and E1/k =

Ef + PEe. Hence, for Ed ≈ Ee ≈ Ef , K ≈ �2/3(1 + P ).
For constant tap-point density ρ, however, P = ρN/d.
Thus, Braindrop’s energy per equivalent synaptic operation
is highest when Rg � ρN/d and d � N .

Braindrop’s minimum energy per equivalent synaptic
operation, Ě

�op, varied as we expected with Rg and N/d, for
tap-point density ρ = 1/8 and experimentally determined
values of Ed, Ef, and Ee (see Fig. 17). We obtained
these values from slopes of measured power consumption
versus operating frequency plots for Braindrop’s major
digital components; these experiments also yielded each
component’s maximum throughput (see Table 2).15 As N/d

increases, Ě
�op indeed reaches lower and lower asymptotes

at higher and higher values of Rg. That is, it is lowest
when the equivalent synaptic weight matrix’s rank is much
lower than N and the SNR is much higher than ρN/d. For
ρ = 1/8, N/d = 64, and Rg = 20—a typical operating point
for NEF networks—the minimum energy per equivalent
synaptic operation is Ě

�op = 381 fJ.
For comparison with non-SNNs, which use physical

analog or integer-valued digital signal representations,
Braindrop’s power per unit bandwidth, ĚBD = 2πτP̌BD,
is a more useful metric. Substituting P̌BD’s expression
(see Appendix C), we have

ĚBD ≈ �1 +

�
1 + 5.7R

−2/3
g


�
0.35 + R−2/3

g



67dR2

g pJ (2)

15Measurements marked as × in Table 2 were infeasible. Static
power dissipation was 6 mW—50 times higher than its nominal value.
We suspect that this anomaly is due to a problem in the foundry-provided
pad frame. Active power and static power for the analog components
are negligible, compared to either component of digital power.

Table 2 Component Energy per Operation and Throughput (V�� � 1 V)
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Table 3 Comparison With Other Spiking Architectures

for N/d = 64 and ρ = 1/8 (i.e., P = 8). For instance, when
Rg = 20, ĚBD = 31 nW/Hz per dimension.

VIII. C O M PA R I S O N W I T H O T H E R
S P I K I N G A R C H I T E C T U R E S

Braindrop’s encode-transfrom-decode architecture was
inspired by Neurogrid, a 1M-neuron, 8B-synapse, mixed-
signal, multichip system that fans out digitally commu-
nicated spike trains using the analog diffusor [4] and
computes weighted sums of their rates using probabilistic
thinning [22]. A 6.5 × 7.5-in2 printed circuit board (PCB)
interconnects 16 Neurocore chips, linking their on-chip
routers into a tree network that supports multicast rout-
ing (one to many) [34]. Each 1.6-cm2 die, fabricated
in a 180-nm CMOS process, has a single core with
65 536 neurons tiled in a 256×256 array. A daughterboard,
located at the tree’s root, houses 32 Mb of memory (for
8-bit weights) together with an FPGA that performs the
probabilistic thinning.16

While Braindrop is the only application-specific inte-
grated circuit (ASIC) explicitly designed with the NEF
in mind, the NEF has been used to synthesize networks
running on Neurogrid [22], [35] as well as on other neu-
romorphic processors [36]–[38]. We compare Braindrop’s
synaptic areal density and energy efficiency to that of two
contemporary ASICs that realize the neurosynaptic archi-
tecture, IBM’s TrueNorth and Intel’s Loihi, and analyze
our empirical observations. We also compare Braindrop’s
application performance to these ASIC’s as well as to
SpiNNaker, an older general-purpose computing platform
that targets neuromorphic applications.

A. Areal Density and Energy Efficiency

Braindrop’s F 2-per-synapse and energy-per-synop
(synaptic operation) are 43–49× and 68–63× higher
than TrueNorth’s–Loihi’s, respectively (see Table 3),
demonstrating the effectiveness of its convolutional sparse
encoder and accumulative-thinning decoder.

16Neurocore itself supports synaptic weights that take on one of four
values, determined by which of a neuron’s four synaptic filter circuits the
spike is delivered to. However, these four values are not programmable
at the neuronal level; they are common to all of a Neurocore’s neurons.

IBM’s 16M-neuron, 48-synapse, all-digital,
TrueNorth4×4 is the neurosynaptic architecture’s
most aggressively scaled instantiation [8], [33].
A 8.5 × 11.2 in2 PCB interconnects 16 TrueNorth
chips, tiled in a 4 × 4 array. Each 4.2-cm2 die, fabricated
in a 28-nm CMOS process, has 4096 neurosynaptic cores,
tiled in a 64 × 64 array. Neighboring cores are linked
to form a mesh network that supports point-to-point
routing (unicast) and extends seamlessly from chip to
chip. Each core has 256 neurons, interconnected by 1-bit
synaptic weights hardwired in a 256×410-bit SRAM.
That is, its columns and rows correspond to presynaptic
axons and postsynaptic dendrites, respectively (crossbar
arrangement). In addition to its membrane voltage at the
last time step, the extra 154 bits-per-row store multiple
programmable parameters for each neuron, including
leak, spiking threshold, destination axon, axonal delay,
and four 9-bit weight values (sign included) that an
in-coming axon can select.

Intel’s 128K-neuron, 126M-synapse, all-digital, Loihi
implements the neurosynaptic architecture flexibly, includ-
ing support for variable weight resolution (1–9 bits) and
convolutional kernels [7], [39]. Its 60-mm2 die, fabricated
in a 14-nm CMOS process, integrates 128 cores with
1024 neurons each. These cores are interconnected by
a two-level 2-D mesh-network—intrachip and interchip—
that supports core-to-core unicast spike communication
(as well as management and synchronization operations).
A spike can be sequentially unicast to a list of destination
cores and distributed to a list of neurons within each
one (similar to the TAT’s functionality). This digital local-
fan-out also includes reusable connectivity templates to
support regular connections between pools of neurons,
such as those in convolutional neural networks (similar
to the diffusor’s functionality).17 As Loihi’s metrics are
extremely similar to TrueNorth’s (see Table 3), we focused
our analysis on the later, whose architecture has also been
described in more detail.

We may better understand TrueNorth’s and Brain-
drop’s empirical synaptic areal density and energy effi-
ciency by deriving their surrogates: bits-stored-per-synapse
and bits-accessed-per-synop, analytically. Expressions for
these surrogates (derived in Appendix D) are summarized
in Table 4. We consider accessing data from memory rather
than performing computations on it because the former is
more energetically expensive. This energy disparity is par-
ticularly large for spike-based architectures, where addi-
tion replaces multiplication, as unit-area deltas represent
spikes.

Our bits-stored-per-synapse and bits-accessed-per-synop
surrogates also account for the structural differences
between TrueNorth’s neurosynaptic network and Brain-
drop’s decode–encode network (see Section VII). Defining

17The architecture provides traces of the synapses’ prespike and post-
spike activity to three ×86-based microprocessors (in the same package),
which can adapt synaptic weights according to a programmable learning
rule.
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Table 4 Neurosynaptic Versus Decode–Encode Architecture

a synapse as a weighted connection between two neurons
only makes sense for neurosynaptic architectures, which
connect somas directly together. Decode–encode architec-
tures connect decoder outputs to encoder inputs, an indi-
rect way to connect somas. Reducing this intermediate
stage’s width (equal to d) cuts bits stored and accessed
but limits the equivalent synaptic weight matrix’s rank
(normally equal to N). Thus, while TrueNorth’s core has
rank 256 but uses 1-bit weights, Braindrop’s core has
rank 16 but uses 8-bit weights. Our surrogates account
for this difference by normalizing the decode–encode net-
work’s bits-stored and bits-accessed by the neurosynaptic
network’s synapse or synop count, respectively, yielding
expressions that depend on the equivalent neurosynaptic
weight matrix’s relative rank (d/N).

For relative rank d/N = 1/64 and 1/256, and tap-point
density ρ = 1/8 and 1/4, respectively, we predict that
Braindrop’s bits-stored-per-synapse is 11 and 35 times (see
Table 4 and Appendix D) less than TrueNorth’s (despite
Braindrop’s much more precise weights). The latter result
matches their empirically measured F 2-per-synapse’s
43:1 ratio [2130F 2/49.4F 2 (see Table 3)], confirming our
hypothesis that memory-use drives synaptic density.

For relative rank d/N = 1/64 and tap-point density
ρ = 1/8, we predict that Braindrop’s bits-accessed-per-
synop is 76 times less than TrueNorth’s (see Table 4
and Appendix D). This prediction, which takes into
account TrueNorth’s clocked operation and Braindrop’s
event-driven operation, matches their empirically mea-
sured pJ-per-synop’s 68:1 ratio (26/0.38 pJ) (see Table 3),
confirming our hypothesis that memory-accesses drive
energy costs.

B. Performance on Applications

NEF networks with as many as 0.5M neurons have ran
in real time on three SpiNNaker boards (personal commu-
nication), each of whose 48 interconnected chips has 18
Advanced RISC Machines processor cores, integrated on a
1-cm2 die fabricated in a 130-nm CMOS process. To real-
ize an efficient mapping, its neurosynaptic network was
converted into a decode–encode network by adapting its
spike-communication packets’ optional payload (32 bits)
to carry a decoded variable (i.e., d spike packets per d-D
state vector) [40]. The resulting weight-matrix compres-
sion enabled a processor core’s 64 KB of on-chip memory

to fit networks with two to three times more neurons as its
8 MB of off-chip memory fit (sans compression). In com-
parison, the neuronal density of Braindrop—whose 4096
neurons in 0.65-mm2 scale to 0.63M neurons in 1 cm2—
is 60.5 times higher, or 2.8 times higher if SpiNNaker was
refabricated in the same 28-nm process.

More recently, the NEF has been used to synthesize
networks running on TrueNorth and Loihi. In initial
attempts, TrueNorth’s 1M neurons could only imple-
ment a 629-neuron NEF network (representing five
dimensions) [41]. Recent work from the same group
increased the 5-D NEF-network’s size to 11 947—88
TrueNorth neurons per NEF neuron (personal communica-
tion). That many TrueNorth neurons aggregate enough of
its 1-bit synaptic weights to achieve 9-bit resolution (sign
included) for 5-D decoding and encoding weights, which
require 90 fully programmable bits.18 This mapping only
applies to the static transformations—unlike the dynamic
tasks we demonstrated here—because TrueNorth’s digi-
tal solution does not approximate exponentially decaying
synaptic filters well.

As to applying the NEF on Loihi, it does support a
discretized approximation of the exponentially decaying
synaptic filters that the NEF leverages to perform dynamic
transformations, its key distinguishing feature. Since the
project to synthesize networks on Loihi using the NEF is
ongoing,19 it remains to be seen how well Loihi’s particular
digitized approximation can be leveraged to perform the
dynamic transformations we have demonstrated here with
Braindrop.

IX. C O N C L U S I O N

Braindrop unites analog efficiency and digital
programmability, thereby supporting an NEF-based
synthesis procedure for mapping high-level abstractions
to subthreshold-analog and asynchronous-digital
neuromorphic chips. Achieving this goal required
codesigning all layers of the software–hardware
stack, keeping the theoretical framework in mind
even at the lowest levels of the hardware design. This
painstaking process has resulted in a new computational
platform that marries hardware embodying the brain’s
microarchitectural techniques with an accessible
programming framework.

Realizing analog circuits’ efficiency was only possible
through optimizing the NEF’s encoding and decoding oper-
ations to minimize digital communication without violat-
ing the abstractions they present to the user. Braindrop
realizes two such optimizations: sparse encoding and accu-
mulative thinning. Together, they allow for a massive
reduction in digital traffic when the equivalent synaptic
weight matrix has low rank and the desired SNR is high.
Thus, these optimizations greatly enhance Braindrop’s

18Decoding weights must have 1/2 log2(N/d) more bits than
synaptic weights to accommodate the

√
(N/d) improvement in SNR

that summing N/d neurons’ weighted spike rates provides.
19https://www.nengo.ai/nengo-loihi/

158 PROCEEDINGS OF THE IEEE | Vol. 107, No. 1, January 2019



Neckar et al.: Braindrop: A Mixed-Signal Neuromorphic Architecture

energy efficiency while remaining nominally invisible to
the user.

Braindrop’s hardware was architected with user
transparency in mind, minimizing the possibility that
inflexibility in allocating its limited resources constrains
application performance. In exchange for some small
up-front area costs, we were able to ensure high utilization
of the area-dominant WM, analog somas, and synaptic
filters. The application results demonstrate synthesized
networks running on the hardware, realizing the project’s
goals.

A P P E N D I X A: Accumulator With Equal Weights
and Low Spike Rates

To formalize our intuition that the accumulator performs
the desired weighting operation while yielding improved
point-process statistics, we consider the case of a single
accumulator with a single Poisson input. This is equivalent
to the case where the accumulator performs a decode from
many neurons, each with the same weight. Given a con-
stant input, individual neurons fire periodically, rather than
with Poisson statistics. However, as long as the synaptic
filter’s time constant (τ) is less than one-sixth of each neu-
ron’s period, the interdelta intervals (IDIs) of their merged
delta trains will be independently distributed within the
scope of the filter window [42]. Poisson statistics apply
under these conditions.

We may quantify the randomness of the accumulator’s
output delta train by calculating its IDIs’ coefficient of
variation [CV(Y )], a measure that varies from 0 for
a periodic process to one for a Poisson process. Given
uniform weights w = 1/k for each incoming delta and
IDIs Xi, the accumulator’s IDIs are Yj =

�k(j+1)−1
i=kj Xi.

As Xi ∼ Exponential(λ), we have Yj ∼ Gamma(λ/k, k).
Y ’s coefficient of variation is therefore

CV(Y ) =
σY

E[Y ]
=

�
kvar(X)

kE[X]
=

�
k/λ2

k/λ
=

1√
k

=
√

w.

CV(Y ) tends to 0 as the weight (w) becomes smaller and
the delta count (k) required to cross threshold becomes
larger, suggesting that the accumulator output’s IDIs tran-
sition smoothly from Poisson to periodic.

As a result of transitioning from a Poisson process’
quadratic scaling to a periodic process’ linear scaling,
an accumulator produces much fewer deltas than merging
or Bernoulli trials for the same SNR (see Fig. 18). It can
be shown that the filtered accumulator output’s SNR, Rg,
is related to its filtered Poisson input’s SNR, Rp, by

R2
g = R2

p / (1 + k2/ 3R2
p) (3)

assuming k2 � 1 and λτ � 1 [42]. Hence, k may be
increased until it is close to Rp, which drops Rg close
to Rp/(1 + 1/3)1/2. Thus, the accumulator can thin the
Poisson process’ rate, Fin, by its SNR, Rp = (2τFin)

1/2,

while degrading the SNR by only a factor of
�

4/3. As a
result, if d < Rp, traffic through a N × d decode gets
multiplied by d/Rp < 1. Increasing k beyond Rp, however,
will degrade Rg. This degradation sets in when the accu-
mulator’s output-delta rate, Fout, approaches the rate of a
periodic process with SNR equal to Rp.

In summary, for equal weights and low spike rates,
the accumulator produces a unit-area-delta train with
statistics that transition from Poisson to periodic as the
weight, w, decreases. When w = 1—with the accu-
mulator acting as a pass-through—its SNR matches the
input Poisson process. When w < 1, its SNR still matches
the input’s, but it uses fewer deltas. When w � 1,
its SNR approaches a periodic process. In contrast,
the Bernoulli weighting only produces the Poisson sta-
tistics, always yielding lower SNR for the same output
rate.

However, the assumptions that neurons’ spikes are
equally weighted and their merge is Poisson are often
broken in practice. First, and most importantly, decod-
ing weights not only vary in magnitude but also in
sign, which degrades SNR due to a greater summa-
tion of variance without a corresponding summation
of magnitude. Second, the Poisson distribution applies
only if individual neurons spike less than once every
6τ s, where τ is the synaptic time constant [42].
If they do not, the accumulator input has better-than-
Poisson statistics, leading to improved SNR. Thus, break-
ing these two assumptions has opposite effects on
SNR.

A P P E N D I X B: Accumulator With Realistic Weights
and Spike Rates

Motivated by practical considerations, we derive
limiting expressions for the accumulator’s output SNR
and compare them with its SNR for actual weight and
spike rate distributions. These distributions are from the
1024-neuron pool trained to decode 1-D sinusoidal func-
tions of varying frequency (see Fig. 12). The weight
distribution—centered around 0—broadens as the approx-
imated function’s extrema count increases. Its positively
and negatively signed weights cause SNR to be limited by
the rules governing subtracting random variables. We find
that our limiting expressions bound the SNR’s degradation
so long as the accumulator’s output SNR is not limited by
the degree of thinning (i.e., its output spike train is not
nearly periodic).

To see why the weight-distribution’s width limits SNR,
consider a sum of N random variables Xi with weights
wi. This sum is akin to performing a deterministic weight-
ing on the neurons’ spike trains, a limiting case on the
accumulator’s performance. For Y =

�
i wiXi, the SNR

is μY /σY = (
�

i wiμi)/(
�

(wiσi)
2)1/2, where μi and σi

are the ith variable’s mean and standard deviation. We fix
μY when we solve for our decoders, but σY can become
arbitrarily large as wi’s distribution broadens.
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Fig. 18. Relationship between accumulator’s SNR (R
) and its

output-delta rate (Fout). For a given Poisson input rate, Fin (orange

to red curves), as k increases (cyan to blue curves), Fout drops while

R
 remains constant, until a particular value of k is reached.

Feasible combinations of Fout and R
 (gray region) correspond to

point-process statistics transitioning from Poisson (square-root

scaling) to periodic (linear scaling). When the accumulator is

producing less than 10 spikes every τ s (left region), the jitter its

initial state adds is nonnegligible.

We can use the above-mentioned formula to compute
the SNR expressions for periodic (upper bound) and
Poisson (lower bound) point processes. SNR will fall below

RUB =

	�
i

wiλi


���
i

w2
i λ2

i

�
1

2λiτ
coth

�
1

2λiτ

�
−1

�
(4)

computed for filtered periodic spike trains with rates λi

and above

RLB =

	�
i

wiλi


���
i

w2
i λi/2τ (5)

computed for Poisson spike trains with the same rates [42].
For λi � 1/τ , the SNR is probably closer to RUB; for λi <

1/6τ , it is closer to RLB. In effect, these results tell us that
for mixed-sign weight distributions, we need to shift the
orange iso-Fin Rg(Fout, Fin) curves’ flat region down (see
Fig. 18).

We compared the accumulator’s measured output SNR
for the 1024-neuron-pools’ decodes [yf (x) for x = 0]
to our bounds (RUB and RLB) and to values the simple
analysis predicted [see (3)]. We observe the accumulator
output over time at yf (0) for the three different fs and

the three different Fouts. In all nine cases, its SNR falls
within our bounds. It only comes close to the simple
analysis’ prediction for f = 1 (see Fig. 19). This f has
the narrowest distribution of (oppositely signed) weights,
which produces the smallest drop in SNR. This small
drop is counterbalanced by the increase in SNR produced
by the pseudoperiodic point processes.20 For higher fs,
the broader weight distributions increase summed vari-
ance further, decreasing SNR further.

A P P E N D I X C: Energy per Equivalent Synaptic
Operation

To determine Braindrop’s minimum energy per equiv-
alent synaptic operation (Ě

�op), we first determine the
throughputs implied by the given SNR (Rg) in its decoding
(Td), FIFO (Tf), and encoding (Te) stages. For standard
orthonormal-basis anchor-encoding vectors, each tap point
receives the output of a single accumulator (with a positive
or negative sign). To ensure this output has SNR Rg,
we must feed each accumulator a point process—assumed
to be Poisson—with appropriate SNR Rp = (2τFac)

1/2,
determined by this process’ rate, Fac, and the synaptic
filter’s time constant, τ . Therefore, for d accumulators,
the total decoding throughput is Td = dFac = dR2

p/(2τ ).
The d accumulators thin Td by k, offering throughput
Tf = dR2

p/(2τk) to the FIFO. Each stream fans out to

20The pool’s neurons spiked at hundreds of hertz, whereas
τ = 100 ms.

Fig. 19. Given a broad weight distribution, the accumulator’s SNR

is lower for the same F
��. SNR and F
�� measurements [taken at

yf ���] are plotted as dots for the 1024-neuron networks in Fig. 12.

The idealized SNR-versus-F
�� relationship (in Fig. 18) is plotted as

an orange band. F�� is computed as the sum of spike rates of

neurons with nonzero weights; it varies slightly depending on

results of the decoding-weight optimization. The range shown

around each dot spans between R�� and R�� (whiskers), computed

using the neurons’ measured spike rates at x � �.
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Fig. 20. Minimizing dynamic power per unit bandwidth (�/τ) for a

desired output SNR (R
) by optimizing number (k) of deltas required

to trip the accumulator [see (6)]. As k increases, energy decreases,

reaches its minimum (dots), and, then, rises steeply. These different

slopes arise, respectively, from flat and sloped segments of the

iso-F�� R
�F
�� , F��� curves (see Fig. 18). The minimum’s predicted

locus (black line) is also plotted [see (7)].

P tap points, giving total encoding throughput Te =

dPR2
p/(2τk).

Next, we multiply these throughputs by the decode’s,
FIFO’s, and encode’s energies-per-operation, Ed, Ef, and
Ee, respectively, to compute the total power consumed.
Thus, we obtain

PBD = EdTd + EfTf + EeTe

=
dR2

p

2τ

�
Ed +

1

k
Ef +

P

k
Ee

�

=
dR2

g

4τ

	
1 +

�
1 +

4k2

3R2
g


�
Ed +

1

k
E1/k

�
(6)

after inverting (3) to express Rp in terms of Rg and k and
substituting E1/k = Ef + PEe.

Then, we optimize k to minimize Braindrop’s power
consumption for any desired output SNR, Rg (see Fig. 20).
To find its optimal value, ǩ, we differentiate (6)
with respect to k, set the result to 0, and solve
for

ǩ ≈ (3/2)1/3(E1/k/Ed)
1/3R2/3

g =
�

3/2K1/3R2/3
g (7)

defining K =
�

2/3E1/k/Ed and assuming Rg � K.21

Substituting this expression back into (6) yields

P̌BD ≈ d

4τ

�
�1 +

�
1 + 2

�
K

Rg

�2/3
�
��R2

g + K2/3R4/3
g



Ed.

(8)

As the R2
g term exceeds the R

4/3
g term when Rg > K,

21Notice that if ǩ > d ⇔ Rg > (2/3)3/4 d3/2/
√

K , traffic drops
through the decode’s matrix-multiply instead of increasing.

Braindrop’s power consumption scales quadratically with
SNR for Rg � K.

Finally, we divide our expression for P̌BD [see (8)] by
TFC, the neurosynaptic network’s throughput, to obtain
Ě
�op. Each soma in the neurosynaptic network’s second

N -neuron pool receives a point process—also assumed to
be Poisson—whose rate Fso determines its SNR: Rg =√

2τFso, after low-pass filtering with time constant τ .
Thus, TFC = NFso = NR2

g/(2τ ), dividing by this
yields (1).

A P P E N D I X D: Synaptic Density and Energy-
Efficiency Comparison

To calculate bits-stored-per-synapse for TrueNorth’s
256×256 neurosynaptic network, we take into account
the 256×1-bit synaptic weights as well as the 154-bit
parameter-field appended to each of the weight matrix’s
rows. Dividing the total (410) by the number of
synapses per neuron (256) yields its table entry
(1.6 bits/synapse).

To calculate bits-stored-per-synapse for Braindrop,
we study a 256×4×32 network configuration (N/d = 64
and ρ = 1/8) to match TrueNorth’s core size as well
as a 4096×16×1024 network configuration (the largest
possible) to predict Braindrop’s relative F 2-per-synapse
(see Table 3). We assign the following memory-word
sizes: WM’s is BD = 8 bits (decoding weight), AM’s
is BA = 38 bits (15-bit state, 3-bit threshold, 19-bit
global tag, and stop bit), FIFO’s is BF = 20 bits (11-
bit local tag, 8-bit count, and dirty bit), and TAT’s is
BT = 15 bits (tap-point address). The total memory used
is, thus, NdBD + dBA+F + ρNdBT, where BA+F = 58
bits. Dividing by N2 = 216, the equivalent number of
synapses, yields its table entry (0.16 bits/synapse), which
scales as d/N , the synaptic weight matrix’s relative rank.
For the 4096×16×1024 network configuration, the table’s
formula yields 0.046 bits/synapse—with ρ = 1/4 instead
of 1/8—a 3.4× drop that reflects d/N ’s fourfold decrease.

To calculate bits-accessed-per-synop for TrueNorth’s
256×256 core, we take its clock-driven operation into
account. A controller cycles through the SRAM’s 256 rows
every millisecond (410-Kb/s access rate), reading their
contents. Dividing by the rate at which synapses
are activated—the reported typical mean spike rate
(fspk = 20 Hz) times the number of neurons targeted by
each spike (256)—yields the table entry (80 bits/synop).

To calculate the bits-accessed-per-synop for Braindrop,
we rederive (1), replacing empirical energy measurements
with the number of bits that each component accesses per
operation. BD+A = 46 bits is substituted for Ed and 3BF +

PBT = 60 + 15P for E1/k,22 where P = ρN/d. As stated
before, we set Rg = 20, N/d = 64, and ρ = 1/8, which
yields the table entry (1.04 bits/synop). �

22The factor of three accounts for FIFO’s three read/write operations
per entry.
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