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ABSTRACT The most accurate stereo disparity algorithms take dozens or hundreds of seconds to process
a single frame. This timescale is impractical for many applications. However, high accuracy is often not
needed throughout the scene. Here, we investigate a ‘‘foveation’’ approach (in which some parts of an image
are processed more intensively than others) in the context of modern stereo algorithms. We consider two
scenarios: disparity estimation with a convolutional network in a robotic grasping context, and disparity
estimation with a Markov random field in a navigation context. In each case, combining fast and slow
methods in different parts of the scene improves frame rates while maintaining accuracy in the most
task-relevant areas. We also demonstrate a simple and broadly applicable utility function for choosing
foveal regions, which combines image and task information. Finally, we characterize the benefits of defining
multiple individually placed small foveae per image, rather than a single large fovea. We find little benefit,
supporting the use of hardware foveae of fixed size and shape. More generally, our results reaffirm that
foveation is a practical way to combine speed with task-relevant accuracy. Foveae are present in the most
complex biological vision systems, suggesting that they may become more important in artificial vision
systems, as these systems become more complex.

INDEX TERMS Stereo vision, disparity, convolutional neural networks, Markov random fields, belief
propagation, fovea, navigation, grasping.

I. INTRODUCTION
Many stereo vision algorithms [18], [45] take so long to run
that they are impractical for some of their main applications,
including robotics and autonomous driving. It has long been
recognized (e.g. [3], [16], [30], [44]) that an effective way to
work around limits of computing power is to use a ‘‘fovea’’.
A fovea (analogous to a fovea in biological vision) is a small
image region that is processed more intensively than the rest
of the image, often at higher resolution. It is typically oriented
to an important or useful feature. Rapid growth in computing
power has not diminished the need for foveae, due to parallel
increases in camera resolution and algorithmic complexity.

A. FOVEATION IN PRIMATE VISION
Foveae are central to the organization of primate visual sys-
tems. In primate vision, a large fraction of the visual cortex
is dedicated to the central 1◦ of the visual field, with pro-
gressively less cortical area used for more peripheral parts

of the visual field [7]. The eyes move frequently, typically
jumping to a new target several times per second, to sense
and analyze detail from different parts of the scene in series.
Vision uses about half of the primate brain, so this strategy is
essential for having good vision without an extremely large
head. Artificial visual systems are much less power-efficient
than primate vision systems, suggesting that foveae may be
even more important for advanced autonomous robots than
for primates.

Primates decide where to move the fovea through sophis-
ticated systems for directing visual attention and eye move-
ments (reviewed by [19], [27], [38]). Computational mod-
els of these systems, and applications to computer vision
and robotics, are reviewed by [4], [12], [24], and [42].
As discussed in these reviews, human eye movements are
occasionally directed to salient visual features (such as the
onset of motion), but in most situations are overwhelmingly
determined by task demands (see also [46]). Examples of
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task-dependent targets include the next word while read-
ing [36], the edge of an obstacle while navigating [37], an
object a person wants to pick up [23], etc. The visual target
can even be a completely featureless region. For example,
people often glance at a spot where they intend to put some-
thing, even though the spot may be visually indistinct [40].
However, eye movements are very often determined by a
combination of bottom-up and top-down factors.

A simple example of bottom-up/top-down interaction
occurs in visual search tasks. Viewing an image ofmany small
shapes, humans can rapidly find shapes with a distinctive
feature of their choice (e.g. yellow objects, or horizontal
objects, etc.) Interestingly, visual search for more complex
conjunctions of features (e.g. horizontal yellow shapes) is
slower and less automatic [41].

B. SCOPE OF THE PRESENT STUDY
In this study, we experiment with foveation to allow stereo
disparity estimation at high frame rates, with high accuracy in
task-relevant parts of the scene. Past work on foveated stereo
(e.g. [2], [17], [25]) has mainly considered foveated hard-
ware, but we consider software approaches that operate on
different image regions in different levels of detail (see [15]
for related work). We explore this approach in two contexts,
focusing on dense disparity estimation due to its importance
in robotics. First, we consider stereo images of small items on
a table. This scenario is relevant to robotic grasping. Disparity
is an important cue for three-dimensional object shape, but
good disparity estimates are computationally expensive, and
many state-of-the-art grasping systems (e.g. [28], [29]) fall
back on monocular color images. For this application, we
used a recent convolutional neural network (CNN) [45] that
has fast and slow variants.

We also explored the same general approach in a sec-
ond context, with navigation-relevant results on KITTI 2012
benchmark data. For this scenario, we adapted a multi-
scale loopy belief propagation method on a Markov random
field [9], so that it calculated the finest scales only in the
fovea. In each of these cases, we substantially improved frame
rates while maintaining accuracy in the most important image
regions.

Taking inspiration from primate visual search, we defined
‘‘important regions’’ using simple, task-relevant visual
features that can be computed quickly. Task-relevance is
inherently task-specific [8]. However, for concreteness, we
propose a class of features that we believe is fairly widely
applicable in disparity estimation. The features are based on
protrusion from a background. For example, in a grasping
context, wemodeled a support surface as a plane, and oriented
the fovea to things above the plane. In a driving context, the
background was the time-averaged disparity, which takes on
the shape of the road and surrounding buildings. This directs
the fovea to regions in which surfaces seem to be closer
than normal for their part of the visual field, and which may
therefore be important in short-term decisions. (See [31], [34]
for related uses of depth as attention cues.)

Given a fixed processing budget, what is the best strat-
egy for stereo vision? Our hypothesis is that foveation can
improve stereo vision, over the alternative of uniform pro-
cessing over the entire field of view. As such, we focus our
experiments on how the judicious allocation of processing to
the fovea can improve the accuracy of goal-relevant stereo
information.

II. METHODS
We propose a disparity estimation approach to reduce compu-
tation time while maintaining accuracy in regions of interest.
To achieve this, we use fast and less accurate disparity estima-
tion across most of the image, and only apply a slower, more
accurate disparity estimation in the regions of interest. These
regions of interest are task-specific; the number of regions,
their size, and where they are located over time, all vary
depending on the task. Due to the analogue with the human
eye, where high-resolution information is only collected from
the fovea (the central region of the retina) and some parts of
the brain predominantly process foveal information, we call
our region of interest the fovea (or foveae in the case when
we have more than one such region at a time). See [15] for a
closely related approach.

Our method can be used to achieve a balance of accuracy
and speed between fast and slow variants of the same dis-
parity estimation algorithm, or between different disparity
estimation algorithms where one is faster but less accurate
than the other. Here, we apply our method to two scenarios: a
navigation scenario, and a grasping scenario. The navigation
scenario uses the KITTI dataset [14], and we apply fast
and slow variants of a multi-scale belief propagation (BP)
algorithm [9]. The grasping scenario uses our own data col-
lected from various objects on a tabletop, meant to simulate a
situation typically encountered when controlling a robot arm
to grasp an object. For that scenario, we apply fast and slow
variants of a deep-learning based disparity estimator [45].

Figure 1motivates our approach in the navigation scenario.
Navigation, particularly navigation with fast moving vehicles
such as cars, requires depth maps that are updated many times
a second to be able to avoid obstacles in a quickly changing
scene (for example, a child running onto the road). Therefore,
there is a limited amount of time to process each frame. As the
figure shows, running the iterative BP algorithm on a higher-
resolution frame takes almost 0.5s, even with a single iter-
ation. Running the algorithm on a lower-resolution frame is
much faster, but the accuracy is limited by the resolution, even
with high numbers of iterations. By running the algorithm at
low resolution for most of the image, and high resolution only
in the task-important parts of the image, we move our plot
closer to the bottom-left area of the figure, i.e. faster runtimes
than the slow variant of the algorithm but better accuracy than
the fast variant.

We begin by presenting the general framework of our
method (Section II-A), and the details of how we estimate
task-specific cost and choose the fovea position both gener-
ally and for the two example tasks (Section II-B). We then go
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FIGURE 1. Performance of multi-scale belief propagation on example
data, illustrating the motivation for our approach. Disparity estimation
error is plotted vs. runtime. The right curve (circles) were obtained with a
high-resolution stereo image pair, and the left curve (squares; higher
error) with lower-resoluton versions of the same images. Within each
curve, the runtime varies with numbers of iterations at each scale (1, 2, 3,
4, 5, 7, 10, and 15 iterations). Given a time budget of, for example,
0.25s/frame, it would not be possible to process these images at high
resolution. However, if certain areas in the images were of greater
practical interest, then results that are nearly as useful might be achieved
by processing just those areas at high resolution. The data are 50 frames
from the KITTI dataset [14], downsampled by a factor of two (high
resolution) and four (low resolution) in each dimension.

into more detail on the grasping (Section II-C) and navigation
(Section II-D) scenarios, including details of the disparity
estimation algorithms, and specifics on the task-specific cost
and fovea selection as it pertains to each scenario.

A. FRAMEWORK
Figure 2 is a schematic of the general structure of our
approach. The input to the system is a stereo image pair.
First, the fast stereo method is applied to the input, creating
a ‘‘rough’’ (low accuracy) disparity image. Applying a task-
specific cost function, the rough disparity image generates an
importance image, indicating which areas of the image are
most in need of more accurate disparity estimation. One or
more fovea locations are then selected to cover these impor-
tant areas, and the more accurate (slower) disparity method
is applied in these areas. These improved disparity estimates
are then pasted into the rough disparity image, resulting in
a global disparity estimate with improved accuracy in the
foveated regions.

B. FOVEA PLACEMENT
The fovea position is chosen in an attempt to minimize task-
specific cost functions of the form,

Cx,y =
∑
x,y

wx,ymin
(∣∣∣dx,y − d∗x,y∣∣∣ ,Csat

)
, (1)

where dx,y is the estimated disparity at pixel (x, y), d∗x,y is
ground-truth disparity, wx,y is a per-pixel weight map, and
pixel-wise errors saturate at Csat. We do not evaluate Cx,y at
runtime, rather we reduce this cost indirectly by using more
accurate stereo estimation methods in high-weight regions.

The weights wx,y are task-specific, and may be static, or
vary over time based on a preliminary disparity estimate d0x,y.
In our examples, this preliminary disparity estimate comes
from the fast variant of the chosen disparity estimation algo-
rithm. (We have also obtained these estimates by remapping
depth estimates from previous frames in video).
In navigation, one possible weighting scheme would be

to emphasize regions in the direction of travel, because the
risk of collisions with obstacles is greatest in this direction.
Another would be to emphasize regions in which surfaces are
relatively close (i.e. disparity is high). However, both of these
schemes emphasize the close region of the ground, which is
always present and often clear of obstacles. Instead, we define

wdx,y = max(d0x,y − d̄x,y − dth, 0), (2)

where d̄x,y is the mean of dx,y over time, and dth is a
small threshold. This approach emphasizes parts of the image
in which surfaces are closer than usual. We used wx,y =
wdx,yw

s
x,y, where w

s
x,y is a static weight template that is higher

in the horizontal centre of the image (the direction of travel)
than the edges, and also lower at the top of the image, which
typically contains sky. Figure 3 shows an example frame
from the KITTI dataset [14] in which a cyclist is strongly
emphasized by this method. To avoid startup transients, we
calculated d̄x,y over full benchmark videos before processing.
This is unrealistic for deployment on a robot, but a pixel-
wise recursive low-pass filter would have a similar effect with
minimal computational cost.
We chose dth = 1 to ensure that the method focuses on

regions that are substantially different than expected. If it
is set to zero, the method may choose regions where the
preliminary disparity estimate is very slightly larger than
expected over a large region. For example, if the prelimi-
nary estimate predicts that all parts of the road surface are
one pixel closer than expected, it may choose to put the
fovea on that location, rather than a location where a smaller
object (e.g. a pedestrian) is significantly closer than expected.
By choosing dth > 0, we force the algorithm to ignore
small, widespread disparity differences, in favour of larger
disparity differences in local regions. This can also help draw
the fovea to areas where the disparity estimator has predicted
an erroneous ‘‘phantom’’ object at high disparity. We do not
have a formal rationale for setting dth = 1, but heuristically,
it should be greater than most of the noise and smaller than
the relevant obstacles.
The cost, shown in equation (1), depends on the ground-

truth disparity d∗x,y, which is obviously not available to the
algorithm in the real-world. Rather, we must have a model
of the types of errors made by the disparity estimation
algorithm. In this work, we assume that errors are equally
likely in all image regions, and are equal in magnitude at
all disparities. This reduces the task of fovea placement to
choosing a region that covers the greatest total wx,y, cal-
culated efficiently using an integral image. This approach
minimizes the cost if the error is statistically uniform over
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FIGURE 2. General structure of our approach. The shaded boxes correspond to single-channel
images (luminance, disparity, and importance).

the image and lower for the slow method (fovea) than the fast
method. A more accurate model of the disparity estimation
errors could account for effects like larger errors near the
image edges (due to fewer nearby points to provide context),
or larger absolute errors at higher disparities. Such a disparity
model could provide expected disparity errors at each point,
E
[
min

(∣∣∣dx,y − d∗x,y∣∣∣ ,Csat

)]
. In that case, we would choose

the fovea position such that it covered the region with the
highest weighted difference in expected cost between the
slow and fast methods.

FIGURE 3. Weighting by disparity in excess of the average. Top: Average
disparity d̄x,y estimated over a long image sequence. Centre: Disparity
dx,y estimated in a single frame. Bottom: The weight w = wswd , where
ws is a static weight template that emphasizes the direction of travel, and
wd

x,y = max(dx,y − d̄x,y , 0).

Contrary to the example of Figure 3, the high-weight pixels
are not always co-located. Therefore we also experimented
with dividing the fovea into multiple sub-foveae with the
same total number of foveal pixels. Whereas optimal place-
ment of a single fovea with given height and width simply
corresponds to finding the maximum in a two-dimensional

image, it is not practical to find the global optimal placement
of multiple foveae. Instead, we used a greedy approach in
which we placed a single sub-fovea optimally, set the weight
within it to zero, then placed another single sub-fovea opti-
mally, etc. We calculated the total remaining weight with
different numbers of sub-foveae, and used the number of sub-
foveae with the lowest weight. These computations were all
performedwith images that were downsampled several times,
to reduce the run time.

For grasping, we wish to have the best depth estimates of
objects that are potential grasp targets, and ignore objects
that are part of the background. In our grasping scenario,
the main background object is the table. After determining
the preliminary depth estimate, d0x,y, using the fast variant of
the depth estimation algorithm, we used RANSAC [11] to
estimate the plane of the table. We then defined the back-
ground distance d̄x,y as the expected depth of the table at
each pixel, and employed the same weighting scheme as in
navigation (equation (2)), in this case emphasizing points that
were nearer than the table. For simplicity, we set the static
weightwsx,y uniformly across the image. Other choices ofwsx,y
are possible, e.g. higher weighting of regions closer to the
camera, or closer to the current location of the gripper.

C. GRASPING SCENARIO
Grasping is usually not highly time-sensitive, but it requires
accurate shape estimates. In this scenario, we used a pair of
relatively slow and accurate stereo methods based on convo-
lutional neural networks (CNNs).

1) CNN-BASED DISPARITY ESTIMATION
Zbontar et al. [45] trained CNNs to calculate the matching
cost across two rectified images. They developed two kinds
of networks: a faster (less accurate) network and slower (more
accurate) network. Both of the networks attempt to find the
similarity between two image patches at a particular disparity.
At each disparity level to be tested, an image patch is grabbed
from both the left and right image. One of those patches
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is transposed some number of pixels to the side equal to
the current disparity level, and the similarity is computed.
The two networks differ in how they compute the similarity
between two image patches. The fast network computes the
dot product between feature vectors produced from the left
and right images, while the slow network includes additional
layers that are trained to produce a better similarity metric
than the simple dot product. This results in a 3D tensor of
dimensions disparitylevel × height ×width, where each ele-
ment represents the probability that particular pixel should be
classified at that particular disparity. The number of disparity
levels to be checked highly impacts the running time of the
neural nets. On 1200×1000 pixels images with 350 disparity
levels, the fast method takes about 5.67 seconds to run, while
the slow method takes 467 seconds, even though both CNNs
are GPU accelerated. We chose to check for the disparties of
up to 350 pixels since the objects in our scene were fairly
close to our camera, given its baseline of 120mm.

The fast method can have substantial artifacts that can
extend the appearance of an object well beyond its physical
boundaries, which would impair grasp planning. The slow
method does not suffer from these artifacts, but it has an
excessive runtime for grasp planning.

2) METHOD
We were not aware of standard grasping-related stereo
datasets, so we collected new images with a ZED stereo cam-
era from StereoLabs. The grasping-related scenario involves
household objects on a table. We assume the support surface
can be approximated as a 2D plane.

The fast method was used over the entire image to arrive
at an initial estimate for d0x,y. These pixel values were passed
into a linear regressor that used RANSAC to find a suitable
plane equation to model the table. This plane defines d̄x,y, the
background disparity at each pixel, from which we calculated
wdx,y (equation (2)). We then found objects of interest as
follows: the image was segmented into candidate objects
(using SciPy’s label function), ignoring small groups of pix-
els (typically including outliers that were actually part of the
table). Finally the object with the highest total weight was
chosen. Once it was located, we extracted left and right object
images from the full images. Before passing them to the slow
network, we used d̄x,y to estimate the disparity that pixel (x, y)
would have if the object were not present. This was used to
set a new lower bound on the disparity, further reducing the
number of disparity levels that had to be checked. The object
images were then passed through the slow network. The final
disparity map consisted of the slow estimate of the object, and
the fast estimate of the rest of the scene. Figure 4 shows some
of the stages in this process.

D. NAVIGATION SCENARIO
For the navigation scenario, we applied multi-scale loopy
belief propagation (BP) to the KITTI driving dataset. We had
two reasons for using a different stereo method here than in

FIGURE 4. Weighting by disparity in excess of the background. Top:
Background disparity d̄x,y estimated using RANSAC to model the table.
Centre: Disparity dx,y measured using the fast network. Bottom: The
weight wd

x,y = max(dx,y − d̄x,y − dth, 0).

the grasping scenario. First, we wanted to test our general
approach with multiple stereo algorithms. Second, navigation
is typically more time-sensitive than grasping, so we wanted
to use a method that runs at a more realistic frame rate in this
case.

1) DATASET
The methods were tested on data from the 2012 KITTI
Vision Benchmark Suite [14]. This dataset includes high-
resolution rectified stereo images (1242 × 375 pixels) taken
at ten frames/s from the roof of a car during city driving.
Rectified images and odometry are available for a number
of long sequences. Ground truth depth (but not odometry)
is available for single frames within a number of short
20-frame sequences. Ground truth is from a LIDAR sensor.
The ground-truth points are fairly dense, because points were
combined from several sweeps of the sensor using a semi-
manual registration process. The scenes include static obsta-
cles such as buildings and parked cars, and moving obstacles
such as cars, pedestrians, and people on bicycles.

2) MARKOV RANDOM FIELDS AND
LOOPY BELIEF PROPAGATION
In order to explain our combination of fast and slow methods
in this scenario, we must first briefly review Markov random
fields (MRFs) and belief propagation (BP).

Pixel-by-pixel stereo correspondences are frequently
ambiguous, so disparity estimation is improved by con-
sidering spatial correlations. The full correlation matrix is
unmanageable, because disparity images of practical inter-
est have tens of thousands of pixels or more. A successful
approach [39] has been to model correlations in disparity
images with Markov random fields. In a Markov random
field (MRF), each region is independent of the rest of the
field, conditional on values in the region’s boundary. That is,
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p(xi|xb, xo) = p(xi|xb), where xi is the part of the field inside
the boundary, xb is the part that comprises the boundary, and
xo is the part outside the boundary [10]. There are various
ways to estimate the maximum a posteriori disparity from
the MRF.

One such method is belief propagation (BP), a gen-
eral algorithm for inference on graphical models (including
Bayesian networks as well as MRFs). BP provides exact
solutions on trees. Loops in the statistical relationships of
Markov random fields prevent exact inference, but ‘‘loopy’’
BP typically produces good approximations after running for
a few iterations [33].

The starting point for our work in the navigation scenario is
a BP implementation by Felzenszwalb and Huttenlocher [9]
that has several optimizations, which together accelerate the
algorithm by several orders of magnitude. One of these opti-
mizations is a multi-scale method that reduces the number
of iterations needed to propagate information to distant parts
of the image. Our modification consists simply of executing
finer scales (which take up most of the computation time)
only in sub-images rather than over the whole image.

The BP implementation of [9] results in a labelling f ,
which assigns a label fp ∈ L to pixel p, where L consists of
all possible disparities. The algorithm minimizes an energy
function

E(f ) =
∑
p∈P

Dp(fp)+
∑
p,q∈N

V (fp − fq) (3)

where Dp (the ‘‘data cost’’) is the cost of labelling pixel p as
fp, and V (fp − fq) (the ‘‘discontinuity cost’’) is an additional
cost of labelling neighboring pixels p and q as fp and fq.
Because the disparity of neighboring pixels is strongly cor-
related, a larger discontinuity cost is assigned for larger dif-
ferences between neighbors (here the immediately adjacent
pixels, horizontally and vertically.) Specifically,

V (fp − fq) = min
{∣∣fp − fq∣∣ ,Vmax

}
, (4)

where Vmax is a saturation value that limits the cost of large
discontinuities. The saturation value is used because while
most discontinuities are expected to be small, some (at object
boundaries) are expected to be larger, with no particular
expectation about how much larger. Minimizing E(f ) corre-
sponds to maximum a posteriori estimation in a probabilistic
context [9].

BP involves iterative computation and exchange of mes-
sages between pixels. In iteration t , the message mtp→q(fq)
from pixel p to pixel q for disparity fq is [9]

mtp→q(fq)=min
fp

V (fp − fq)+ Dp(fp)+ ∑
s∈N (p)\q

mt−1s→p(fp)


(5)

where N (p)\q consists of the neighbors of p other than q.
After T iterations, final labels f ∗p are assigned as

f ∗p = argmin
fp

D(fp)+ ∑
q∈N (p)

mTq→p(fp)

. (6)

In stereo estimation, the first step in this process is to
calculate a data cost volume in terms of image coordinates
p = (x, y) (where x and y are the horizontal and vertical
image coordinates, respectively), and disparity (in pixels) d .
The data cost volume is

Dx,y,d = min
{∣∣∣I lx,y − I rx−d,y∣∣∣ ,Dmax

}
, (7)

where I l and I r are luminance of the left and right images,
and Dmax is a saturation value.

Prior to calculating the data cost, we processed the images
with a Laplacian filter to emphasize edges.

3) LOCAL MULTI-SCALE BELIEF PROPAGATION
We expand on [9] by using different numbers of scales in
different parts of the image. The number of operations in
a single scale of [9] is order O(nl), where n is the number
of pixels and l is the number of disparities. The majority of
the computational cost is incurred at the finest scale, which
has four times as many pixels as the next-finest scale. Our
system processes the finest one or two scales only in the
foveal region. The resulting depth estimate is similar to that
of full multi-scale BP in the fovea, but (depending on fovea
size) it can run nearly as fast as if the finest scales are omitted.

Importantly, messages from coarser scales are used to
initialize messages in finer, foveal scales. This allows infor-
mation from coarse scales to propagate from other image
regions across the fovea, which makes depth estimates in the
fovea continuous with those in the surrounding areas, and
also makes them similar to those of full-resolution BP. (They
differ somewhat around the fovea border, due to propagation
across the border in the fine scale of full BP.) This fits into
the general structure provided in Figure 2, with the important
addition that the accurate stereo method is initialized with
values (i.e. messages) from the fast stereo method, rather than
being an independent calculation at specific regions (as in the
grasping scenario).

TABLE 1. System parameters and values used in performance tests.

The system parameters and their values for different tests
are listed in Table 1. Parameter optimization was performed
using the package Hyperopt [1].
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FIGURE 5. Example disparity images of a graspable object produced with
CNNs. Left: Processed with the fast network, many artifacts. Right:
Processed with the slow network.

FIGURE 6. Examples of stereo disparity estimation with foveal
multi-scale belief propagation. The white + marks indicate fovea centers.
These examples were processed at multiple resolutions, with equal
computational demands at each of these resolutions (e.g. a parafoveal
region twice the size of the fovea had half the resolution). In the top
panel, the fovea resolves a cyclist at high resolution. There is a large
artifact in the top-center of the image. In the bottom panel (same frame),
the fovea is instead centered on this artifact, and corrects it.

III. RESULTS
We evaluated the effectiveness of our approach in both the
grasping and navigation scenarios. In this section, we first
present a number of motivating examples that illustrate how
our method helps improve disparity estimates in a number
of specific cases (Section III-A). We then present qualitative
results (as ground truth is not available) for the grasping
scenario (Section III-B). For the navigation scenario, ground-
truth is available, so we present a more detailed quantita-
tive analysis of the accuracy and runtime of our method
(Section III-C). Finally, we examine the effects of split-
ting up the foveal area into multiple independent regions
(Section III-D).

A. MOTIVATING EXAMPLES
Figure 5 shows two disparity images obtained from the same
inputs. The left image was processed using the fast network.
There are many artifacts that could be interpreted as protru-
sions from the object. These protrusions would affect grasp-
ing decisions on an autonomous robot. The right image was
processed with the slow network. Protrusion-like artifacts
were reduced substantially, and gradients were smoother and
more distinct. This representation would be more suitable for
grasping applications, but the run time of the slow method

is at least an order of magnitude longer than that of the fast
method.

Figure 6 shows two disparity estimates from a single frame
in the navigation scenario, with the fovea in different places
(the centers are marked with white + signs). These examples
were processed with multiple levels of resolution, with a
small high-resolution region at the fovea center and multiple
levels of decreasing resolution with greater distance from the
fovea center, analogous to the human eye and visual cortex.
The total runtime of BP in these examples is only a few times
as great as BP at the lowest resolution. In the top frame, the
fovea clearly resolves the cyclist, while in the bottom frame
the fovea correctly interprets a low-disparity region in which
the top frame has an artifact.

FIGURE 7. Example foveation sequence. The fovea boundary is shown as
a white square, and the frames are ordered from top to bottom.

Figure 7 shows a sequence of foveations generated by
our weight-covering method (Section II-B) while driving
between parked cars. The sequence is from top to bottom.
The cars on the right are foveated in turn. The cars on the left
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have slightly lower weights than those on the right, and are
never foveated.

FIGURE 8. An example of greedy-optimal placement of 30 sub-foveae
(top) and 2 sub-foveae (bottom), with the same total area, overlaid with
the corresponding weight image w = wswd . In the weight image, darker
blue corresponds to low weight. In this example, two sub-foveae
provided the best coverage of weighted pixels, compared to options of
between 1 and 30 sub-foveae.

Figure 8 shows examples of breaking the foveal area into
multiple sub-foveae. In the top image, the fovea has been bro-
ken into 30 sub-foveae that are placed individually. A greater
number of smaller foveae can cover irregular shapes more
precisely. However, because our greedy method of sub-fovea
placement is not globally optimal, more sub-foveae are not
guaranteed to cover a larger cost. In this example, numbers
of sub-foveae from 1-30 were compared (with the same total
foveal pixels in each case), and two sub-foveae provided the
best coverage (bottom image).

B. GRASPING SCENARIO RESULTS
The following results were obtained using an NVIDIA Titan
X to run the CNNs trained by Zbontar et al. [45] and using the
ZED stereo camera from StereoLabs. StereoLabs provides
their own stereo algorithms, but we have not used those in this
analysis. Figure 9 shows estimated disparity for four different
scenarios. The foveated method was able to remove a number
of artifacts in the disparity estimate, as compared with the
fast method, without the full computational cost of the slow
method. In the center-left column, the bottle has a bar-like
artifact on left hand side and uneven edges when using the
fast method. Both the slow and foveated methods removed
the artifact and smoothed out the edges. However, the slow
method took more than five times as long to achieve those
results (see times in Figure 9). In the last column we see a
more complicated grasping scenario. In this case it is possible
to devote resources to both objects in the image. However, it
is more likely that only one of the object is currently relevant.
In this scenario we added a weight term that corresponded
to the distance from the point to a (phantom) gripper. The
bottle was then chosen as the object to foveate in order to

minimize Cx,y. Resources were then allocated there even
though it is farther away from the camera.

Improvements in runtime were even greater in the other
two examples: the foveated cup and can were roughly ten
times faster than using the slow method. Figure 10 shows
a close up of the cup from Figure 9. In this case, accuracy
improved in the body and lip of the cup. The fast method
shows an uneven surface, with some holes and discontinu-
ities, but the slow and foveated methods estimate a smooth,
continuous surface.

In summary, using the foveated method allowed greater
accuracy in the task-relevant sections of the image, while
reducing run time. A limitation is that the speed improve-
ments depend on the area subtended by the objects of interest.
Thus in the limit as a large or close object fills the image, the
foveated time will approach the slow time.

C. NAVIGATION SCENARIO RESULTS
Because ground truth is available for the KITTI data, we
examined accuracy in more detail for this scenario. We tested
the dependence of both runtime and accuracy on the total
foveal area. In general, our expectations were that runtime
would increase almost linearly with the foveal area, and that
accuracy would improve with increasing foveal area. For
example, with zero foveal area, speed and accuracy should be
roughly equal to that of full BP with down-sampled images.
On the other hand, setting the fovea area equal to the image
area should result in speed and accuracy equal to that of
full multi-scale BP. We further anticipated that weighted
error would drop sharply with increasing foveal area, since
we tried to align the fovea with the highest-weight regions.
For these experiments, we used the best of 1-5 sub-foveae
(see Section III-D).

Figure 11 shows an example of results that are in keeping
with these expectations. In order to achieve a range of run-
times consistent with the frame rate of the KITTI data (10Hz),
the full images (roughly 1242 × 375 pixels with minor
variations) were downsampled by a factor of two in each
dimension, the finest scale of belief propagation was omitted
in the fovea, and the two finest scales were omitted in the
periphery.

The horizontal axis is the total foveal area as a fraction
of image area. When we held the fovea at the centre of the
image (blue line), error dropped roughly linearly as a function
of foveal area. In contrast, weighted error (centre panel)
dropped more steeply when a single fovea was aligned with
high-weight regions, quantifying the benefit of moving the
fovea. It dropped more steeply still when several sub-foveae
were allowed. The run time with zero foveal area includes
both the calculation of data cost, and belief propagation at
the coarser scales. To reduce the time needed to calculate
the data cost in the periphery, the cost was calculated on
subsampled pixels, at the resolution of the peripheral belief
propagation.

Performance was generally poorer in high-weight
regions, i.e. around nearby obstacles, than in the more
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FIGURE 9. Four example images from the grasping scenario. Each column presents a different scenario for grasping, with the rows showing the left image
from the stereo pair, the disparity image from the fast and slow disparity estimators, and the disparity image from our foveal method. The foveal method
is able to localize the potential target object and place the fovea there for an improved estimate of the object shape.

FIGURE 10. Comparison of the different disparity measurements in the
area around a cup. The foveated method (right) provides a similar
disparity estimate to the slow method (centre), and a much better
estimate than the fast method (left).

smoothly-changing background. Performance in these
regions was also quite variable from frame to frame
(not shown).

The run times (bottom panel) are mean total times per
frame (for calculation of the data cost, belief propagation,
and inference) on a MacBook Pro with a 2.5GHz Intel Core
i7 processor. Additional time for single fovea selection was
about 50µs.

We found that the weighted errors were sensitive to the way
we calculated the data cost. Superior results were obtained by
calculating the data cost at each pixel (i.e. same resolution as
the fovea), and downsampling by summing the results across
windows of 2× 2 pixels, with a slight increase in runtime.

TABLE 2. Results on the 2012 KITTI Stereo Benchmark. Out-Noc:
percentage of unoccluded pixels with >3-pixel error. Out-All: same except
including occluded pixels. Avg-Noc & Avg-All: mean absolute errors
(in pixels) over unoccluded pixels and over all pixels, respectively. The top
two rows are from the MRF method with the fovea size set to zero
(first row) and the full frame (second row). The corresponding runtimes
are per frame on a single core of a MacBook Pro (2.5 GHz Intel Core i7).
For additional context, results in the last two rows are reproduced
from [45] for the fast and slow CNN methods that we adopted for our
grasping scenario. These runtimes were with a NVIDIA GTX Titan X.

There are no benchmarks that specifically address ourmain
goal (reduction of runtime while maintaining task-relevant
performance). However, to put these results in context, we
evaluated unweighted errors against the KITTI 2012 stereo
benchmark test data. Average absolute errors, and percent-
ages of pixels with >3 pixels error, are shown in Table 2 for
both 0% fovea and 100% fovea. At the time of submission,
the 0% and 100% fovea results correspond to 77th-place and
65th-place rankings on the KITTI benchmark in terms of the
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FIGURE 11. An example of performance as a function of fovea size. The
fovea size (horizontal axis) varies as a fraction of the total image size,
from 0 to 1. The top panel shows unweighted error based on LIDAR-based
ground-truth disparity. The error measure is the mean absolute difference
between estimate and ground truth, with the difference in each pixel
clipped at a maximum of 20 pixels, to de-emphasize outliers. The blue
line corresponds to a single fovea centred on the image (i.e. not moved to
high-weight regions). The green line shows the same error with a single
mobile fovea, and the red shows the same error with up to five mobile
sub-foveae. The centre panel is identical except that the error is
weighted, with mean weight normalized to one. Moving a single fovea to
high-weight regions made the error drop more sharply with increasing
foveal area (green vs. blue line), and more so when up to five sub-foveae
were allowed (red line). The weighted error was higher overall than the
unweighted error, reflecting the fact that our weighting scheme
emphasized more challenging regions. The bottom panel shows how run
time increased with fovea size.

percentage of unoccluded pixels with greater than 3-pixels
error. However, higher-ranked methods have an average run-
time of 80s per frame, rather than < 0.2s. These results are
not directly related to task-weighted error (our main interest),
but they provide context in terms of a standard benchmark.
Slight improvements on these results were obtained by gaus-
sian filtering of the disparity estimates.

Counter-intuitively, with our improved calculation of
data cost, belief propagation at the finest scale sometimes
increased the weighted error. However, this quirk allowed us
to improve runtime by omitting an additional scale of belief
propagation. Figure 12 shows an example (with improved
data cost) in which the three finest scales of belief prop-
agation were omitted in the periphery, and the two finest
were omitted in the fovea. Although the data cost calcula-
tion took longer in this case, processing could nonetheless
be completed at 10 frames/s with a larger fovea (roughly
60% vs. 20%), and about 7% lower error.

D. SUB-FOVEA SELECTION
As shown previously in Figure 8, the number of foveae used
can have a significant effect on how the importance region is
covered, and thus greatly effect the results. Here, we explore

FIGURE 12. As figure 11, with two differences: 1) In this case, the
peripheral data cost was calculated at each pixel and averaged to the
peripheral resolution, whereas in figure 11 the data cost was only
calculated once per pixel at the peripheral resolution, by skipping some
of the pixels at the full resolution; 2) an additional belief propagation
scale was omitted in both the fovea and the periphery.

FIGURE 13. Frequency with which different numbers of foveae covered
the greatest integrated weight, in weight images wx,y = ws

x,y wd
x,y . This

histogram is based on all 194 stereo image pairs from the KITTI training
dataset. The histograms correspond to different total foveal areas.
Top: 10% of frame; middle: 20% of frame; bottom: 30% of frame.

in more detail how thoroughly the weight, wx,y, is covered by
different numbers of foveae.

Figure 13 shows histograms of the numbers of sub-foveae
with the best weight coverage, on KITTI data, up to a
maximum of 30 sub-foveae. The top, middle, and bottom
histograms correspond to total foveal areas of 10%, 20%,
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TABLE 3. Percent coverage of importance weight on KITTI data, for
various fovea sizes and numbers. The left column gives the fovea size as
a fraction of the full image. The centre and right columns give the %
weight covered by an optimally placed single fovea and optimal number
of foveae, respectively.

and 30% of the images. Two sub-foveae were most frequently
best.

Table 3 compares the weight coverage of the optimal num-
ber of sub-foveae with that of single sub-foveae. Consistent
with Figure 13, the single sub-foveae have worse coverage on
average than the optimal number. However, mean coverage
by a single fovea is within 10% of optimal coverage in each
case. Therefore, although multiple sub-foveae are generally
better than one, the difference is generally not large.

The run time taken by our greedy method of sub-fovea
placement is roughly linear in the number of sub-foveae, and
the time to compare all of {1, 2, ..n} sub-foveae is quadratic.
As an example, the average time to find the best arrangement
of 1-30 sub-foveae in the top panel of Figure 13 was 125ms
on a 2014 MacBook Pro, but checking only 1-5 sub-foveae
(one of which was most often optimal in any case) reduced
this time to 4ms.

IV. DISCUSSION
In this work, we experimented with foveated vision for real-
time disparity estimation. This approach allowed us to pro-
cess frames much more quickly than the most accurate stereo
methods, but roughly as accurately in regions that we identi-
fied as being the most task-relevant.

This approach requires identification of the most task-
relevant, or ‘‘important’’ parts of the image. As pointed out
by [8], task-relevance depends entirely on the task. However,
for concreteness, we developed a family of utility functions
that is fairly widely applicable in the context of stereo vision.
This approach involves combining a spatial weighting with
an ‘‘excess disparity’’ estimate. In a grasping context, we
defined excess disparity relative to a support surface, and in
a navigation context we defined excess disparity relative to
time-averaged disparity. This weighting scheme requires less
computation than a more sophisticated saliency map [21],
while ignoring features that contribute to saliency but have
little relevance to grasping or obstacle avoidance. Our spatial
weighting term emphasized the centre of the image, but other
spatial weightings are possible. For example, in grasping, one
alternative would be to emphasize points near the gripper, and
in navigation the spatial weighting term could also consider
the robot’s future path. Importantly, it would be straightfor-
ward to switch between multiple such weighting schemes, or
tomix them continuously, according to task and goal changes.
With such variations, we believe this general approachmay be
applicable to improving accuracy for many disparity-related
decisions.

Finally, we studied the use of multiple foveae. We devel-
oped an efficient greedy algorithm for placing multiple
foveae. We also characterized the advantage of multiple
foveae over single foveae. The primate visual system has
a single fovea of fixed retinal position and shape per eye,
and the foveae of each eye are typically oriented toward the
same feature. Robots with hardware foveae (e.g. [2], [20])
have the same constraint. Using our utility metric with the
KITTI data, we found that two square foveae were optimal
more frequently than any other number from one to thirty, and
that larger numbers of foveae (up to thirty) were occasionally
optimal. However, total importance weight spanned by single
foveae was >90% of that spanned by the optimal number of
foveae. It is interesting that larger numbers of foveae (which
are better able to fit complex shapes) were not typically much
better than one or two. This suggests that a fixed hardware
fovea has a minor cost in this context.

Accurate disparity estimation is particularly important for
autonomous grasping in robotics, because the ideal gripper
configuration depends on shape characteristics on a centime-
tre scale. We used one of the best-performing stereo methods
currently available [45]. However, we have not attempted to
control grasps using these results, and it is not obvious that
the results are good enough for this purpose. State-of-the-
art grasping systems often use monocular images [28], [29],
despite the high relevance of depth information in princi-
ple. A slow, foveal stereo method is likely to be useful for
grasping, but existing stereo methods may not yet be accurate
enough.

The MRF method that we adapted ran on a CPU. If it
ran instead on a large enough GPU, the image size would
be less relevant, perhaps nullifying the benefits of foveation.
However, in this case we expect that our approach would
maximize the image size that a given device could process.
For example, if each scale had the same number of pixels
(e.g. halving field of view and doubling resolution with each
step), then each scale could potentially use the whole device.
The frame rates and image sizes we reported depend on the
hardware used, but we showed useful results in two very
different scenarios, suggesting that the approachmay bemore
widely applicable.

More generally, despite increasing computing power,
foveae are likely to become more important in the future.
Vision systems in robotics are growing in sophistication
(e.g. [26]), but are still much simpler than human vision,
which integrates many cues to robustly estimate depth.
Notably, even a fairly abstract real-time simulation of the
full human vision would require several racks of special-
ized neuromorphic computers [13], and these requirements
would increase by several orders of magnitude if the full
field of view were processed in as much detail as the fovea.
In short, good vision is inherently computationally inten-
sive, and foveation helps to manage the cost. This suggests
that there may be a long-term and growing need for this
approach in robotics, asmore sophisticated vision systems are
developed.
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A. RELATIONSHIP WITH OTHER WORK
Most previous work in foveated stereo (reviewed in [22]) has
employed hardware foveation, in which the fovea is always
at the image centre, and cameras are oriented and verged to
important features. One such method [25] uses two vergent
cameras, with resolution that drops off in steps as you move
away from the image centre (from fovea to periphery). It con-
structs a depth map (composed of an array of planar patches)
from multiple fixations. New peripheral patches overwrite
older ones, and foveal patches overwrite peripheral patches.
Other work (e.g. [2]) used images with a log-polar resolution
profile.

In contrast with foveated hardware approaches, we devel-
oped software approaches that processed different parts of
stereo images in different levels of detail, allowing arbitrary
motion of the fovea at the frame-rate. This approach was
previously taken by [15], but they reported only qualitative
stereo results, which were relatively noisy (their code is not
available, but the right column of their Figure 6 can be
compared qualitatively with our examples). We extended this
approach to more sophisticated stereo algorithms, including
convolutional networks and Markov random fields, leading
to improved results. We also considered multiple foveae per
frame. In other related work, [6] developed an FPGA-based
stereo camera system with multiple foveae. However, they
did not attempt disparity estimation. The general approach
of processing the most relevant parts of an image in more
detail has been widely adopted for detection and recognition
(e.g. [5], [8], [43]).

At the time of writing, two methods on the KITTI
2012 leaderboard outperformed our benchmark results (for
unweighted error) in terms of both accuracy and runtime. The
first (Toast2) is from [35]. This method uses block match-
ing and the Census Transform, along with image shears, to
infer the depth of slanted planar surfaces in the scene [35].
It would be interesting to see whether our importance-
weighting approach could be combined with this stereo
method. However, because this method fits image blocks
to planes, it is possible that its better average performance
corresponds to low error on large flat surfaces such as roads
and walls, with lesser advantages for typical obstacles. The
other method, DispNetC [32], is a recent convolutional net-
work with faster runtime and somewhat greater error than that
of [45]. It may be useful in future work to apply our approach
to these methods, or future stereo methods.
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