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Abstract

Emotion theory needs to explain the relationship of language and emotions, and the embodiment of emotions, by specifying the com-
putational mechanisms underlying emotion generation in the brain. We used Chris Eliasmith’s Semantic Pointer Architecture to develop
POEM, a computational model that explains numerous important phenomena concerning emotions, including how some stimuli gener-
ate immediate emotional reactions, how some emotional reactions depend on cognitive evaluations, how bodily states influence the gen-
eration of emotions, how some emotions depend on interactions between physiological inputs and cognitive appraisals, and how some
emotional reactions concern syntactically complex representations. We contrast our theory with current alternatives, and discuss some
possible applications to individual and social emotions.
� 2019 Elsevier B.V. All rights reserved.
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Theorizing about emotions began with Aristotle, but
there is still no generally accepted account of what emo-
tions are and how they work. From a biological perspec-
tive, emotions are physiological states that enable an
organism to quickly adjust behavior to the needs of the
body (Craig, 2002; Damasio & Carvalho, 2013; James,
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1884). From a cognitive perspective, emotions are rapid
mechanisms for appraising the significance of events in
the environment with respect to an individual person’s
goals (Oatley & Johnson-Laird, 1987; Ortony, Clore, &
Collins, 1990; Scherer, Schorr, & Johnstone, 2001). From
a sociological perspective, emotions help to control social
interactions and sustain the social and cultural order
(Heise, 2007; Hochschild, 1983; Kemper, 2006; Von
Scheve, 2014). Most emotion research has relied on exper-
imental approaches and verbal theorizing, which have gen-
erated comparatively little insight into the dynamic
mechanisms of emotion (Reisenzein et al., 2013; Scherer,
2009). Studying the computational dynamics of emotion
is not only of theoretical value, but also has practical impli-
cations for affective computing, a subfield of artificial intel-
ligence that seeks to build virtual agents that interact
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36 I. Kajić et al. / Cognitive Systems Research 58 (2019) 35–53
smoothly with humans (Gratch, Cheng, & Marsella, 2015;
Gratch & Marsella, 2004; Hoey, Schröder, & Alhothali,
2016; Picard, 1997; Reisenzein et al., 2013; Scherer,
BAdnziger, & Roesch, 2010).

A cognitive architecture is a general proposal about the
representations and computations that produce intelligent
thought. Current cognitive architectures – rule-based, con-
nectionist, and Bayesian – have had substantial success in
explaining important aspects of thinking such as problem
solving, learning, and categorization. A cognitive architec-
ture is a general theory of the mechanisms of thought,
proposing parts (representations) and interactions (compu-
tations) that aim to explain the full range of mental phe-
nomena. It is much broader than models of particular
aspects of cognition such as memory, learning, and
emotion.

Applications of cognitive architectures to emotion have
been rare despite their evident potential for theoretical
coherence (cf. Reisenzein et al., 2013). Existing computa-
tional models of emotion have largely been concerned with
cognitive appraisal, although a few have attended to
embodied aspects of emotions (Balkenius et al., 2016;
Hudlicka, 2011; Marsella & Gratch, 2014, 2016). Integrat-
ing the physiological, cultural, and linguistic levels of
explanation, but also more general cognitive processes such
as decision making, social interaction, memory, language,
attention, perception, and creativity remains a challenge.
This wider cross-domain knowledge integration is impor-
tant because there is now substantial psychological evi-
dence that emotions are integral to all of these processes
(Barrett, Lewis, & Haviland-Jones, 2016). Moreover, neu-
roscientific evidence has mounted that emotion mecha-
nisms in the brain are thoroughly integrated with
cognitive mechanisms (Damasio, 1994; Duncan &
Barrett, 2007; Lindquist, Wager, Kober, Bliss-Moreau, &
Barrett, 2012; Pessoa, 2013).

We aim to show that Chris Eliasmith’s (2013) Semantic
Pointer Architecture (SPA) provides the basis for a broad
and rigorous theory of emotions. We propose that neural
mechanisms involved in processing of emotions can be
described as semantic pointers: patterns of neural firing that
bind neural representations of physiological inputs, evalu-
ations of situations, and cultural/linguistic context. Spaun,
a computer model of the brain based on SPA, consists of
millions of simulated neurons that can perform tasks such
as symbol recognition, categorization, memory storage and
retrieval, and motor control (Eliasmith et al., 2012). Inte-
grating emotions into SPA is an important step towards
a general computational model of the mind (cf. Barrett,
2009; Lindquist & Barrett, 2012; Reisenzein et al., 2013).

After describing the operation of semantic pointers and
their relevance to emotions, we present POEM (for
POinters-EMotions), a neurocomputational model that
simulates major empirical phenomena related to emotional
experience. We conclude by discussing the relations of our
model to major contemporary approaches to emotion
research, including basic emotions (Ekman & Cordaro,
2011), appraisal theory (Ortony et al., 1990; Scherer
et al., 2001), psychological constructionism (Barrett,
2017; Barrett & Russell, 2014; Lindquist et al., 2012;
Russell, 2009), and the sociology of emotions
(Hochschild, 1983; Lively & Heise, 2004, 2014).

What are emotions? Rather than attempting the hope-
less task of defining ‘‘emotion” using necessary and suffi-
cient conditions, we can characterize emotions by
providing standard examples, typical features, and
explanatory uses (Blouw, Solodkin, Thagard, &
Eliasmith, 2016; Fehr & Russell, 1984; Thagard, 2019a).
The exemplars of emotions include happiness, sadness,
fear, anger, disgust, surprise, shame, embarrassment, pride,
and so on. Typical features of these emotions include phys-
iological changes, cognitive judgments, social influences
including linguistic ones in humans, neural patterns in mul-
tiple brain areas, and enjoyable or painful experiences.
Emotions help to explain people’s actions, verbal reports,
and conscious experiences.

In cognitive science, explanatory theories usually consist
of descriptions of mechanisms that can generate important
phenomena (Thagard, 2012b). Mechanisms are combina-
tions of interconnected parts whose interactions produce
regular changes. In theoretical neuroscience, the parts are
neurons with synaptic connections that produce firing pat-
terns through excitatory and inhibitory interactions.

Our theory of emotion consists of the following
hypotheses. 1. Emotions are semantic pointers, which are
patterns of firing in spiking neurons that integrate informa-
tion of different sorts by neural bindings. 2. The informa-
tion bound into semantic pointers for emotions includes
external stimuli, physiological changes, stored concepts,
and linguistic knowledge. 3. Emotional reactions occur
when stimuli generate semantic pointers that combine
physiological perception, cognitive appraisal, and social
context. 4. Emotions become conscious when semantic
pointers cross a threshold by outcompeting other semantic
pointers.

We demonstrate the explanatory power of the semantic
pointer theory of emotions by using the computational
model POEM to simulate six important aspects of emo-
tions: 1. Some stimuli generate immediate emotional reac-
tions. 2. Some emotional reactions depend on cognitive
evaluations of external stimuli. 3. Bodily states influence
the generation of emotions. 4. Some emotions depend on
interactions between physiological inputs and cognitive
appraisal. 5. Some emotional reactions concern syntacti-
cally complex representations. 6. Sometimes, people can
have ambivalent reactions to events, resulting in mixed
emotions.

1. The Semantic Pointer Architecture (SPA)

To portray semantic pointers, we first specify them as
the result of neural mechanisms involving binding of neural
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firing rates. We then characterize them mathematically and
indicate their computational functions. Finally, we contrast
semantic pointers with more familiar accounts of mental
representation. We provide an elementary exposition of
the Semantic Pointer Architecture because its components
are relevant to explaining important aspects of emotions.
Representations using groups of spiking neurons explain
how brains can have the many varieties and objects of emo-
tions. Binding by convolution explains how the brain com-
bines neural representations of situations, cognitive
appraisals, and physiological perceptions into semantic
pointers for emotions.

1.1. Biological mechanisms

In everyday use, a representation is something that
stands for something else, for example when the word
‘‘cat” or a drawing of a cat stands for cats in the world.
In cognitive theory, a mental representation is a structure
in the mind that similarly stands for things, for example
when a word-like concept stands for a class of things or
when a sentence-like proposition stands for a state of
affairs in the world such as that cats have legs.

The development of cognitive science provided new
ways of thinking about mental processes using ideas drawn
from computation and neuroscience. Computationally, a
representation is a structure in a programming language
such as a number or string of letters that can be manipu-
lated by algorithms to produce new structures, for example
when a computer calculates that 2 + 4 = 6. Biologically, a
representation is the activity of a group of neurons that
can be used to produce new representations through the
interactions of the neurons. Let us look at this special kind
of computation in more detail.

A neuron is a cell capable of receiving chemical inputs in
the form of neurotransmitters and hormones, building up
an electrical charge, and then firing (spiking) when the
charge passes a threshold. Firing sends outputs to other
neurons when the electrical signal releases neurotransmit-
ters that can then affect the firing of connected neurons.

A single neuron can be a very simple representation
when it becomes tuned to fire in response to sensory inputs
from the world, as when a neuron fires in response to reti-
nal signals. For example, a neuron could represent red if it
fired rapidly when a red stimulus is presented, but slowly
otherwise. But neurons have the capability of not only fir-
ing fast or slow, but also of firing in patterns, for example
in the difference between FIRE REST FIRE REST and
FIRE FIRE REST REST, which have the same firing rate
but different patterns of firing, and there are far more firing
patterns than firing rates. Hence a single neuron has a huge
representational capacity, for mathematical reasons
described in the following section.

Representations in the brain, however, rarely use single
neurons, because groups of neurons working together have
even greater representational capacity. Hence groups of
neurons working together can stand for more complicated
aspects of the world such as a cat with three white legs.

To go from the representation of simple features to
more complicated situations, the brain must accomplish
the binding of features, for example the binding of face
and body and legs into cat, and the binding of cat and
black into black cat. How do firing patterns in groups of
neurons accomplish such binding? One popular theory is
that binding results from different neurons becoming syn-
chronized so that they fire with similar patterns (Singer,
2007), but this theory has difficulty explaining how there
can be bindings of bindings of bindings, needed to produce
more complicated representations such as the black cat
snarling at the white cat (for discussion of binding see
Feldman, 2013).

In the Semantic Pointer Architecture, binding is accom-
plished by a mathematical operation called circular convo-
lution. Circular convolution is performed by neurons that
take two patterns of firing and produce a new pattern of fir-
ing that can involve some of the same neurons. In turn, this
new pattern can then be bound with other patterns to pro-
duce more and more complicated representations if there
are enough neurons to carry out repeated bindings. An
important property of convolution as a method of binding
is that it can be undone, at least approximately, so that the
combination of white and leg into white leg can be taken
apart to yield an approximation to the original neural pat-
terns for white and leg.

Semantic pointers are representations that are produced
by binding of two or more patterns of neural firing that are
semantic in two ways. First, they retain connections to sen-
sory inputs from the world. The pattern of firing that rep-
resents cat results from convolutions that include a pattern
for leg that originates perceptually through visual or tactile
perceptions of legs, so the semantic pointer for cat retains
some connection with the world. The term ‘‘pointer” indi-
cates that such representations point to their sensory ori-
gins because convolution can be undone to approximate
to the perceptually-derived inputs that went into it.

The second way in which semantic pointers are semantic
is that they show how neural representations can be related
to each other in the same way that linguistic symbols are.
The mental representation cat is not just perceptually
related to the world, but also to other representations as
in the beliefs that cats eat mice and that some cats are pets.
Such higher representations also can be produced by con-
volution, for example binding cat, eat, and mice into cat

eat mice. Thus semantic pointers bridge the gap between
neural network cognitive architectures and ones based on
rules using symbols.

The Semantic Pointer Architecture has employed
semantic pointers in simulations with millions of artificial
neurons to model numerous important cognitive phenom-
ena such as visual pattern recognition, concept application,
motor control, and social priming (Blouw et al., 2016;
Crawford, Gingerich, & Eliasmith, 2016; Eliasmith, 2013;
Eliasmith et al., 2012; Rasmussen, Voelker, & Eliasmith,
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2017; Schröder & Thagard, 2013). Before developing a
semantic pointer theory of emotion, we will flesh out the
idea of semantic pointers mathematically and
comparatively.

1.2. Mathematics and computation

Let us consider a neuron with a firing rate of around 100
times per second, which gives it 100 possible firing rates but

2100 possible firing patterns over a second, which is more
than 1 followed by 30 zeros. Ten neurons working together

with each firing 100 times per second can have 10ð2100Þ firing
patterns over a second, which is more than the number of
atoms in the universe. Hence the representational capacity
of groups of neurons firing in coordination with each other
is enormous.

Learning changes the connectivity of groups of neurons
by adjusting the strengths of the synaptic links between
them in response to inputs from the environment, dispos-
ing the neurons to fire in appropriate patterns when similar
inputs are received. But patterns of firing should be able to
respond not only to simple features but also to combina-
tions of features, so that concepts like cat and pet can sub-
stantially increase an organism’s ability to understand the
world.

Mathematically, patterns of firing in neural groups can
be used to represent vectors, which are strings of numbers
that represent a collection of dimensions. Vectors are com-
monly used to represent empirically measurable properties
of objects and events in an environment. For example, the
speed and direction of a car can be represented by the two-
dimensional vector (20, 90), where 20 indicates that the car
is going 20 km per hour and 90 indicates an angle of direc-
tion. Speed and location could be represented by a 3-
dimensional vector that includes map coordinates, for
example if (20, 10, 20) indicates the same speed and map
indicators of 10 units across and 20 up.

Spiking neurons can also represent such vectors. For
every vector dimension, the contribution of every neuron
to the value in that dimension is computed by weighting
the firing rate of that neuron. Such weights can be com-
puted analytically for a known range of values in that
dimension (e.g., maximal and minimal speed, or maximal
and minimal angle). In SPA, maximal firing rates are ran-
domly selected to simulate the neuronal variety observed in
biological brains. To achieve a precise representation of a
numerical value with neurons, it is common for the number
of neurons in a group to exceed the number of dimensions
of a vector the group is representing, so that multiple neu-
rons contribute to a representation of a number.

Once a vector is represented by the firing pattern of a
group of neurons, we can define convolution as a mathe-
matical operation on vectors. The addition of vectors is
simple, for example when adding (0.2, 0.4, 0.6, 0.8) and
(0.1, 0.1, 0.1 0.1) yields (0.3, 0.5, 0.7, 0.9). But vector addi-
tion and multiplication of vectors could not perform con-
volution, because they obliterate the information in the
input which cannot be reconstructed even approximately.
The vector (0.3, 0.5, 0.6, 0.9) could have resulted from the
addition of many other pairs of vectors.

Convolution solves this problem by using a more com-
plex function that wraps the dimensional values of two vec-
tors around each other to produce a vector that is not
similar to the original vectors but can nevertheless be
decomposed into an approximation of the originals. For
details, see Eliasmith (2013, p. 406). In SPA, the convolu-
tion of vectors is computed by feed-forward neural net-
works, thereby implementing binding by convolution in
spiking neurons.

Semantic pointers formed by convolution are a key
component of a general account of neural computation
called the Semantic Pointer Architecture that produces
motor outputs in response to visual inputs and numerous
other processes including working memory and action
selection. This architecture is implemented in a computa-
tional model called Spaun that has been used to simulate
many cognitive processes and even to control robots
(Eliasmith et al., 2012).

1.3. Comparisons

Semantic pointers can be further characterized by con-
trasting them with more familiar theoretical ideas in cogni-
tive science, including distributed representations, rules,
schemas, modality-specific simulations, Bayesian inference,
and somatic markers.

1.3.1. Distributed representations

In connectionist architectures such as the highly influen-
tial PDP account, concepts are not represented by single
word-like nodes but rather by groups of neurons working
together: the representation is distributed across multiple
neurons as occurs in the brain (Rogers & McClelland,
2004; Rumelhart, McClelland, & Group, 1986). Semantic
pointers are a kind of distributed representation, but they
differ from standard accounts in two ways. First, the neu-
rons employed in SPA are spiking neurons, capable of fir-
ing with many different patterns that affect the firing
activity of other neurons. In contrast, PDP models use rate
neurons, whose activity is determined by how fast they fire,
not their particular patterns. Second, whereas PDP connec-
tions are formed by training using algorithms such as back-
propagation, semantic pointers are formed by convolution
of other neural patterns, including ones formed by learn-
ing. This formation enables semantic pointers to be subject
to further convolutions into sentence-like representations,
functioning as symbols.

1.3.2. Rules

In rule-based architectures such as ACT (adaptive con-
trol of thought), rules are IF-THEN structures where the
IF and THEN parts are word-like symbols (Anderson,
1983, 2007). Semantic pointers are not rules, but they can
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be used to model rule-like problem solving, for example in
the Tower of Hanoi problem (Eliasmith, 2013, chap. 5).
The IF and THEN parts in SPA are not traditional sym-
bols, but are represented by vectors created in part by con-
volution in ways that can be encoded as patterns of neural
firing.
1.3.3. Schemas

In psychology, a schema is a mental representation of a
class of objects events or practices. Semantic pointers pro-
vide a mechanistic explanation of what schemas are and
how they work in the brain. For example, the restaurant
schema is a combination of a concept and expectations
for what to do in restaurants. Concepts can be explained
as semantic pointers (Blouw et al., 2016), and expectations
can be modeled as rules of the sort just described. Hence
schemas in the brain are one kind of semantic pointer,
but there are other kinds of semantic pointers such as rep-
resentations of individuals.

1.3.4. Modality-specific simulations

Barsalou (2016) has emphasized that concepts are
grounded in particular modalities such as vision rather
than being amodal, language-like representations. Such
concepts can be used in simulations, for example when
visual images associated with a restaurant allow people to
imagine themselves being seated and fed. Semantic pointers
provide neural explanations of how concepts can combine
different modalities and can serve in simulations using non-
verbal rules. Hence Barsalou’s psychological theories are
mechanistically explained by SPA.

1.3.5. Bayesian inference

Bayesian cognitive architectures explain human thought
using network structures that make inferences using prob-
ability theory. SPA does not explicitly use probabilities, but
semantic pointer vectors can be interpreted as probability
distributions, and Bayesian inference is approximately
implemented by neural computations (Eliasmith, 2013, p.
281).

1.3.6. Somatic markers

According to Damasio (1994), cognitive processes such
as decision making are heavily influenced by neural
responses to bodily changes. These somatic markers enable
the brain rapidly to evaluate and anticipate different
actions and outcomes. Somatic markers are naturally
understood as semantic pointers if they involve bindings
of inputs from various internal physiological sensors and
signals concerned with situations. Hence somatic markers
are part (but not all) of the semantic pointer theory of
emotion.

In sum, semantic pointers are processes in groups of
spiking neurons that provide representations by repeatedly
binding sensory, motor, and verbal information. Such pro-
cesses provide a neural explanation of many psychological
ideas such as schemas, and they are naturally extended to
emotions.

2. Emotions in the Semantic Pointer Architecture

Emotions integrate multiple levels of meaning from
embodied experiences through culturally constructed lin-
guistic structures. For example, the experience of love is
grounded in the sensory experience of physical warmth that
infants of all cultures feel in the arms of their parents
(Lakoff et al., 2003). However, the meaning of love is also
shaped by the cultural history of a society as conveyed in
art and literature over centuries, creating substantial
cross-cultural variation (Belli, Harré, & Iñiguez-Rueda,
2010). The degree of universality versus cultural specificity
may vary across different categories of emotions. Some
emotions, like sadness and anger, have been considered
more basic and universal (Oatley, 2009; Oatley &
Johnson-Laird, 1987), while others, like shame or jealousy,
are more conceptually and socially complex and thus more
contingent on culture-specific language.

Semantic pointers are well equipped to combine the
embodiment and cultural aspects of emotions. They are
compatible with views of embodied affect, cognition, and
conceptual metaphor (Crawford, 2009; Lakoff et al.,
2003; Niedenthal, Winkielman, Mondillon, & Vermeulen,
2009); but they avoid the more radical view that the mind
does not employ representation or computation (cf.
Thagard, 2012a; Thagard & Schröder, 2014). We propose
that emotions are semantic pointers that bind information
that includes external stimuli, physiological changes, stored
concepts, and linguistic knowledge.

Consider for example a situation where you are excit-
edly falling in love with a person named Pat. Your neural
representation of Pat may combine verbal, visual, tactile,
auditory, and even olfactory information. Your physiolog-
ical response to Pat could include many changes such as
increased heart rate, rapid breathing, sexual excitement,
and elevated levels of neurotransmitters and hormones
such as dopamine, opioids, cortisol, and oxytocin. You
may also consciously or unconsciously evaluate Pat as
meeting your social and other needs, where the evaluation
combines both universal human needs such as belonging
and relatedness with cultural expectations about what con-
tacts are allowed and desired. Semantic pointers show how
your brain can combine all of these into a unitary neural
representation that is felt as love. Schematically, loving
Pat = (bind (bind verbal, visual, etc.) (bind heart, breath-
ing, hormones, etc.) (bind cultural expectations, goal
appraisal, etc.)). This summary representation is suffi-
ciently powerful to frequently become conscious because
it outcompetes other representations such as daily events.
Moreover, it influences actions by interacting with inten-
tions to produce motor behaviours (cf. Schröder, Stewart,
& Thagard, 2014).

The mathematical interpretation of semantic pointers as
vectors naturally carries over to emotions, thanks to affect
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control theory, a mathematically formalized social psycho-
logical theory of social interaction and emotion (Heise,
2007; Hoey et al., 2016; Lively & Heise, 2014; Rogers,
Schröder, & von Scheve, 2014; Schröder, Hoey, &
Rogers, 2016). This theory treats social concepts denoting
types of persons, traits, actions, and social settings as vec-
tors in a three-dimensional EPA space defined by evalua-
tion (goodness versus badness), potency (powerfulness
versus powerlessness), activity (liveliness versus torpidity)
(Osgood, May, & Miron, 1975). These vectors are obtained
from empirical studies in which respondents rate hundreds
of concepts with the semantic differential technique devel-
oped by Osgood. Speakers of a common language gener-
ally agree on the placement of social concepts in EPA
space, so that these ratings can be interpreted as reflecting
a within-culture consensus on the affective meaning of
human sociality (Ambrasat, von Scheve, Conrad,
Schauenburg, & Schröder, 2014; Heise, 2010). Emotion
concepts such as happiness also have a representation in
the EPA space because of their ratings for evaluation,
potency, and activity. Fontaine, Scherer, Roesch, and
Ellsworth (2007) have linked not just emotion concepts,
but also the specific physiological features and appraisal
patterns associated with those concepts to the EPA space.

Affect control theory models emotion generation in
specific situations by taking as input the EPA vectors of
concepts used to describe a situation and returning as out-
put a new vector representing the emotional response to the
situation (Heise, 2007; Hoey et al., 2016). The concept vec-
tors are derived from empirical studies that elicit EPA rat-
ings of linguistic event descriptions (e.g. ‘‘a professor who
yells at a student”) and compare them to EPA ratings of
the constituents of these descriptions (e.g., ‘‘a professor”,
‘‘to yell at someone”, ‘‘a student”) (see Heise, 2010, for
details). A computer model called INTERACT (Heise,
1997) generates situation-specific emotion predictions, cor-
responding to cultural emotion norms, such as that a pro-
fessor who yells at a student is likely angry. We show below
how the computations for emotion generation by affect
control theory can be performed by spiking neurons in
the Semantic Pointer Architecture. The result is a natural-
Fig. 1. Graphical User Interface of the Nengo neural network simulator. The
number is shown on the right hand-side in the text editor, while the visual de
istic explanation of how social norms embedded in lan-
guage constrain the generation of emotions in the brain.

3. POEM: a neurocomputational model of emotion

We evaluate the explanatory power of the semantic
pointer theory of emotions by showing that a computa-
tional model derived from it can simulate numerous aspects
of emotions. POEM (for POinter-EMotions) is imple-
mented using the open-source neural network simulator
Nengo (Stewart, Tripp, & Eliasmith, 2009). Nengo is used
to create neural networks for simulation of biological and
cognitive phenomena using the programming language
Python, giving users the ability to control the level of tech-
nical detail pertaining to the network. Fig. 1 shows an
example of a small neural network built in Nengo together
with the code that generated that network. The network
consists of two groups of neurons, one represents a num-
ber, and the other one represents a square of that number.
The desired function (in this case it is a square of a number)
is specified as a parameter of the connection that connects
the two groups of neurons. In the background, Nengo uses
the Neural Engineering Framework (NEF) to describe how
groups of neurons can represent numerical values and to
compute weights that yield desired computations over
those values (Eliasmith et al., 2003).

POEM consists of such multiple interconnected groups
of neurons labelled as: external sensation, internal percep-
tion, language, episodic memory, concepts, EPA space, and
executive control. The activity of neurons (more specifi-
cally, their firing patterns) in each group is used to represent
real-valued vectors and in total all groups contain about
300,000 neurons. The activity of some groups can be con-
trolled externally by dictating which vector should be rep-
resented by that group. Such control is used when we want
to present inputs to the model – by assigning labels to ran-
dom vectors, we create a vocabulary where each concept
has its unique vector representation. For example, the con-
cept ‘‘cat” might be encoded as (0.1, 0.4, �0.5), and the
concept ‘‘dog” as (�0.7, 0.9, 0.5). Then, if we want a group
of neurons to represent ‘‘cat” we can set the activity of that
Python code used to build the neural network that computes square of a
piction of the generated network is on the left hand-side.
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group to correspond to the vector for ‘‘cat” using the
graphical user interface in Nengo.

In POEM we use 512-dimensional random vectors to
represent 55 different concepts used in simulations of six
different emotional phenomena. Some concepts, such as
‘‘snake” or ‘‘cake” are used to set the activity of the group
representing external sensation. More specifically, if we set
a group of neurons to represent the vector for ‘‘snake” we
would interpret this as simulating a situation where a snake
is encountered in an environment in some form (e.g., the
sound of a snake hissing, the image of a snake in the dis-
tance). Concepts such as ‘‘joy” or ‘‘fear” are used to
describe the emotional response, and such responses are
observed as vectors represented by the executive control
group of neurons. In the same way in which we can set
the activity of a group of neurons to represent a vector,
we can also interpret the activity of a group as representing
a vector. That is, we can read out the vector represented by
that group and compare how similar that vector is to all the
vectors in our vocabulary (vectors in the vocabulary can be
seen representing an ‘‘ideal” pattern). We use cosine simi-
larity to compute the similarity between two vectors. The
resulting similarity score between the represented vector
and the ideal pattern is used to express how strongly the
group of neurons represents a concept. If the score is high,
we can interpret that as the group of neurons representing
that vector. If the score is low, we can infer that the vector
is not being represented by that group, and if it is anything
in between we can interpret that as the level of similarity.

POEM implements a Leaky-Integrate-and-Fire (LIF)
spiking neuron model, which is the default neuron model
in Nengo. LIF models the change of neuronal activity over
time, thus allowing us to simulate sequence-dependent
events. As described in the previous sections, the activity
of spiking neurons forms firing patterns that are used to
represent vectors using the Neural Engineering Framework
(see Appendix A for more details). Code for the model is
available online at http://github.com/ikajic/spa-poem.

3.1. Structure of the model

Reviews of brain imaging studies of emotion have found
that the relation between particular brain areas and specific
emotions and emotional functions is highly complex
(Kober et al., 2008; Lindquist et al., 2012). There is no
one brain area that produces any particular emotion, and
many brain areas are relevant to emotional functions such
as physiological perception and cognitive appraisal.
Accordingly, POEM’s neural networks and their connec-
tivity are best interpreted functionally as operating across
numerous brain areas including the amygdala, insula, pre-
frontal cortex, orbitofrontal cortex, and basal ganglia.

POEM’s structure is shown in Fig. 2. Inputs to the
model are provided via the sensory and the interoception
subnetworks by setting the desired vectors (e.g., ‘‘cat”,
‘‘snake” or ‘‘cake” for sensory, and ‘‘increased heartbeat‘‘
for interoception). The sensory subnetwork models inputs
from external senses such as eyes and ears, and the intero-
ception subnetwork models inputs from internal physiolog-
ical states such as heart rate. These inputs are then further
processed in the memory-reasoning loop that includes sub-
networks for episodic memory, language processing, and
conceptualization, as suggested by Kober et al. (2008).

Within the memory-reasoning loop, the episodic subnet-
work receives inputs from the sensory network and from
the conceptualization subnetwork. The language subnet-
work accesses the neural representations in episodic mem-
ory and uses them to combine neural representations
corresponding to words, sending the results to the concep-
tualization subnetwork. Finally, the EPA subnetwork
assigns to every concept represented in the episodic subnet-
work a value for the evaluation, potency and activity
dimensions of emotion. The executive subnetwork receives
its input from the EPA subnetwork and generates a seman-
tic pointer corresponding to a specific emotion label, based
on locations of emotions in EPA space. The interactions of
the subnetworks enable POEM to transform an input vec-
tor representing a situation into an output vector represent-
ing an emotional response to the situation.

Another important computational mechanism in POEM
is the winner-take-all (WTA) algorithm implemented using
lateral inhibition at the output of some subnetworks. In the
conceptualization network, the WTA mechanism enables
competition among semantic pointers. The competition is
realized by mutual inhibition between groups of neurons
and is determined by the strength of inhibition and synap-
tic timing parameters. The WTA is also used in the EPA
subnetwork to clean up the noise in the semantic pointer
representation of emotions. Those vectors that are below
a certain threshold are inhibited, and those above the
threshold facilitated.

3.2. Empirical data in the model

The EPA ratings for input concepts and output emo-
tions are based on empirical studies that average partici-
pants’ responses along the dimensions of evaluation,
potency, and activity. These ratings capture more than
words, incorporating deep-meaning features of emotions
such as immediate sensory perceptions and physiological
reaction patterns included in emotions. Thus emotion com-
ponents at varying levels of semantic depth of the EPA
space serve as the common ground for integrating those
different modalities in the identification of specific emo-
tions resulting from various sensory inputs.

The empirically-derived datasets for EPA ratings
employed in the simulations below were the International
Affective Picture Set (Lang, Bradley, & Cuthbert, 2008)
for sensory inputs, Fontaine et al.’s (2007) study of 144
emotion features for physiological and motor components
of emotion, and a repository of words along with their
affective EPA meanings compiled at Indiana University
(Francis & Heise, 2006). Data collection for the Indiana
repository is described in detail by Heise (2010). Simulation

http://github.com/ikajic/spa-poem


Fig. 2. The structure of the POEM model with rectangles as functionally distinct subnetworks of neurons. Arrowed lines indicate the flow of information
between the subnetworks. Sensory and interoception subnetworks handle the inputs to the model, while episodic, language and conceptualization
subnetworks make up the memory reasoning loop. The EPA and executive subnetworks assign an emotion label to the content in the episodic network.
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5, which models reasoning about emotions, also employs
coefficients from a statistical model of emotions arising
from combinations of concepts rather than single words.
The study and resulting statistical models are described
by Heise (2010).

For emotion categorization, we use 23 emotions from
Fontaine et al. (2007): anger, anxiety, being hurt, compas-
sion, contempt, contentment, despair, disappointment, dis-
gust, fear, guilt, happiness, hate, interest, irritation,
jealousy, joy, love, pleasure, pride, sadness, shame and
stress. Surprise was excluded from simulations due to con-
cerns that it is not well captured by the three-dimensional
EPA space (Fontaine et al., 2007). These emotions are
implemented as firing patterns in the executive subnetwork
Table 1
Simulations and model inputs.

Simulation Sensory

1. Evolutionary roots of emotion Snake
2. Dynamics of appraisal Snake, glass, zoo
3. Embodiment
4. Interaction of physiological input and

cognitive appraisal
Angry person, euphoric pe

5. Reasoning about emotions Mother, shout at, child, ob
subject, action

6. Mixed emotions Cake, taste, obesity, thoug
of the POEM model. If no emotion is present, the affect
network represents a vector with all zeros corresponding
to the (0, 0, 0) EPA vector.

3.3. Simulations

POEM runs six simulations, which are listed in Table 1.
These simulations cover a variety of emotion phenomena
observed in everyday life and psychological experiments.
The goal in choosing these simulations was to cover major
theoretical perspectives on emotions reviewed more exten-
sively below in the discussion section. Each simulation has
stimuli represented as vectors presented to the sensory or
interoception subnetwork and returns a pattern in the exec-
Interoception

Smiled, frowned
rson Felt hearbeat getting faster, muscles tensing whole body, felt

breathing getting faster, sweated
ject,

ht
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utive network as output corresponding to an emotion label.
Note that the output label is strictly speaking not endoge-
nous to the model as we hold the corresponding conscious
emotion to be the pattern of neural firing activity. How-
ever, to allow the human modeler to evaluate the outcome
of the simulation, we provide the best-matching verbal
labels based on cosine similarity.

3.4. Results

Figs. 3–8 show the end state of each subnetwork given
the inputs in Table 1, displaying a graph that shows the
similarity between the ideal pattern of activity for a partic-
ular concept and the actual neural activity pattern. If the
represented value matches the ideal one, the similarity
value is close to one. Otherwise, if there is very little or
no overlap between the patterns, the similarity value is
close to zero. The simulation consists of presenting the
input to the sensory and/or interoception networks, and
reading out the corresponding emotional reactions in the
executive network.

3.4.1. Simulation 1. Perception-based emotion

Some perceptual stimuli generate immediate emotional
reactions. Simulation 1 simply presents a vector representa-
tion of a stimulus snake, based on data from Lang et al.
(2008), as the input to the sensory network, resulting in
the dynamics shown in Fig. 3. Setting the input triggers
the semantic pointer representation of a concept snake, first
in the sensory subnetwork, and then in the episodic, lan-
Fig. 3. Simulation 1. Perception-based emotions. The sensory subnetwork is pr
the episodic subnetwork. This triggers the EPA subnetwork to produce the ex
and stress. The Y axis shows the similarity, for concepts such as snake and anxi
the empirically-derived EPA vector for those concepts.
guage and conceptualization subnetworks. In each of these
networks the concept snake has a different neural represen-
tation, but each of them preserves the meaning of the con-
cept. Each of the subnetworks in Fig. 3 shows the similarity
between the vector at the input of the network and the
stored semantic pointer. The affect network recognizes
the input snake and assigns it an EPA value:
ð�0:40;�0:50; 0:49Þ. This is close to the empirical value
ð�0:39;�0:48; 0:47Þ, and the difference is a result of the
noisy regime in which neurons representing numerical val-
ues operate. The EPA subnetwork connects to the execu-
tive subnetwork by mapping the EPA values to the
closest semantic pointers for emotions. The resulting stron-
gest emotions in the executive network are anxiety, fear,
shame and stress, which all share strong negativity in the
evaluation dimension in the EPA space. This models a
quick pathway to the executive attention network that
causes the fear-like emotions to become active. This may
reflect an evolved tendency to become frightened immedi-
ately upon perceiving dangerous stimuli such as snakes
and features of a predator’s face (Cunningham, Van
Bavel, & Johnsen, 2008).

3.4.2. Simulation 2. Dynamics of appraisal

According to appraisal theory, emotions follow from an
ongoing process of cognitive evaluation of external stimuli
with regard to the organism’s goals. In the previous simu-
lation modeling the experience of fear when seeing a snake,
one could argue that fear results from the rapid assessment
by the cognitive system that a predator endangers the sur-
esented with a vector for snake, which is recognized as a semantic pointer in
ecutive subnetwork response with negative emotions such as: anxiety, fear
ety, between the vector represented by the neurons in the subnetworks and



Fig. 4. Simulation 2. Dynamics of appraisal. The sensory network is first presented with the word snake (blue line), and then with words snake and glass
(blue line and green line). After the last input has been presented, the representation of the concept zoo is triggered in the episodic network (orange line).
This is evaluated to a set of positive emotions such as happines, joy, love and pleasure. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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vival of the organism. However, cognitive appraisals of
external events can also happen in much more deliberate,
contextualized, and reflective ways, resulting in quite differ-
ent emotional outcomes. For example, the emotion upon
perceiving a snake might change from fear to interest if
you are in a zoo and realize that you are safe by virtue
of the glass keeping the snake in its terrarium, a process
called re-appraisal (Scherer et al., 2001). POEM simulates
the effects of cognitive re-appraisal on emotions in two
steps (Fig. 4). First, as in the Simulation 1, the sensory net-
work is presented with the input snake and triggers a sim-
ilar set of emotions: anxiety, stress, shame and fear by
means of a quick emotion pathway (Cunningham et al.,
2008).

Second, we augment the input by activating semantic
pointers snake and glass. The two semantic pointers then
activate the semantic pointer zoo. Although the semantic
pointer for zoo is somewhat similar to the semantic pointer
snake in the conceptualization subnetwork, it will only get
activated in the episodic network when both snake and
glass are present. The delay in activation of the concept
zoo is determined by the synaptic connections between
populations of neurons. When zoo is conceptualized, the
focus of attention from the sensory input is shifted to pos-
itive experiences related to the idea of a zoo, based on the
EPA ratings (positive, powerful, and active) of the concept
zoo. These ratings come from the Indiana study of affective
meanings used as a database for our simulations (Francis &
Heise, 2006). Positive experiences with zoos are manifested
in a set of positive emotions in the executive network: love,
joy, happiness, pride and pleasure. This slower emotion
pathway invokes the language and conceptualization sub-
networks and causes overriding of the initial negative emo-
tional response by positive emotions. Thus, this simulation
confirms that POEM is able to model cognitive reappraisal
effects.

3.4.3. Simulation 3. Embodiment

Simulation 3 shows the effects of bodily states on the
generation of emotion. Two inputs to the interoception
network are used in two conditions, smiled and frowned,
from the Fontaine et al. (2007) study. The resulting emo-
tional reactions are shown in Fig. 5. A semantic pointer
representing a smile is activated in the interoception net-
work, resulting in emotions such as happiness, pleasure,

contentment and love. Then, it is replaced by the semantic
pointer frowned, which results in hate, irritation and anger.
This behavior is consistent with experimental results show-
ing both that emotions lead to reactions of associated facial
muscles and that stimulation of facial muscles may lead to
elicitation of the associated affective reactions (e.g.,
Niedenthal et al., 2009).

3.4.4. Simulation 4. Interaction of physiology and cognitive

appraisal

Simulation 4 shows how the semantic pointer theory of
emotion explains the experimental finding that specific
emotional states emerge from the interaction of perceived
physiological states and cognitive processes. The most
famous demonstration of this interaction is an experiment



Fig. 5. Simulation 3. Embodiment. The interoception network is first presented with the input smiled (blue background) resulting in positive emotions in
the executive network, such as happiness, contentment and pleasure. Then, the word frowned is presented (green background) resulting in negative
emotions: anger, irritation and hate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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where participants were transformed into states of eupho-
ria or anger by manipulating the experimental context
(Schachter & Singer, 1962). Participants were injected with
adrenaline, which induced an increased heart rate, more
rapid respiration, and muscle contractions. Then, they were
asked to fill out questionnaire in two different contexts. The
first context was pleasant, where a stooge was behaving
euphorically. In the second context, the stooge appeared
angry. The experiment showed that participants unaware
of being injected with adrenaline attributed their arousal
to feelings of euphoria in the condition with the euphoric
stooge, and to anger in the condition with the angry stooge,
in line with the claim that emotions require both a physio-
logical base and a cognitive interpretation.

POEM simplifies the physiological effects of adrenaline
by using only one semantic pointer, namely felt heartbeat

getting faster as the input to the interoception network.
Mapping of this semantic pointer to the EPA space is taken
from the data reported by Fontaine et al. (2007). To simu-
late the effects on cognitive appraisals of the stooge’s
behavior as in the Schachter-Singer experiment, we also
present either angry or euphoric to the sensory network.
The behaviour of the model when sequentially presenting
those inputs is shown in Fig. 6). When the input to the sen-
sory network is set to semantic pointer angry it triggers
negative emotions, mainly anger in the executive network.
However, changing the input to euphoric triggers positive
emotions such as happiness, joy, pleasure and contentment,
closely simulating the euphoric state in the original experi-
ment. This demonstrates that with the same physiological
input, the communicative context is used to generate a dif-
ferent emotional state. To simulate the control condition of
the experiment using POEM, we varied the physiological
input and presented the vector heartbeat slowing down,
while keeping the same sensory input. In this control con-
dition, we observed lower potency and arousal values. If
only using sensory input without simulating physiological
arousal, the model thus still produces an emotional
response, but is much more attenuated.

3.4.5. Simulation 5. Reasoning about emotions

Simulation 5 models the role of syntactic structure in
emotion generation. Given a simple sentence: The mother

shouts at the child, the model infers that both the child
and the mother experience negative emotions. Emotions
of the mother are anger, hate and irritation, while the child
feels shameful, anxious and fearful (Fig. 7). The child also
has some positive emotions such as love and happiness
which arise through the association with the word mother.

The syntactic structure in the sentence is achieved by
binding the semantic pointer mother with the semantic
pointer subject, semantic pointer shout at with the semantic
pointer action and the semantic pointer child with semantic
pointer object. Every binding results in a new vector of the
same dimensionality as the vectors which were bound
together. Finally, all bindings are added together, which
results in a compact vector-representation of a sentence.
The semantic pointer subject, corresponding to the subject
of the shout at action is assigned a value in the EPA subnet-
work that has been computed with the INTERACT model



Fig. 6. Simulation 4. Interaction of physiological input and cognitive appraisal. Two different inputs are presented in a sequence to the sensory network
simulating the mood of the stooge administering the experiment: angry and euphoric. The interoception network is presented with inputs simulating the
effects of adrenaline injection. The model responds with negative emotions for the input angry and with positive emotions for the input euphoric.

Fig. 7. Simulation 5. Reasoning about emotions. The model is presented with the sentence: Mother shouts at child. When queried about emotions of the
child, the model responds with negative emotions such as anxiety, fear, shame and stress, but also with an activation of the positive emotions love and
happiness, in line with the ambivalence of the mother-child relationship.
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(Heise, 1997). The EPA values for the semantic pointer
object are obtained in the same way. Semantic pointers
for the subject, object and action are randomly generated.
To find the emotions of a mother or the child, we use an
additional component in the network that we label query.
It takes the concepts mother or child as the input and allows
extraction of the role (subject or object) given a person
(mother or child). For more details about syntactic pro-
cessing with semantic pointers see Appendix A.

3.4.6. Simulation 6. Mixed emotions

Simulation 6 demonstrates a scenario where a stimulus
is appraised in multiple conflicting ways, to test whether
POEM can also account for mixed emotions that result



Fig. 8. Simulation 6. Mixed emotions. The model is first presented with the concept cake, which prompts positive emotions at the output. Then, the model
is presented with the concept obesity, which triggers the representation of vector binge eat, finally resulting in mixed emotions love and sadness.
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from ambivalent appraisals of events (cf., e.g., Larsen,
McGraw, & Cacioppo, 2001). For example, eating a deli-
cious cake evokes positive emotions such as joy. However,
if one is on a diet, eating a piece of cake might also evoke
negative emotions such as guilt. In this simulation we sim-
ulate this scenario using the binding of semantic pointers,
introduced in Simulation 5. First, we present an input vec-
tor consisting of two bound vectors cake and taste. When
we query for taste, we observe positive emotions such as
contentment, happiness and pleasure. Then, we add addi-
tional input that consists of two bound vectors: thought

and obesity, to simulate appraisals that might occur when
eating a cake. This prompts a thought of binge eating in
the episodic memory network, resulting in the change of
the emotional response. Now, the emotions have changed
to love and sadness, showing that PEOM can indeed
explain mixed emotional experiences.

4. Discussion

We propose that emotions are semantic pointers, which
are patterns of activity in neural populations that enable
the brain to represent complex verbal and nonverbal infor-
mation (Eliasmith, 2013). Semantic pointers can interrelate
representations of bodily occurrences with symbolic cogni-
tions through mechanisms of repeated binding. These
properties of semantic pointers allow us to account for
how emotions combine physiological changes in the body
with cultural expectations embedded in linguistic struc-
tures. The implementation of the semantic pointer theory
of emotions in a computational model contributes to the
understanding of emotions as dynamical systems (cf.
Scherer, 2009).
4.1. Strengths and limitations of the POEM model

POEM supports the semantic pointer theory of emotion
by simulating important phenomena emphasized by differ-
ent theoretical traditions in emotion research, covering
embodiment, appraisal, and cultural construction. POEM
models emotional phenomena from simple reflex-like emo-
tion generation to reasoning about emotions in a social
context, including mixed or ambivalent emotions. These
simulations back our claim that the semantic pointer the-
ory of emotion integrates physiological, cognitive, and
social aspects of emotions.

There are two ways in which the semantic pointer theory
of emotions could be falsified. The first would be the exis-
tence of some important aspect of emotions that the theory
is incapable of explaining, for example if emotions could be
experienced by disembodied souls. We have only simulated
six phenomena, but they show an impressive range that
could easily be extended. The second way of falsifying
our theory would be to provide another theory with equal
computational precision and greater explanatory power,
modelling these phenomena and more. But to our knowl-
edge, no current alternative incorporates physiology, cog-
nition, and culture.

One limitation of the POEM model is that the neural
subnetworks in the model do not correspond to anatomical
structures in the human brain. Instead, the structure of
POEM is inspired by appreciation that there is no one-
to-one correspondence between emotions and brain areas
(e.g., Kober et al., 2008; Lindquist et al., 2012). POEM
provides a detailed account of neurocomputational mecha-
nisms responsible for psychological functions required for
emotions. Determining the exact anatomical structures that
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implement these functional computations is a matter for
future empirical studies. When such information becomes
available, the Neural Engineering Framework and the
Nengo software that we used to produce POEM can be
used for more anatomically detailed models (e.g., see
Eliasmith et al., 2012). We hope to see in the future a more
realistic version of POEM that respects the physical con-
straints of the computation of emotion found in the brain.
It would be desirable, for example, to take into account the
influence of neurotransmitters such as dopamine and sero-
tonin, and hormones such as oxytocin and testosterone, on
human emotion.

A further limitation is that the model with its current
architectural constraints does not represent relevant cogni-
tive functions such as perception, motivation, or beha-
vioural control in realistic ways, but is restricted to rather
semantic transformations. On the input side, one would
have to explain how a complex sensory pattern evokes
the conceptual representation of objects like snakes or
cakes which start of the simulations described here. Note,
however, that the Spaun model of the brain (Eliasmith
et al., 2012) shows how such basic perceptive processes
can be performed by the semantic-pointer architecture.
On the output side, one would have to show how emotions
are important contributors to action, encouraging people
to perform or avoid specific behaviours that make them
happy or fearful. Generating neural firing patterns corre-
sponding to emotion labels is not enough to implement
the functional properties of emotion in a cognitive architec-
ture. But our POEM model meshes perfectly with semantic
pointer accounts of automatic and intentional action devel-
oped in parallel (Schröder et al., 2014; Schröder &
Thagard, 2013, 2014). Integrating existing semantic-
pointer models of all the different cognitive processes from
perception through emotion to action would be a daunting
task not yet achievable. But we have contributed with the
POEM model a demonstration how emotions can be
understood in terms of semantic pointers, thus adding to
the body of work supporting the claim the semantic-
pointer architecture does provide a comprehensive and
generic account of human cognition.

4.2. Relations with other theories of emotion

We now compare the semantic pointer theory of emo-
tion with other major emotion theories, according to the
four perspectives proposed by Gross and Barrett (2011).
This discussion overlaps with the comparison of affect con-
trol theory (Heise, 2007) with the field of contemporary
emotion theories provided by Rogers et al. (2014), as ideas
from affect control theory regarding the conceptual and
social base of emotions have been incorporated into the
semantic pointer theory of emotions. However, the present
theory goes beyond affect control theory by specifying neu-
ral mechanisms underlying emotion generation.

The semantic pointer theory of emotion is roughly com-
patible with the psychological constructionist perspective on
emotions, providing a computational specification of
mechanisms used by the brain for the generation of emo-
tion (Thagard & Schröder, 2014). Psychological construc-
tionism is the view that emotions are emergent products
of more general mental operations that underlie other phe-
nomena as well (Barrett, 2017; Barrett & Russell, 2014;
Duncan & Barrett, 2007; Russell, 2009). We contribute to
the constructionist project by using the Semantic Pointer
Architecture, a general framework for linking psychologi-
cal functions to biological computations performed by neu-
rons. Our computational model POEM implements
constructionist ideas precisely by simulating the generation
of emotions dynamically through the interplay of func-
tional neural subnetworks for perception, conceptualiza-
tion, linguistic processing and so on, rather than through
activation of local networks specific to particular emotion
concepts.

A second perspective on emotions is sociological,
emphasizing that emotions reflect shared conceptual struc-
tures in the cultural background of human thought and
action (Heise, 2007; Hochschild, 1983; Kemper, 2006;
Von Scheve, 2014). Many social constructionist
approaches to emotion use qualitative methodologies that
are difficult to unify with rigorous theories of emotion.
Our implementation of the semantic pointer theory of emo-
tions in the POEM model contributes to unification by
using the techniques of affect control theory, treating emo-
tions as mathematical transformations in a vector space
constituted by the dimensions of evaluation, potency, and
activity (Heise, 2007; Rogers et al., 2014). POEM provides
a neuroscientific complement to affect control theory by
showing how representations and transformations can be
achieved in biologically plausible neural networks (see
Schröder & Thagard, 2013, for a similar strategy).

This strategy accommodates cultural variation in emo-
tional experience, (e.g., Mesquita & Frijda, 1992). Many
studies based on affect control theory have looked at the
affective basis of cross-cultural commonalities versus differ-
ences in human experience and action, including sub-
cultural variation within increasingly heterogeneous soci-
eties (e.g., Ambrasat et al., 2014; Ambrasat, von Scheve,
Schauenburg, Conrad, & Schröder, 2016; Heise, 2014;
Schneider, 1996). Because the POEM model takes
culture-specific affective connotations as input to simulat-
ing the generation of emotion, simulations can be sensitive
to culture by using different empirically-based sentiment
dictionaries (for empirical studies, see Heise, 2014;
Moore, Romney, Hsia, & Rusch, 1999). Emotion-
generating brains are sensitive to culture through the
learned semantic relationships between specific patterns
of neural activity.

The semantic pointer theory of emotion incorporates the
appraisal perspective in two ways, only one of which is
implemented in POEM. The conceptualization approach
to emotion generation in POEM is different from the sys-
tematic evaluation of the relevance of events in relation
to goals considered as the central mechanism of emotion
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generation in the different variants of appraisal theory
(Oatley & Johnson-Laird, 1987; Ortony et al., 1990;
Scherer et al., 2001). However, the dimensions of the
EPA space employed for modeling emotion in affect con-
trol theory and in POEM is relevant to appraisal
(Fontaine et al., 2007; Rogers et al., 2014; Scherer, Dan,
& Flykt, 2006): The evaluation dimension corresponds to
appraising the goal conduciveness of an object or event,
potency to the person’s perceived coping potential or con-
trol, and activity to the urgency of a behavioural reaction.
One could thus argue that appraisal mechanisms are subtly
built into the semantic structure of the representations that
give rise to emotional experiences. From such a point of
view, EPA vectors of concepts used in POEM do not rep-
resent intrinsic affective qualities of the concepts but rather
reflect generic, de-contextualized semantic appraisals of
these concepts by the raters that provided the EPA data
in empirical studies.

Such semantic appraisal might partly result from biolog-
ical evolution, as in simulation 1, where the pre-linguistic
concept of a snake causes an evaluation-potency-activity
pattern similar to the emotion of fear. Other situations
require more recent cultural representations, such as the
linguistic concept of a zoo in simulation 2, allowing the
reaction to a snake to be overridden. Pre-linguistic con-
cepts may have embedded appraisal patterns that reflect
past experiences of the species, whereas linguistic concepts
have appraisal patterns based on cultural learning. Either
way, these concepts allow individuals to quickly rely on
the knowledge of other individuals, significantly reducing
the computational burden of an individual brain when it
comes to appraising the goal relevance of a specific situa-
tion (for comparison of the computational tractability of
appraisal theory versus affect control theory, see Hoey
et al., 2016).

The second way of modelling appraisal compatible with
the semantic pointer theory of emotion uses a neural net-
work to model appraisal as a parallel process of identifica-
tion of emotions based on parallel satisfaction of many
goal-related constraints (Thagard & Aubie, 2008). In the
future, it would be interesting to develop a model that com-
bines the automatic, language-based appraisals now pro-
duced in POEM with the more systematic,
computationally intensive goal-based appraisals performed
by parallel constraint satisfaction.

The fourth major theoretical perspectives on emotions is
the basic emotions approach, which treats emotions as rel-
atively fixed, universal response programs embedded in the
brain (Ekman & Cordaro, 2011). This view has been criti-
cized as empirically untenable in light of recent neuroscien-
tific advances (Lindquist et al., 2012). Accordingly, the
semantic pointer theory of emotions and the POEM model
may seem at odds with the basic emotion approach, but
more contemporary basic-emotion approaches do not deny
the cultural and social variability of emotional experiences,
and allow that some aspects of emotional reactions and
some classes of emotions are more inflexible and cross-
culturally invariable than others (Ekman & Cordaro,
2011; Scarantino, 2014). This version of basic emotion the-
ory may be reconcilable with semantic pointer theory,
which allows for quick and possibly universal emotional
reactions relatively unaltered by cultural influences, as in
simulation 1 of a perceived snake quickly causing fear.

4.3. Outlook

Besides fitting with crucial tenets of major theories of
emotion, the semantic pointer theory of emotion aligns well
with related accounts of other cognitive phenomena. In our
discussion of limitations of the POEM model, we already
pointed out the close similarities to existing semantic-
pointer models of both automatic and intentional action
(Schröder et al., 2014; Schröder & Thagard, 2013, 2014).
Similarly, the semantic pointer architecture has been
employed to explain a variety of cognitive phenomena in
general such as visual perception, categorization, memory,
and motor control (Blouw et al., 2016; Eliasmith, 2013;
Eliasmith et al., 2012). While it is not feasible (and perhaps
not even desirable) to create a unified model of all neu-
rocognitive processes, our POEM model certainly adds to
the number of phenomena that can be explained with the
semantic pointer idea, thus enhancing both a ‘‘unified
mind” approach to emotion theory (cf. Barrett & Russell,
2014) and the status of semantic pointers as a general cog-
nitive architecture (cf. Eliasmith, 2013).

Happiness, sadness, pride, shame, and hundreds of
other emotions all involve conscious feelings that cannot
be ignored in a comprehensive theory of emotions. Fortu-
nately, the theory of consciousness as semantic pointer
competition employs many of the same mechanisms as
our account of emotion (Thagard & Stewart, 2014). Repre-
sentation by neural firing, binding of representations into
more complex semantic pointers, and competition among
semantic pointers generate conscious experiences. Emo-
tions differ from other conscious experiences such as per-
ceptions and thoughts because of different inputs to
neural representations and because of different bindings
that incorporate both physiology and cognitive appraisal.

Future research should address empirical tests of the
semantic pointer theory of emotion beyond its capability
of simulating six emotional phenomena. The advantage
of a detailed computational model with empirically-based
inputs to simulations is a high amount of predictive preci-
sion compared to other theories of emotion limited to ver-
bal descriptions. Improved understanding of emotions
should come from triangulating model predictions with
location information obtained from brain imaging studies
and temporal information obtained from EEG studies
(e.g., Conrad, Recio, & Jacobs, 2011; Schauenburg et al.,
2019). For example, new brain scanning techniques such
as diffusion tensor imaging are making it possible to inves-
tigate dynamic interactions among different brain areas.
We predict that such techniques will reveal that emotional
brains have rich interactions among cortical areas such as
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the orbitofrontal cortex relevant to appraisal and subcorti-
cal areas such as the amygdala relevant to physiological
perception, with corresponding activation in association
areas where binding of semantic pointers can occur.
Because the Semantic Pointer Architecture is now imple-
mented on neuromorphic chips that control simple robots,
future simulations could combine appraisal and bodily per-
ception in a physical robot. Neuromorphic hardware also
may provide energy-efficient virtual agents that perform
real-time sentiment analysis using the techniques of emo-
tion coding that we have described.

Possible applications of the semantic pointer theory of
emotions include clinical phenomena. All mental disorders
have substantial emotional components, for example the
excessive sadness that constitutes depression and the
intense fear that accompanies paranoid schizophrenia. A
theory of emotion should have implications both for
explaining such disorders and for suggesting effective treat-
ments. Thagard (2019b) argues that depression can be
explained as the result of breakdowns in semantic pointer
mechanisms, which are also relevant to understanding the
benefits of treatments using therapy (i.e., altered linguistic
appraisal patterns as in simulation 2) and antidepressants
(i.e., altered physiological inputs as in simulations 3 and 4).

Political ideology is another important application of
emotions (cf. Westen, 2008). Homer-Dixon et al. (2013)
have proposed a theory of ideological dynamics that
emphasizes the role of concepts tied to emotions. The
semantic pointer approach provides precise mechanisms
of emotion, thought, and action relevant to politics and
many other social phenomena. Dealing with social prob-
lems requires integrating physiological, cognitive, neural,
and social aspects of emotions.

Appendix A. Neural modeling1

To construct the computational model shown in this
paper, we make use of the Neural Engineering Framework
(NEF; Eliasmith et al., 2003). In this approach, we specify
a type of distributed representation for each group of neu-
rons, and we analytically solve for the connection weights
between neurons that produce the desired computations.
The distributed representation is a pattern of firing activity
of a group of neurons. A group of neurons can represent
various stimuli such as a word (e.g. offer or smoke), an
image or a sound. Any stimulus which can be expressed
as a vector of numerical values can be stored as a multidi-
mensional pattern. As a result, every concept is represented
as a random unique vector. All vectors have been normal-
ized to length one for computational convenience. To
leverage the ability of neurons to represent concepts, we
must define how a group of neurons can store a vector
using spiking activity (encoding). To make sense of such
1 This appendix is largely identical with the appendix to Schröder et al.
(2014), with modifications related to specific details of the present POEM
model.
vector, we also need to define methods that assign a con-
cept to each represented vector (decoding).

To define this neural encoding, the NEF generalizes
standard results from sensory and motor cortices
(Georgopoulos, Schwartz, & Kettner, 1986) that in order
to represent a vector, each neuron in a population has a
random ‘‘preferred direction vector” – a particular vector
for which that neuron fires most strongly. This preference
is biologically defined by the properties of neurons which
depend on the location of the neuron within a network
of neurons and its intrinsic characteristics. The more differ-
ent the current vector is from that preferred vector, the less
quickly the neuron will fire. In particular, Eq. (1) gives the
amount of current J that should enter a neuron, given a
represented vector x, a preferred direction vector e, a neu-
ron gain a and a background current Jbias. The parameters
a and Jbias are randomly chosen from a uniform distribu-
tion. Adjusting their statistical distribution produces neu-
rons that give realistic background firing rates and
maximum firing rates (Fig. 4.3 in Eliasmith et al., 2003).
These parameters also impact the model itself; for example,
having an overall lower average firing rate means that the
model will require more neurons to produce the same level
of accuracy.

J ¼ aexþ Jbias ð1Þ
This current can then be provided as input to any exist-

ing model of an individual neuron. The neuron response to
input vector x is a specific spike pattern. For this paper, we
used the standard Leaky Integrate-and-Fire neuron model,
which is a simple model that captures the behaviour of a
wide variety of observed neurons (Koch, 2004). Input cur-
rent causes the membrane voltage V to increase as per Eq.
(2), with neuron membrane resistance R and time constant
sRC. For the models presented here, sRC was fixed at 20 ms
(Isokawa, Levesque, Fried, & Engel, 1997). When the volt-
age reaches a certain threshold, the neuron fires (emits a
spike), and then resets its membrane voltage for a fixed
refractory period. For simplicity, we normalize the voltage
range such that the reset voltage to 0, the firing threshold is
1, and R is also 1. In the absence of input, the voltage
decays to the resting state value due to leak currents.

dV
dt

¼ JR� V
sRC

ð2Þ

Given Eqs. (1) and (2), we can covert any vector x into a
spiking pattern across a group of realistically heterogenous
neurons. Furthermore, we can use Eqs. (3) and (4) to con-
vert that spiking pattern back into an estimate of the orig-
inal x value. This lets us determine how accurately the
neurons are representing given values. Higher accuracy
can be achieved by employing more neurons, at the compu-
tational cost of memory and time. The intuitive idea behind
Eq. (3) is that we can take the average activity a of each
neuron i, and estimate the represented value x by finding
a fixed weighting factor d for each neuron. Eq. (4) shows
how to solve for the optimal d as a least-squared error min-
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imization problem, where the sum is over a random sam-
pling of the possible x values.

x̂ ¼
X

i

aidi ð3Þ

di ¼
X

j

C�1
ij !j !i ¼

X

x

aix Cij ¼
X

x

aiaj ð4Þ

Eqs. (3) and (4) allow the interpretation of the spiking
data coming from the models. We take the spiking output
of each neuron, decode it to an estimate of x and compare
that to the ideal vectors for the various concepts in the
model. If these vectors are close, then we add the text labels
(e.g. mother, love, child) to the graphs, indicating that the
pattern is very similar to the expected pattern for those
terms.

It should be noted that this produces a generic method
for extracting x from a spiking pattern without requiring
a specific set of x values to optimize over. That is, we can
accurately use d to determine if a particular pattern of
activity means mother even though we do not use the
mother vector to compute d. The sums used to compute
d in Eq. (4) are over a random sampling of x. Since x in
our simulations covers a 512-dimensional vector space
and because we use less than 100 samples in that space, it
is highly unlikely that the sampling includes exactly the
vector for mother (or any other semantic pointer), but as
shown in simulation plots, we can still use d to identify
the presence of those semantic pointers (or any others).

Importantly, we also use Eq. (4) to compute the connec-
tion weights between groups of neurons. In contrast to
other neural modelling methods which rely on learning,
the NEF optionally allows us to directly compute connec-
tion weights that will cause neural models to behave in cer-
tain ways. For example, given two groups of neurons, we
can form connections between them that will pass whatever
vector is represented by one group to the next group by
using the connection weights given in Eq. (5) (see
Eliasmith et al., 2003, for detailed proof).

xij ¼ ajej � di ð5Þ
The weights allow us to pass information from one

group to another, but to implement transition rules we
need to compute non-linear transformations. In NEF, this
can be achieved by computing d values for arbitrary func-
tions f ðxÞ:
d f
i ¼

X

j

C�1
ij !j !i ¼

X

x

aif ðxÞ Cij ¼
X

x

aiaj ð6Þ

As a result, if the first neural population represents a
vector x, the connections will cause the second population
to fire a pattern representing f ðxÞ. This approach allows us
to compute transition rules which map the particular input
vectors to particular output vectors in each of the neural
networks in the model.

In the last simulation, we use the operation known as
circular convolution to extract the subject or the object of
the action in a given sentence. Circular convolution takes
two vectors (x and y) and produces a third vector z, as
per Eq. (7). The vector z can be thought of as a compressed
representation of x and y, forming the basis of our seman-
tic pointers. Importantly, given z and y (or x) we can
recover an approximation of x (or y) by computing the cir-
cular correlation (the inverse operation of circular convolu-
tion) as per Eq. (8).

zi ¼
X

j

xjyi�j ð7Þ

x̂i ¼
X

j

zjyiþj ð8Þ

This is how semantic pointers can be decompressed in
their constituents. We use this property in Simulation 5,
where the sensory input is a sentence which contains a com-
bination of role and filler words. Roles are subject, object
and action, and filler words are mother, child and shout

at, respectively. To ensure that each filler word is assigned
to the right role, we apply circular convolution to role-filler
pairs and sum the resulting vectors. To retrieve individual
roles, we can apply circular correlation to the sentence vec-
tor. By correlating the vector child with the above sentence,
we obtain the vector object. The resulting vector will not be
exactly the vector for object due to small amounts of noise
resulting from correlation with other word pairs (e.g.
mother�subject and action�shout at). The noise is there as
vectors are not perfectly orthogonal, but they are suffi-
ciently dissimilar so the noise can be cleaned up from the
output. It is important to notice that this syntactic decom-
position of role-filler pairs would not have been possible if
we simply added the vectors: subject + object + action

+ mother + child + shout at. Given such a vector, it would
not be possible to determine which filler word was assigned
to which role word.

Appendix B. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at https://doi.org/10.1016/j.
cogsys.2019.04.007.
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Thagard, P., & Schröder, T. (2014). Emotions as semantic pointers:
Constructive neural mechanisms. In L. F. Barrett & J. A. Russel
(Eds.), The psychological construction of emotion (pp. 144–167).
Guilford.

Thagard, P., & Stewart, T. C. (2014). Two theories of consciousness:
Semantic pointer competition vs. information integration. Conscious-
ness and Cognition, 30, 73–90.

Von Scheve, C. (2014). Emotion and social structures: The affective

foundations of social order. New York: Routledge.
Westen, D. (2008). The political brain: The role of emotion in deciding the

fate of the nation. PublicAffairs.

http://refhub.elsevier.com/S1389-0417(18)30383-8/h0285
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0285
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0285
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0285
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0290
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0290
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0290
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0295
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0295
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0295
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0300
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0300
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0300
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0305
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0305
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0305
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0310
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0310
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0310
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0315
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0315
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0320
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0320
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0320
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0325
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0325
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0325
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0325
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0325
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0330
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0330
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0330
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0335
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0335
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0335
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0335
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0345
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0345
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0345
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0350
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0350
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0350
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0350
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0355
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0355
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0355
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0360
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0360
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0360
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0360
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0360
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0365
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0365
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0365
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0365
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0370
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0370
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0370
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0370
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0375
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0375
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0375
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0375
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0380
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0380
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0380
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0380
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0385
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0385
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0385
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0385
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0390
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0390
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0390
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0390
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0395
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0395
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0395
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0395
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0400
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0400
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0400
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0400
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0405
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0405
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0405
https://doi.org/10.4249/scholarpedia.l657
https://doi.org/10.3389/neuro.11.007.2009
https://doi.org/10.3389/neuro.11.007.2009
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0420
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0420
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0420
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0425
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0425
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0425
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0430
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0430
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0430
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0435
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0435
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0435
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0440
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0440
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0440
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0440
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0440
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0445
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0445
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0445
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0445
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0445
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0450
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0450
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0450
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0450
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0455
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0455
http://refhub.elsevier.com/S1389-0417(18)30383-8/h0455

	The semantic pointer theory of emotion: Integrating �physiology, appraisal, and construction
	The Semantic Pointer Architecture (SPA)
	Biological mechanisms
	Mathematics and computation
	Comparisons
	Distributed representations
	Rules
	Schemas
	Modality-specific simulations
	Bayesian inference
	Somatic markers


	Emotions in the Semantic Pointer Architecture
	POEM: a neurocomputational model of emotion
	Structure of the model
	Empirical data in the model
	Simulations
	Results
	Simulation 1. Perception-based emotion
	Simulation 2. Dynamics of appraisal
	Simulation 3. Embodiment
	Simulation 4. Interaction of physiology and cognitive appraisal
	Simulation 5. Reasoning about emotions
	Simulation 6. Mixed emotions


	Discussion
	Strengths and limitations of the POEM model
	Relations with other theories of emotion
	Outlook

	Neural modeling1
	Supplementary material
	Supplementary material
	References


