
LETTER Communicated by Simon Levy

Vector-Derived Transformation Binding: An Improved
Binding Operation for Deep Symbol-Like Processing
in Neural Networks

Jan Gosmann
jgosmann@uwaterloo.ca
Chris Eliasmith
celiasmith@uwaterloo.ca
Centre for Theoretical Neuroscience, University of Waterloo,
Waterloo, ON N2L 3G1 Canada

We present a new binding operation, vector-derived transformation bind-
ing (VTB), for use in vector symbolic architectures (VSA). The perfor-
mance of VTB is compared to circular convolution, used in holographic
reduced representations (HRRs), in terms of list and stack encoding ca-
pacity. A special focus is given to the possibility of a neural implemen-
tation by the means of the Neural Engineering Framework (NEF). While
the scaling of required neural resources is slightly worse for VTB, it is
found to be on par with circular convolution for list encoding and bet-
ter for encoding of stacks. Furthermore, VTB influences the vector length
less, which also benefits a neural implementation. Consequently, we ar-
gue that VTB is an improvement over HRRs for neurally implemented
VSAs.

1 Introduction

Many cognitive tasks require the brain to perform symbolic processing.
How such symbolic processing could be implemented in the brain or an
artificial neural network is, however, not obvious. Vector symbolic archi-
tectures (VSAs) have been proposed as a means to solve this problem while
using high-dimensional vectors to represent symbols (Kanerva, 2009). It has
been suggested that such systems can directly address Jackendoff’s linguis-
tic challenges, which he posed to cognitive neuroscience (Gayler, 2004).

VSAs associate (high-dimensional) vectors with specific symbols and
use certain mathematical operations to manipulate these vectors in order
to implement symbol-like processing. Three operations—an addition-like
superposition or set operator, a multiplication-like binding operator, and a
permutation-like hiding operator—are essential (Gayler, 2004). The binding
operator may also act like a hiding operator to protect vectors from other
operations, in which case a separate hiding operator is not needed. The ex-
act choice of operators differs across various VSAs.

Neural Computation 31, 849–869 (2019) © 2019 Massachusetts Institute of Technology
doi:10.1162/neco_a_01179

850 J. Gosmann and C. Eliasmith

For our purposes, a defining feature of any VSA is that the dimension-
ality of the vectors stays constant across all operations. This is in contrast
to tensor products (Smolensky, 1990) that create an outer product for each
binding, leading to quadratically increasing dimensionality. This poses a
challenge to the biological plausibility of tensor products due to the exces-
sive demands such dimensionality increase puts on neural resources (Elia-
smith, 2013). While VSAs avoid this scaling problem, the more constrained
dimensionality forces the binding operation to do a form of lossy compres-
sion. Accordingly, different binding operations may lose more or less infor-
mation due to this compression. Ideally the amount of retained information
should be maximized.

It has been argued that VSAs could be a step toward identifying mathe-
matical operations and representational systems that mimic cognitive phe-
nomena (Kanerva, 2009). In particular, VSAs have been used successfully
to model compositionality and semantics (Mitchell & Lapata, 2010; Rec-
chia, Sahlgren, Kanerva, & Jones, 2015), as well as a basis for spiking neural
network models of various cognitive tasks. Such tasks include the n-back
task (Gosmann & Eliasmith, 2015), the Tower of Hanoi task (Stewart & Elia-
smith, 2011), human-scale knowledge representation (Crawford, Gingerich,
& Eliasmith, 2016), and Spaun, a large-scale functional brain model capable
of performing eight different tasks and capturing a wide variety of physi-
ological and anatomical features of the mammalian brain (Eliasmith et al.,
2012). Consequently, in this letter, we are interested in binding operations
that perform best in the context of such models.

Compared to classic neural networks trained with backpropagation as
used in the deep learning approach, VSAs have a number of advantages.
They allow encoding of a structure with an explicit encoding scheme,
whereas this encoding scheme will be implicit in a classic neural network. In
addition, classic training methods can be time intensive and require many
training examples. Furthermore, while VSA operations can be performed
with neural networks, it is not a requirement. As a result, the calculations
can also be evaluated directly in algebra, and to some degree, it is possible to
perform mathematical analyses, as the operations are made explicit. How-
ever, emphasize that VSAs and more classical neural network approaches
do not need to be opposed. In fact, they can be integrated as, for example,
done in Spaun (Eliasmith et al., 2012) where the visual input is parsed with
a system trained with deep learning principles, but the output is interpreted
and used as a vector in a VSA.

We start by introducing general definitions and desired properties of
operators in a VSA, followed by the definition of the specific binding op-
erations of circular convolution and vector-derived transformation bind-
ing (VTB). In section 3, we discuss how these binding methods can be
used to build up structured representation with a superposition of pair-
wise bindings or alternatively tagging. We then move on to compare the

Vector-Derived Transformation Binding 851

two presented binding operations, looking at their binding properties, list
encoding capacity, stack encoding capacity, and neural scaling. The results
are discussed in section 5.

2 Vector Symbolic Architectures

We start by introducing the abstract operators required in a VSA. We begin
by specifying a measure of similarity for the d-dimensional vectors being
employed. As with most other VSAs, we use the normalized dot product
(cosine similarity):

s : R
d × R

d −→ R

x, y �−→ 〈x, y〉
‖x‖ · ‖y‖ . (2.1)

Turning to the three required VSA operators—a set, binding, and hiding
operator—we can begin with the superposition or set operator,

S = R
d × R

d −→ R
d, (2.2)

which produces a vector similar to both operands—that is, s(S (x, y), x) ≈
s(S (x, y), y) �

√
1/2 for s(x, y). This will usually be, and is for the remainder

of this letter, simple elementwise addition: S(x, y) := x + y.
We will co-specify the binding and hiding operators, although these can

be specified independently (Gayler, 1998). Co-specifying these reduces the
operator count, making the algebra simpler. In addition, most neural imple-
mentations have used circular convolution, a binding operator that includes
a permutation for hiding. We refer to such operators as binding operators.

In general, the binding operator can be specified as

B : Rd × R
d −→ R

d (2.3)

with an approximate inverse,1

B+ : Rd × R
d −→ R

d, (2.4)

which can be used as an unbinding operation as required. The binding and
unbinding operations are required to be distributive,

1
We use the superscript “plus” in analogy to a common notation of the matrix pseudo-

inverse to emphasize the approximate nature in contrast to the exact inverse that also
exists for some binding operations.

852 J. Gosmann and C. Eliasmith

B(x + y, z) = B(x, z) + B(y, z), (2.5)

B+(x + y, z) = B+(x, z) + B+(y, z), (2.6)

to allow the composition of structured representations (see section 3).
Furthermore, to be useful, two additional properties should be ful-

filled by the binding operator. First, the unbinding operator should yield
B+(B(x, y), y) ≈ x for almost all x and y; that is, the recovery of a bound
vector should be possible. Second, the bound result of the binding operator
should be, in contrast to the superposition operator, dissimilar to both of
the operands: x �≈ B(x, y) �≈ y (this results from the operator “hiding” the
results of the binding). Finally, in a neural system, the operators have to be
robust against noise; that is, the amplification of the relative error through
binding and unbinding should be limited by a constant C so that

〈‖B(x, y + sξ) − B(x, y)‖
‖B(x, y)‖

〉
x,y,ξ

=
〈‖B(x, sξ)‖

‖B(x, y)‖
〉

x,y,ξ

≤ Cs, (2.7)

where x, y, ξ ∈ R
d with ‖x‖ = ‖y‖ = ‖ξ‖ = 1 and s ≥ 0 is the scale of the

noise. The same relation should hold when replacing B with B+ in equa-
tion 2.7.

Given a specific binding operation, certain special elements in R
d can be

identified that are defined in the following manner:

Definition 1 (identity vector). A vector iB with the propertyB(x, iB) = x is called
identity vector under B.

Definition 2 (absorbing element). A vector nB with the property B(x, nB) = c ·
nB where c ∈ R is called an absorbing element under B.

Such an absorbing element effectively destroys the information in the
vector x. For that reason, absorbing elements should be avoided when con-
structing representations with binding. Note that this definition slightly
differs from the usual definition of absorbing elements by allowing for a
scaling factor.

Definition 3 (unitary vector). A vector u with the property 〈B(x, u),B(y, u)〉 =
〈x, y〉 is called unitary.

In other words, a unitary vector preserves the dot product under binding.
This is in analogy to unitary transformation matrices that also preserve the
dot product. It also implies that binding with a unitary vector preserves the
norm of the bound vector.

2.1 Circular Convolution. Plate (2003) proposed circular convolu-
tion as a binding operation with his holographic reduced representations
(HRRs):

Vector-Derived Transformation Binding 853

Definition 4 (circular convolution binding). The circular convolution binding
operator is given by

B�(x, y) := x � y with (x � y)i =
d∑

j=1

x jy((i− j) mod d)+1 (2.8)

and has the approximate inverse (Plate 2003),

B+
�(x, y) = x � y+ with y+ := (y1, yd, yd−1, . . . , y2)�. (2.9)

As an example, for d = 4 with the vectors x = (−0.8, 0.08, 0.04,−0.6)�

and y = (0.97, 0.16, 0.03,−0.16)�, B�(x, y) works out to:

B�(x, y) =

⎡
⎢⎢⎢⎢⎣

−0.8 · 0.97 − 0.08 · 0.16 + 0.04 · 0.03 − 0.6 · 0.16

−0.8 · 0.16 + 0.08 · 0.03 − 0.04 · 0.16 − 0.6 · 0.97

−0.8 · 0.03 − 0.08 · 0.16 + 0.04 · 0.97 − 0.6 · 0.16

0.8 · 0.16 + 0.08 · 0.97 + 0.04 + 0.16 − 0.6 · 0.97

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

−0.8836

−0.0748

0.1236

−0.4452

⎤
⎥⎥⎥⎥⎦ .

A useful property of circular convolution is that it becomes an element-
wise multiplication in the Fourier space. Thus, it can be written as

x � y = F−1[(Fx) (Fy)] (2.10)

given the discrete Fourier transform matrix F . In essence, this mapping to
the Fourier space acts as a hiding operator while the elementwise multipli-
cation performs the binding. Given this formulation, it is easy to see that
the basic properties of

Distributivity: (x1 + x2) � y = x1 � y + x2 � y, (2.11)

Associativity: (x � y) � z = x � (y � z), (2.12)

Commutativity: x � y = y � x, (2.13)

Linearity of arguments: (ax) � (by) = ab(x � y), a, b ∈ R (2.14)

hold for circular convolution. From the linearity of the arguments, it fol-
lows that the amplification of relative error due to noise is limited with the
constant C = 1.

854 J. Gosmann and C. Eliasmith

The Fourier space formulation also makes the derivation of the special
elements straightforward. The identity vector must not change any of the
complex Fourier coefficients, and thus, all of its coefficients must be 1 + 0i,
which yields

i� = (1, 0, 0, . . . , 0)�. (2.15)

All vectors with Fourier coefficients of 0 except for the DC offset will be
absorbing elements corresponding to the vectors

n� = (z, . . . , z)�, z ∈ R, (2.16)

including the vector of all zeros (0, . . . , 0)�. Finally, all vectors with Fourier
coefficients ci ∈ C that are of unit length |ci| = 1 are unitary vectors, as the
frequency amplitudes are not scaled.

2.2 Vector-Derived Transformation Binding. We propose a new bind-
ing operator that we call the vector-derived transformation binding (VTB):

Definition 5 (vector-derived transformation binding, VTB). Given a dimension-
ality d′ = d1/2 ∈ N>0, the vector-derived transformation binding operator BV :
R

d × R
d −→ R

d is defined as

BV(x, y) := V yx =

⎡
⎢⎢⎣

V ′
y 0 0

0 V ′
y 0

0 0
. . .

⎤
⎥⎥⎦ x (2.17)

with

V ′
y = d

1
4

⎡
⎢⎢⎢⎢⎣

y1 y2 · · · yd′

yd′+1 yd′+2 · · · y2d′

...
...

. . .
...

yd−d′+1 yd−d′+2 · · · yd

⎤
⎥⎥⎥⎥⎦ , (2.18)

where yi is the i-th vector component of y. The approximate inverse is given by

B+
V (x, y) = V y

�x =

⎡
⎢⎢⎣

V ′
y
� 0 0

0 V ′
y
� 0

0 0
. . .

⎤
⎥⎥⎦ x. (2.19)

Vector-Derived Transformation Binding 855

As an example, for d = 4 with the vectors x = (−0.8, 0.08, 0.04,−0.6)�

and y = (0.97, 0.16, 0.03,−0.16)�, BV(x, y) works out to

BV(x, y) =
√

2

⎡
⎢⎢⎢⎢⎣

0.97 0.16 0 0

0.03 −0.16 0 0

0 0 0.97 0.16

0 0 0.03 −0.16

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−0.8

0.08

0.04

−0.6

⎤
⎥⎥⎥⎥⎦

=
√

2

⎡
⎢⎢⎢⎢⎣

−0.97 · 0.8 + 0.16 · 0.08

−0.03 · 0.8 − 0.16 · 0.08

0.97 · 0.04 − 0.16 · 0.6

0.03 · 0.04 + 0.16 · 0.6

⎤
⎥⎥⎥⎥⎦ =

√
2

⎡
⎢⎢⎢⎢⎣

−0.7632

−0.0368

−0.0572

0.0972

⎤
⎥⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎢⎣

−1.08

−0.05

−0.08

0.14

⎤
⎥⎥⎥⎥⎦ .

This binding operator relies on the fact that the vectors x and y are
usually picked randomly from a uniform distribution of unit-length vec-
tors. That implies that the individual vector components are identically dis-
tributed and V y is approximately orthogonal: V y

�V y ≈ I. This makes the
binding a random transformation of x based on y, thus ensuring that the
result will be dissimilar to both inputs (for most vectors as long as x does
not happen to be an eigenvector of V y). The linearity of the matrix mul-
tiplication ensures that the amplification of the relative error is bounded
with C = 1. Also, the distributivity requirement is fulfilled, as one can easily
verify.

Corollary 1 (VTB distributivity). VTB is distributive:

BV(x1 + x2, y) = BV(x1, y) + BV(x2, y) and

BV(x, y1 + y2) = BV(x, y1) + BV(x, y2). (2.20)

Proof. By applying the definitions for both directions of the distributivity,

• BV(x1 + x2, y) = V y(x1 + x2) = V yx1 + V yx2 = BV(x1, y) + BV(x2, y)
• BV(x, y1 + y1) = V y1+y2 x = (V y1 + V y2) x =V y1 x + V y2 x =BV(x, y1) +
BV(x, y2).

�

In contrast to circular convolution, VTB is neither commutative,

BV(x, y) = V yx �= V xy = BV(y, x), (2.21)

nor associative,

BV(x,BV(y, z)) = VV zyx �= V zV yx = BV(BV(x, y), z). (2.22)

856 J. Gosmann and C. Eliasmith

Thus, a separate unbinding step is required for each binding, whereas circu-
lar convolution permits undoing multiple bindings in one step. It is, how-
ever, possible to flip the operands of a VTB binding in the bound state by
multiplying with the permutation matrix,2

[V↔]i j =
{

1 j = 1 + ⌊ i−1
d′

⌋ + d′[(i − 1) mod d′],

0 otherwise
(2.23)

such that BV(x, y) = V ↔BV(y, x). As an example, for d = 4, this matrix is

V (4)
↔ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The identity vector for VTB can be derived as the vector resulting in
V iV = I:

Corollary 2 (VTB identity vector). The identity vector for VTB is given by

[iV]i =
{

d− 1
4 i ∈ {(k − 1)d′ + k : k ≤ d′, k ∈ N>0}

0 otherwise
. (2.24)

Proof. By writing iV as V iV , one can easily verify that V ′
iV

= I ⇒ V iV = I.
�

All vectors u that result in a perfectly orthogonal matrix V u are unitary
because an orthogonal matrix is also unitary. Absorbing elements are re-
quired to fulfill V nV x = cnV, which is not possible in general except for the
trivial solution of the zero vector nV = (0, . . . , 0)� as the solution for nV de-
pends on x.

3 Structured Representations

The main reason that VSAs are used in cognitive modeling is that the bind-
ing and superposition operations can be used to build up structured repre-
sentations. For example, let us describe a scene containing a red square and
a blue circle. Given almost orthogonal vectors red, blue, square, and circle,
one possible way to encode this scene would be

2
This is unrelated to the use of permutations for hiding in the MAP (multiply, add,

permute) coding scheme by Gayler (2004). Hiding happens in VTB as part of the binding
operator.

Vector-Derived Transformation Binding 857

s = B(red, square) + B(blue, circle). (3.1)

The color of the square could then be recovered as

B+(s, square) = B+(B(red, square), square) + B+(B(blue, circle), square)

≈ red + noise. (3.2)

Another viable approach to structure the representation would be to bind
the object properties to tags like color and shape, and each individual object
representation to a position tag or identifier:

o1 = B(red, color) + B(square, shape),

o2 = B(blue, color) + B(circle, shape),

s = B(o1, obj1) + B(o2, obj2). (3.3)

To retrieve the color of a specific shape in this representation scheme, each
object needs to be retrieved; then the shape of the object needs to be com-
pared to the target shape, and finally the color has to be unbound from the
object with the matching shape.

3.1 Encoding Methods. Both examples of structured representations
rely on pairwise binding of colors and shapes or of attributes to tags. We
define this general method of encoding multiple pieces of information into
a single vector to be encoded with binding.

Definition 6 (encoding with binding). Given k pairs (xi, yi) ∈ R
d × R

d, the en-
coding of these pairs into a single vector m with binding is given by

m =
k∑

i=1

B(xi, yi). (3.4)

An xi can be recalled from such a trace as xi ≈ x̂i = B+(m, yi).
Recchia et al. (2015) proposed a different way to encode these pairwise

relationships that we call encoding with tagging.

Definition 7 (encoding with tagging). Given k pairs (xi, yi) ∈ R
d × R

d and a
matrix M ∈ R

d×d with an approximate inverse M+ satisfying M+M ≈ I, the en-
coding into a single vector with tagging is given by

m =
k∑

i=1

M2i−1(yi + Mxi) =
k∑

i=1

M2i−1yi + M2ixi. (3.5)

858 J. Gosmann and C. Eliasmith

Figure 1. Venn diagram of the relationship between different choices of tagging
matrices.

The retrieval of an xi ≈ x̂i is accomplished with

x̂i := (M2c)+m, (3.6)

c = arg max
j∈[1, k]

s(yi, (M2 j−1)+m). (3.7)

Recchia et al. (2015) proposed permutation matrices for M, but a number
of other choices are viable as well:

• For both presented binding operations, circular convolution and
vector-derived transformation binding, the binding with a fixed vec-
tor can be expressed as a multiplication with a matrix M. Thus, (re-
peated) binding to a fixed vector can be used for tagging.

• The matrix that shifts all vectors’ elements by one (with wrap-
around). This matrix is a special permutation matrix and at the same
time represents a circular convolution binding to the fixed vector
(0, 1, 0, 0, . . .)�.

• Orthogonal (random) matrices. Note that orthogonal matrices (like
permutation matrices or binding with a unitary fixed vector) have an
exact inverse, which can be beneficial in unbinding.

All of these possible choices for M are related as shown in Figure 1.

4 Comparison of Binding and Encoding Methods

We now describe our empirical comparisons of the binding and encoding
methods described. We consider aspects of the basic binding operation first,
before moving on to measures of encoding capacity of lists and stacks. Fi-
nally, we consider the neural resources required when implementing the
binding operations with the Neural Engineering Framework (Eliasmith &
Anderson, 2003). (The relevant code and some precomputed data for these
analysis can be found at https://github.com/ctn-archive/vtb.)

Vector-Derived Transformation Binding 859

Figure 2. (a) Similarity of recovered vector after binding and unbinding with
random vectors. (b) Change in vector norm with repeated binding of random
vectors. Shaded areas represent bootstrapped 95% confidence intervals.

Figure 3. (a) Similarity of recovered vector after binding and unbinding with
itself. (b) Change in vector norm with repeated binding to itself. Shaded areas
represent bootstrapped 95% confidence intervals.

4.1 Binding Properties. For the binding operation, it is desired that af-
ter binding and unbinding, the resulting vector is similar to the original
vector. Figure 2 shows how the similarity declines when binding and un-
binding an increasing number of random vectors with circular convolution
or VTB. While the similarity declines quickly for both binding methods, the
VTB flattens out at a higher similarity. Furthermore, the change in the vector
norm with increasing number of bindings is shown. Circular convolution
quickly reduces the norm, which can be problematic in neural networks (see
section 5), while the norm declines much more slowly with VTB.

In some situations, like encoding with tagging, the same vector is repeat-
edly bound to itself. This case has to be considered separately (see Figure
3). The results for the similarity after unbinding are comparable to the bind-
ing with random vectors. However, the vector norm will increase instead

860 J. Gosmann and C. Eliasmith

Figure 4. Retrieval accuracy from a list with encoding with binding (a) and en-
coding with tagging (b). Solid lines show results for VTB. Dashed lines show
results for circular convolution. Results for unitary circular convolution matri-
ces, shift matrices, and orthogonal matrices are shown, though they are similar
enough that additional labeling is not specified. Error bars, mostly smaller than
the marker size, represent 95% confidence intervals.

of decrease. This increase is much faster for circular convolution than for
VTB.

4.2 List Encoding Capacity. To measure the list encoding capacity of the
binding and encoding methods, we reproduced the first experiment from
Recchia et al. (2015). A set of 1000 vectors with normally distributed com-
ponents xi ∼ N (0,

√
1/d) is created with E[‖x‖] = 1. From this set, 500 pairs

are sampled with replacement, and k of these pairs are encoded into one
vector. It is then tested whether the x of a pair (x, y) can be retrieved suc-
cessfully given y. This is the case if the unbound x̂ is more similar to x than
any other vector in the initial set of 1000 vectors. For each data point, 1000
trials were averaged. The experiment was performed for dimensionalities
d ∈ {256, 484, 1024, 2025}, adhering to the VTB constraint of square d. These
dimensionalities are not exactly the same as used by Recchia et al. (2015),
but they cover the same range.

Figure 4 shows the result for encoding with binding and tagging. The re-
trieval accuracy declines as the number of pairs encoded in the trace grows.
Increasing the dimensionality also increases the storage capacity. Encoding
with binding allows the storage of about twice as many pairs compared to
encoding with tagging. Furthermore, there was virtually no difference in
performance between different orthogonal matrices (like circular convolu-
tion or shift matrices) for the encoding with tagging. Circular convolution
and VTB perform about the same with both encoding methods.

We repeated the experiment with nonorthogonal matrices—circular con-
volutions and VTB with a fixed, nonunitary vector (see Figure 5). A fixed
nonorthogonal circular convolution matrix allows storing two pairs at most.

Vector-Derived Transformation Binding 861

Figure 5. Retrieval accuracy for encoding with tagging with nonunitary VTB
(solid lines) and circular convolution (dashed lines) matrices. Error bars, mostly
smaller than the marker size, represent 95% confidence intervals.

Better retrieval accuracies are achieved with the fixed nonorthogonal VTB
matrices, but the performance declines much faster for an increased number
of pairs than with orthogonal tagging matrices.

4.3 Stack Encoding Capacity. The list (or pairwise) encoding capacity
informs us only about the performance of the binding operations for flat
representations. Now we look at the performance for encoding a stack with
repeated bindings. The encoding of n vectors xi into a stack is given by

m1 = x1,

mi+1 = B(mi, t) + xi+1, (4.1)

where t is a random, fixed vector. As a result, for an n-item stack, the binding
operator is applied n − 1 times. To decode an item x j at depth ρ = n − j
from the top, ρ unbindings of t have to be performed.

To test the encoding capacity, we performed 50 trials for each possible
combination of number of items n and decoding depth ρ (ρ < n). The vec-
tors xi and t were chosen such that no pairwise similarity exceeded a thresh-
old of 0.1. The dimensionality was set to 2025, but analogous results are
obtained with other dimensionalities. Figure 6 shows the results. The more
items are encoded in the stack, the less similar the retrieved items become
to the original item. Note that this is also true for the top of the stack that
one might expect to be unaffected by the depth of the stack. Nevertheless,
decoded items from closer to the top of the stack will be more similar to the
original item. Furthermore, we can observe that VTB performs considerably
better than circular convolution.

862 J. Gosmann and C. Eliasmith

Figure 6. Similarity of retrieved vector from an encoded stack with (a) circular
convolution and (b) VTB.

4.4 Neural Scaling. Apart from the mathematical performance, the
number of neural resources to implement the binding operations should
be considered when using them for cognitive modeling. We base our calcu-
lations on the assumption that the Neural Engineering Framework (NEF;
Eliasmith & Anderson 2003) is used for such an implementation. The NEF
provides a general method to implement given mathematical operations in
a spiking neural network. This allows us to derive fair comparisons of re-
quired neural resources analytically, which is difficult with more traditional
neural network approaches. Also, there are considerable numbers of NEF
models (Eliasmith et al., 2012; Gosmann & Eliasmith, 2015; Crawford et al.,
2016; Stewart & Eliasmith 2011) that make use of the Semantic Pointer Ar-
chitecture (SPA; Eliasmith 2013). The SPA is an approach for implementing
cognitive models with neural networks based on the NEF and vector sym-
bolic architectures. In particular, it draws heavily on holographic reduced
representations (Plate, 2003) with circular convolution as binding a opera-
tor. Thus, the results in this section are immediately applicable to a large
number of models.

The circular convolution operation is most efficiently implemented in the
Fourier space. Thus, both input vectors are projected into the Fourier space
by a linear transform given by the discrete Fourier transform (DFT) matrix.
For a d-dimensional vector, d complex Fourier coefficients are produced,
but half of them are the complex conjugate of the other half. Thus, we only
need to consider d/2 coefficients for either vector, which are multiplied to-
gether in pairs. Each complex multiplication can be expressed by four real
valued multiplications, and thus a total of 2d multiplications is required.
The number of neural resources required when implementing these with
the NEF is proportional to the number of multiplies (Gosmann, 2015). Note
that the DFT transform requires all-to-all connectivity, but the DFT matrix
can be factorized to reduce the connectivity at the cost of additional layers.

Vector-Derived Transformation Binding 863

Table 1: Maximum Similarity Constraints for Vectors Given Stack Depth and
Binding Method to Ensure That the Unbound Items Are Most Similar to the
Original Item in 95% of Cases.

Stack Depth n smax,� smax,VTB

2 0.558 0.555
3 0.292 0.377
4 0.114 0.275
5 0.034 0.216

To implement the VTB, d1/2 multiplications of d1/2 × d1/2 matrices with a
vector are required. This results in a total of d3/2 multiplications. One might
notice that each column vector in V y is scaled with the same component of
the multiplied vector. This allows the encoding of all components in such
a column into one NEF ensemble, together with the corresponding vector
component. This requires only d ensembles to decode from, but each en-
semble has to represent d1/2 + 1 dimensions. Accordingly the number of
neurons in each ensemble has to be increased. It can be shown that for spik-
ing LIF neurons in the NEF, the number of neurons needs to be scaled by
(d1/2 + 1)3/2 ≈ d3/4 to keep the noise error constant (Gosmann, 2018). Sum-
ming over all ensembles, the neural resources have to be scaled by d7/4,
which is worse than doing pairwise multiplications. Due to the block struc-
ture of V y, all-to-all connectivity can be avoided.

Given that VTB has a worse scaling of neural resources but allows better
decoding for deep hierarchies, it is worth investigating this trade-off more
closely. In particular, we will look at decoding the item resulting in the low-
est similarity from an n-item stack. From the analysis in the previous section
and Figure 6, we can obtain a maximum similarity constraint that must not
be exceeded between any of the potential vectors that might have been en-
coded to ensure successful cleanup of the unbound vector. As the actual
similarity of the unbound vector v̂ to the original vector v is stochastic, we
arbitrarily require that 95% of unbound vectors will exceed the similarity
constraint (under the assumption that the similarity values are normally
distributed). It follows that the maximum similarity between all candidate
vectors must not exceed smax = μ − 1.645 · σ , where μ and σ are the mean
similarity and standard deviation of the similarity s(v̂, v). The resulting val-
ues for circular convolution and VTB are given in Table 1.

Given the maximum similarity constraint, we can estimate the capacity
M(smax, d) of unit vectors that fit into a d-dimensional vector space while
respecting the constraint. Determining the exact number is an unsolved
problem related to sphere packing, but lower and upper bounds have been
derived (Wyner, 1965). We base our estimate on the lower bound from
Wyner (1965) but account for the fact that we can always fit at least d

864 J. Gosmann and C. Eliasmith

Figure 7. The lower bound for the maximum number of unit vectors that fit
into a vector space without exceeding a pairwise-similarity of smax. The dashed
red lines mark smax,� and smax,VTB for a stack depth of five.

orthogonal vectors into the vector space,

M(smax, d) = max

⎧⎨
⎩d,

d
d − 1

B
(

d + 1
2

,
1
2

) [∫ cos−1smax

0
sind−2ϕdϕ

]−1
⎫⎬
⎭

(4.2)

where B(x, y) = ∫ 1
0 tx−1(1 − t)y−1dt is the beta function. Figure 7 visualizes

the function M(smax, d). We justify using the lower bound compared to the
upper bound because even achieving the lower bound is a hard problem.

As derived above, the vector dimensionality relates to the number of re-
quired multiplications, which can be taken as a measure of required neural
resources for the binding. By converting the dimensionality to the num-
ber of multiplications, we can directly compare the capacity M(smax, d) for
the different binding methods as done in Figure 8. For a stack of depth
of four (see Figure 8a), circular convolution allows for a larger number of
vectors with respect to the similarity constraint, except for VTB with 121-
dimensional vectors (1331 multiplications), though the difference is small.

However, this analysis does not account for the spiking noise of spiking
neurons. Given smax,� < smax,VTB, less noise is acceptable if an equal perfor-
mance is desired. In the NEF, the standard deviation of the spiking noise
E decreases according to E ∝ 1/

√
N, where N is the number of neurons.

Thus, to achieve the same relative noise level, s2
max,VTB/s2

max,� times more
neurons are required when using circular convolution binding compared
to VTB. When adjusting the number of multiplications to account for this,
VTB performs better for any dimensionality.

Vector-Derived Transformation Binding 865

Figure 8. The capacity M(smax, d) for different binding methods depends on the
neural resources measured as the number of multiplications. The analysis in
panel a is for a stack with three items, in panel b for a stack of four items. The
top scales give the equivalent vector dimensionalities for a given number of
multiplications. The dashed line results when adjusting the number of neural
resources for circular convolution for the need of less spiking noise compared
to VTB.

866 J. Gosmann and C. Eliasmith

The same analysis performed for a stack of depth five (see Figure 8b)
shows that up to 3270 multiplications, circular convolution allows for a
larger number of vectors with respect to the similarity constraint. This cor-
responds to vectors with up to 1635 dimensions. Given additional neural
resources to implement further multiplications, VTB allows for a larger
number of vectors due to the looser similarity constraint. This corresponds
to vector dimensions of 225 and up. Again, when adjusting for the neural
spiking noise, VTB always gives a larger capacity.

For stacks with a depth exceeding five items, the similarity of the re-
covered vectors with circular convolution is too small to use this binding
method. Finally, for stacks of depth two and three (no plots shown), the cir-
cular convolution binding allows for larger capacity even when adjusting
for the neural noise.

5 Discussion

We presented a new binding method, vector-derived transformation bind-
ing, for use in vector-symbolic architectures. Compared to circular convolu-
tion, a commonly used binding method that underlies Plate’s holographic
reduced representations (Plate, 2003) and the Semantic Pointer Architecture
(Eliasmith, 2013), it performs on par for flat structures. For such structures,
we also found both of these binding methods to perform better with simple
encoding with binding than with encoding with tagging.

This is in contradiction to the results of Recchia et al. (2015), who found
encoding with tagging to perform better. We believe that our results are cor-
rect as they agree with the basic expectations that a superposition of twice
as many vectors (as happens in the encoding with tagging) must lead to
worse retrieval of individual elements. Note that our results for the encod-
ing with tagging are in close quantitative agreement with the results from
Recchia et al. (2015).

Because such flat structures are not always appropriate (e.g., in the n-
back task, see Gosmann & Eliasmith, 2015, or for large-scale knowledge
representation, see Crawford et al., 2016), we also tested the performance
of the binding methods on a stack encoding. This covers the remaining of
the two essential encoding schemes in a VSA. All other schemes reduce to
either list or stack encoding (or a mixture of both) due to the distributiv-
ity of the binding operation. To create structure, elements need to be either
bound to different “tags” and be superimposed (list encoding), or existing
elements need to be “pushed down” by binding to a vector before adding
a new vector.

We found the VTB to perform better for encoding stacks, especially for
stacks with more than a few elements. This is due to two main effects.
First, after repeated binding and unbinding, the resulting vector will be
more similar to the original vector with VTB. Second, the vector norm
will change less with each binding, facilitating a neural implementation

Vector-Derived Transformation Binding 867

where the representational radius is limited. If the vector norm becomes
too small, neural noise will destroy any remaining useful information, and
if the vector norm becomes too large, neural saturation will distort the
representation.

We believe that this improved stack encoding capacity could be ben-
eficial in a number of scenarios. For example, it can reduce the number
of required cleanup memories to remove noise when decoding from deep
structures. Such deep structures could be useful for knowledge represen-
tation where information can be structured across multiple levels (e.g., a
penguin is a bird is an animal). Furthermore, sequences are highly impor-
tant in many tasks. While these could be encoded with a list encoding, this
requires a known tag vector for each position, but a stack encoding requires
only a single tag vector. Finally, VTB might prove useful for the represen-
tations of tree-like structures, such as parse trees in language processing.
In addition to capturing the potential depth of these trees, VTB is noncom-
mutative and thus retains which element is the left and right child of a tree
node.

We were specifically interested in the requirement of neural resources
when implementing the binding operations in a spiking neural network.
While circular convolution requires only a linear scaling of neural resources,
VTB requires a scaling by O(d3/2). Even though this scaling is worse, it is
offset in some instances by the better performance that requires fewer vector
dimensions to get the same performance. In particular, this is the case for
stacks of depth three or more when taking into account neural spiking noise.

Besides cognitive modeling, the NEF is used to program neuromorphic
hardware (Mundy, Stewart, Terrence, & Furber, 2015; Knight, 2016). On
such hardware, dense connectivity as required can be problematic (Mundy,
2016). While this can be circumvented by introducing additional layers for
circular convolution, VTB requires less connectivity without additional lay-
ers (see Figure 9). Circular convolution requires 332,800 connections for
binding two 64-dimensional vectors when using five neurons per dimen-
sion. VTB requires 5120 fewer connections, a total of 327,680, for the same
task when representing the vectors as 16-dimensional subvectors (which is
the default in the SPA). Note that VTB, however, uses many more postsy-
naptic neurons as more multiplications are required. When matching the
number of multiplications or representing lower-dimensional subvectors,
the connectivity advantage of VTB increases further.

Apart from these pure performance metrics, it should be noted that VTB
is neither commutative nor associative, in contrast to circular convolution.
This can have implications on possible encoding schemes for structure. For
example, circular convolution does not allow the differentiation of the left
and right operand due to commutativity, but VTB does. These differences
can also have implications for cognitive modeling, as it might be necessary
to undo each binding separately with VTB, but not with circular convolu-
tion due to the associativity properties. Note that this applies only to deep,

868 J. Gosmann and C. Eliasmith

Figure 9. Neural connectivity for implementing circular convolution binding
and VTB for 64-dimensional vectors with five neurons per dimension. Blue
marks existing connections of any strength, while white marks nonexisting
connections.

stack-like encodings. In a flat list encoding, the desired element can directly
retrieved due to the distributivity of both operations (except if encoding
with tagging is used, where an exhaustive search over all input vectors is
required).

To summarize, VTB has promising properties that should be explored in
future cognitive and neural network models. To facilitate research in this
direction, we extended the freely available Nengo SPA Python library3 that
provides an implementation of the Semantic Pointer Architecture to allow
the use of VTB instead of circular convolution.

Acknowledgments

This work has been supported by the Canada Research Chairs program,
NSERC Discovery grant 261453, Air Force Office of Scientific Research grant
FA8655-13-1-3084, CFI, and OIT.

References

Crawford, E., Gingerich, M., & Eliasmith, C. (2016). Biologically plausible, human-
scale knowledge representation. Cognitive Science, 40, 782–821.

Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition.
New York: Oxford University Press.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineering: Computation, representa-
tion, and dynamics in neurobiological systems. Cambridge, MA: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., & Rasmussen,
D. (2012). A large-scale model of the functioning brain. Science, 338, 1202–1205.

3
https://www.nengo.ai/nengo-spa/.

Vector-Derived Transformation Binding 869

Gayler, R. W. (1998). Multiplicative binding, representation operators and analogy
(Workshop Poster). In Advances in analogy research: Integration of theory and data
from the cognitive, computational, and neural sciences. Sofia, Bulgaria: New Bulgarian
University.

Gayler, R. W. (2004). Vector symbolic architectures answer Jackendoff’s challenges for cog-
nitive neuroscience. arXiv:cs/0412059.

Gosmann, J. (2015). Precise multiplications with the NEF. Waterloo, ON: University of
Waterloo.

Gosmann, J. (2018). An integrated model of context, short-term, and long-term memory.
PhD diss., University of Waterloo.

Gosmann, J., & Eliasmith, C. (2015). A spiking neural model of the N-back task. In
Proceedings of the 37th Annual Meeting of the Cognitive Science Society (pp. 812–817).
Cognitive Science Society.

Kanerva, P. (2009). Hyperdimensional computing: An introduction to computing
in distributed representation with high-dimensional random vectors. Cognitive
Computation, 1(2), 139–159.

Knight, J., Voelker, A. R., Mundy, A., Eliasmith, C., & Furber, S. (2016). Efficient SpiN-
Naker simulation of a heteroassociative memory using the Neural Engineering
Framework. In Proceedings of the 2016 International Joint Conference on Neural Net-
works. Piscataway, NJ: IEEE.

Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics.
Cognitive Science, 34, 1388–1429.

Mundy, A. (2016). Real time spaun on SpiNNaker: Functional brain simulation on a
massively-parallel computer architecture. PhD diss., University of Manchester.

Mundy, A., Stewart, J., Terrence, C., & Furber, S. (2015). An efficient SpiNNaker im-
plementation of the Neural Engineering Framework. In Proceedings of the 2015
International Joint Conference on Neural Networks. Piscataway, NJ: IEEE.

Plate, T. A. (2003). Holographic reduced representation: Distributed representation for cog-
nitive structures. Stanford, CA: CSLI Publications.

Recchia, G., Sahlgren, M., Kanerva, P., & Jones, M. N. (2015). Encoding sequential
information in semantic space models: Comparing holographic reduced repre-
sentation and random permutation. Computational Intelligence and Neuroscience,
2015, 986574.

Smolensky, P. (1990). Tensor product variable binding and the representation of sym-
bolic structures in connectionist systems. Artificial Intelligence, 46, 159–216.

Stewart, T. C., & Eliasmith, C. (2011). Neural cognitive modelling: A biologically con-
strained spiking neuron model of the tower of Hanoi task. In Proceedings of the
33rd Annual Meeting of the Cognitive Science Society (pp. 656–661). Cognitive Sci-
ence Society.

Wyner, A. D. (1965). Capabilities of bounded discrepancy decoding. Bell System Tech-
nical Journal, 44, 1061–1122.

Received September 30, 2018; accepted December 18, 2018.

