
Citation: Dumont, N.S.-Y.; Stöckel,

A.; Furlong, P.M.; Bartlett, M.;

Eliasmith, C.; Stewart, T.C.

Biologically-Based Computation:

How Neural Details and Dynamics

Are Suited for Implementing a

Variety of Algorithms. Brain Sci. 2023,

13, 245. https://doi.org/10.3390/

brainsci13020245

Academic Editors: Baingio Pinna and

Amedeo D’Angiulli

Received: 31 December 2022

Revised: 28 January 2023

Accepted: 28 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Biologically-Based Computation: How Neural Details and
Dynamics Are Suited for Implementing a Variety of Algorithms
Nicole Sandra-Yaffa Dumont 1,*,† , Andreas Stöckel 2,† , P. Michael Furlong 1,† , Madeleine Bartlett 1 ,
Chris Eliasmith 1,2 and Terrence C. Stewart 3

1 Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON N2L 3G1, Canada
2 Applied Brain Research Inc., Waterloo, ON N2T 1G9, Canada
3 National Research Council, University of Waterloo Collaboration Centre, Waterloo, ON N2L 3G1, Canada
* Correspondence: ns2dumont@uwaterloo.ca
† These authors contributed equally to this work.

Abstract: The Neural Engineering Framework (Eliasmith & Anderson, 2003) is a long-standing
method for implementing high-level algorithms constrained by low-level neurobiological details.
In recent years, this method has been expanded to incorporate more biological details and applied
to new tasks. This paper brings together these ongoing research strands, presenting them in a
common framework. We expand on the NEF’s core principles of (a) specifying the desired tuning
curves of neurons in different parts of the model, (b) defining the computational relationships
between the values represented by the neurons in different parts of the model, and (c) finding the
synaptic connection weights that will cause those computations and tuning curves. In particular,
we show how to extend this to include complex spatiotemporal tuning curves, and then apply this
approach to produce functional computational models of grid cells, time cells, path integration,
sparse representations, probabilistic representations, and symbolic representations in the brain.

Keywords: neural engineering framework; spatiotemporal representation; cognitive modelling;
spatial semantic pointers; time cells

1. Introduction

Over the past two decades, the Neural Engineering Framework (NEF; [1]) has been
used to build a wide variety of functional, biologically plausible neural networks, including
what remains the world’s largest functional brain model, Spaun [2,3]. Over that 20-year
period, some of the core theoretical assumptions of the NEF have remained constant,
while others have evolved and been significantly extended. As well, a variety of specific
representations and neural algorithms have been proposed and implemented using the
NEF methods. In this paper, we provide a summary of some of this work, focusing on
results that arise from expanding the NEF’s principles while adopting its core assumptions
regarding continuous spatiotemporal neural representations as being the best way to
characterize neurobiological systems.

We begin by summarizing a general theoretical approach to spatiotemporal modeling
that extends the applicability of the original NEF principles to a wider variety of neural
dynamics. Specifically, the new techniques allow for capturing more sophisticated single
neuron dynamics (e.g., adaptation) and more complex synaptic dynamics (e.g., alpha
synapses) while retaining the NEF’s ability to model arbitrary nonlinear dynamical systems
at the network level. Critically, as well, this NEF extension uses continuous spatiotemporal
representations—thus it “starts with continuity” in the same manner as the original NEF.

We believe that embracing continuity provides an important distinction from most
methods for building neural networks. Indeed, the vast majority of the largest and most
useful neural networks assume discretization in state and time (see, e.g., the new Gato
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system [4] or AlphaGo from DeepMind [5]). While the theoretical differences between
continuous and discrete representations are subtle, since any continuous representation
can be approximated to an arbitrary degree of precision by a discrete one, we describe
specific algorithms and representations that are derived in a continuous setting, and
outperform standard methods even after they are discretized. That is, the NEF-style
approach of “continuity first, discretize later,” has led to improvements in state-of-the-art
neural networks [6,7].

However, our focus here is not on benchmarking neural networks on machine learning
tasks, but rather on methods for biological modeling. It should be noted that here, too,
the majority of methods for building models of cognitive systems—which we consider
“scaled up” biological modeling—are discrete in time and space. This includes both more
traditional approaches, like ACT-R [8] and Soar [9], and many neural network approaches
that assume localist representations, or do not define the continuous dynamics of individual
neurons [10]. In contrast, NEF-style approaches provide a foundation for continuous
methods of modeling cognition, like the Semantic Pointer Architecture (SPA; [11]). We
believe the SPA and NEF are complementary, in that the SPA attempts to address what
brains compute, where as the NEF attempts to address how brains compute. To this end, the
NEF has been used to implement the SPA-derived Spaun model, which consists of over 6
million neurons and 20 billion connections, and is able to perform a wide variety of motor,
perceptual, and cognitive tasks [2,3].

We note this connection between NEF methods and cognitive modeling to provide a
broader context for the work we discuss in this paper. Here, we focus on describing several
specific examples of using continuous spatiotemporal representations to account for neural
processing of space and time. While we do not provide large-scale cognitive examples,
the methods we show here set the stage for inclusion into an improved Spaun-like model,
as Spaun currently does not yet include clear examples of processing continuous time
and space at the cognitive level (e.g., performing prospective and retrospective interval
estimation, navigation through large environments, and so on). As such, the present work
is best seen as a collection of examples that are stepping stones towards a larger combined
model of how continuous time and space algorithms can perform biologically relevant
tasks, while capturing central aspects of neural data in a consistent manner.

The primary benefit of our approach is that we have developed a generalized frame-
work for reasoning about continuous variables in neural and cognitive models which
both conform to neural data and explain functional behavior. In this way we close the
explanatory gap between models and biological systems for a wide range of behaviors.
Specifically, through spatiotemporal tuning curves we increase the biological fidelity of
neural models, allowing us to design neural populations that have desired characteristics.
Algorithmically speaking, this family of methods has led us to identify the Legendre Delay
Network (LDN) and the Legendre Memory Unit (LMU) [6], a recurrent neural network
which reproduces time cell data and provides a memory function that allows for the optimal
storage of temporal events, without reliance on a particular discretization of time. In the
spatial domain, we exploit Spatial Semantic Pointer (SSP) representations of continuous
state spaces that can reproduce the firing patterns of grid cells [12] which we then use to
develop models of path integration and cognitive mapping. Thus, our models of brain
function are spatiotemporally continuous from top to bottom.

In addition, the use of continuous models to improve biological fidelity has benefits
beyond modeling the brain. We have also found that they can improve the efficiency
and performance of algorithms for standard machine learning, including Reinforcement
Learning (RL). For instance, the LMU shows improvement over transformer models [7], and
the SSP outperforms other continuous encoding methods on the majority of 122 Machine
Learning (ML) benchmarks [13], and can reduce the number of trials required to learn in
RL applications [14].

Overall, the unifying theme that runs through this work is the use of continuous
spatiotemporal representations and dynamics in our models. We hypothesize that these
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representations and dynamics increase the performance of algorithms for AI, ML, and RL,
while also increasing the biological fidelity of neural models.

To summarize, this work presents extensions to the NEF and a collection of examples
that demonstrate the utility of our approach. We begin with a review of foundational
methodology, present a collection of computational models grouped by topic, and conclude
with a discussion that ties our findings together. Starting with Section 2, A general approach to
spatiotemporal modelling, we describe the methods of the NEF. The standard NEF principles
we adopt are reviewed in Sections 2.1 and 2.2, while Sections 2.3–2.5 present our novel
extensions to the NEF. After introducing our general approach, we show how these methods
can be used in an array of tasks. In Section 3, Time, we introduce a series of examples of
modeling temporal representation and phenomena using our approach. We present a model
capturing the firing of “time cells” in the hippocampus. We then use similar algorithmic
methods to develop an online learning system that makes multi-step predictions of a
time-varying signal, providing a suggestion for how biological organisms might learn to
predict arbitrary temporal sequences. Next, in Section 4, Space, we turn to methods for
processing continuous space. Specifically, we describe a new kind of neural representation
that captures a variety of cellular responses, including grid, place, object vector, and border
cells. We then use that same representation to demonstrate how sparsity impacts the
performance of a simple reinforcement learning network. In Section 5, Space and time,
we combine continuous space and time in a path integrator network. We not only show
how such a network can perform path integration, but we extend it to perform temporal
integration, representing its recent path explicitly at any moment in time. In Section 6,
Quasi-probability representations, we turn to a more recent development that extends our
continuous spatial representation technique to apply to representation of probabilities. We
show that these methods provide for natural ways to implement standard probabilistic
algorithms efficiently in a neural substrate. Finally, in Section 7, Discussion, we integrate
these diverse research topics, draw lessons about the value of spatiotemporal continuity in
neural modeling, and consider future applications of this work.

2. A General Approach to Spatiotemporal Modelling

A central assumption of the NEF is that neural computation relies on neurons being
spatiotemporally tuned. In other words, we assume that there is a systematic relationship
between the stimulus history of a neuron and its present activity. This rather mild assump-
tion gives rise to a method that allows us to construct large-scale models of neurobiological
systems by compositing together smaller models.

Specifically, rather than performing end-to-end training of a complete network for
a particular task, we break that task into smaller parts, train networks for each part, and
combine them back together. Since each of these parts is simpler than the whole, their
training can be faster. (Though, it should be noted that end-to-end optimization on the final
network can still be performed). The trade-off is that we are imposing our own structure
and theoretical hypotheses onto the model. If these theoretical hypotheses as to how a
task is divided among components are sub-optimal, then the resulting model will also be
sub-optimal. Indeed, it is for this reason that we can claim that the models so constructed
are also tests of underlying theories as to how biological neural systems (and artificial
neural machine learning systems) break down tasks into individual computations.

Generally speaking, our technique can be divided into three steps, capturing and
expanding on the three principles of the original NEF (indicated in parentheses):

1. assigning tuning curves to individual neurons (representation);
2. defining relationships between the variables the neurons are tuned over (computation

and dynamics); and
3. finding synaptic weights such that both the tuning and the desired computation

emerge in the final network (implementation, which was originally combined with the
other three principles).
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Importantly, the first two steps merely describe a normative constraint, that is, we wish
for our network to behave in a certain way. Once we have solved for synaptic weights, these
normative constraints are no longer used and the network can be fully reduced to spiking
neurons connected through synaptic weights and filters. The final synaptic connection
weights and neural dynamics are responsible for causing the desired tuning curves to arise.

2.1. Tuning Curves as Building Blocks for Models of Neurobiological Systems

To explain the first step of our technique, namely assigning desired tuning curves
to individual neurons, we first need to define our notion of spatiotemporal tuning more
precisely. Specifically, we define “spatiotemporal tuning over x” as a systematic relationship
between the stimulus history x(t) and the activity ai(x) of a neuron i. In everything that
follows, the neural activity ai(x) can be either spiking or non-spiking, although we will
generally write the non-spiking version for simplicity of notation. By convention, we
define x(0) as the present stimulus. For t < 0 the stimulus x(t) encodes past stimuli; the
stimulus is undefined for t > 0 to ensure causality. We call the mapping from x onto ai(x)
a “spatiotemporal tuning curve”.

This definition may seem rather abstract. To provide some intuition, first consider
atemporal tuning curves ai(x), that is, mappings between static d-dimensional vectors
x ∈ X ⊂ Rd, and momentary activities ai. This was the standard case in the original
formulation of the NEF. Typically, the variable x over which a tuning curve is defined
describes some stimulus presented to an experimental animal. For example, in the seminal
Hubel and Wiesel experiment [15], x is the orientation ϕ of a bar of light, whereas ai(x)
could be defined as the average momentary firing rate during stimulus presentation
(Figure 1A,B).

1 sStimulus presentation
B Raw spike data
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Figure 1. Illustration of the original Hubel and Wiesel experiment [15]. (A) Measuring the activity ai

of a neuron in response to a bar of light projected onto a screen. (B) The neuron produces different
levels of activity depending on the orientation of the bar of light x (data from [15]). (C) Plotting the
activity ai(x) (dashed line) and a least-squares fit G[J(x)] (gray line; G is a LIF response curve).

However, since we defined these atemporal tuning curves as mappings over some
d-dimensional vector space, we do not have to limit tuning curves to scalar variables such
as ϕ. Instead, tuning curves can be defined over various modalities and mathematical
objects, such as images, sounds, probability densities and even symbols [1,11,16]: anything
that can be treated as a d-dimensional vector. Keeping this in mind, and considering the
Hubel and Wiesel experiment mentioned above, we can make three key observations about
tuning curves:

1. There is flexibility in modeling the stimulus. As mentioned above, an intuitive choice
for modelling the stimulus variable x would be to use the scalar ϕ ∈ [0◦, 180◦). Perhaps
less intuitively, but equivalently, we could use a vector x = (cos(2ϕ), sin(2ϕ)). As we
discuss below, this particular choice simplifies modelling bell-shaped tuning curves. More
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generally speaking, observe that the choice of the variable x over which we define ai(x) is
arbitrary; yet some x simplify mathematical modelling of certain tuning curves observed
in neurobiological systems. Further examples of this principle include Spatial Semantic
Pointers (SSPs) for modelling place and grid cell tuning, and the Legendre Delay Network
(LDN) for modelling time cell tuning; we discuss these in more detail in Sections 3 and 4.

2. Tuning curves describe network-level phenomena. A tuning curve summarises the prop-
erties of the entire neural circuitry connecting from the stimulus source to the characterised
neuron. For example, the neurons in visual cortex analysed by Hubel and Wiesel are not
directly connected to the sensory organs; instead, the retinal image has been transformed
by various intermediate neurons. The tuning curve is thus not just the property of an
individual neuron, but an emergent phenomenon of the entire neural system. The challenge
in building a computational model of this system is thus to find the connection weights that
will cause these tuning curves to appear, given the particular neural dynamics (synapses,
spikes, etc.) that are used in the model. This is what the NEF is designed to do.

3. Tuning curves can be defined over internal representations. A direct consequence of the
above is that x does not necessarily have to be a well-identifiable external stimulus. Instead,
we can model tuning curves ai(x) over any quantity x that we think may be represented
by neurons that directly or indirectly project onto our target neuron i. Examples for such
x include internally generated motor commands (e.g., the desired walking speed) up to
vector-representations of abstract concepts in prefrontal cortex [11,16].

2.2. A Linear-Nonlinear Atemporal Tuning Curve Model

While the techniques presented here work with any tuning curve shape, we typically
use a linear-nonlinear tuning curve model. Using this kind of model can drastically reduce
the required computational resources for training and simulation [17], but it is not required
for the NEF techniques to work. We define an atemporal linear-nonlinear tuning curve as

ai(x) = G[Ji(x)] = G[αi〈ei, x〉+ βi] . (1)

Here, G is a rate-approximation of the spiking neuron model used in the network. This
nonlinear function maps average input currents J onto average momentary firing rates. We
typically use the spiking Leaky Integrate-and-Fire (LIF) neuron model, for which a closed-
form expression for the momentary firing rate G exists; however, the same methods can be
used with non-spiking neurons (e.g., ReLU, Sigmoid), single-compartment spiking neurons
(e.g., LIF, ALIF, Izhikevich) and multi-compartment neuron models as well [1,18,19]. For
more complex neuron models G must be estimated using iterative numerical methods. As
a reminder, while we use rate approximations to design tuning curves, at simulation time
we use the actual neuron model.

Continuing with our description of Equation (1), we use a current-translation function
J(x) to map stimuli x onto a somatic current. Within this function, the linear operator
〈·, ·〉 denotes an inner product, while the unit vector ei is the preferred direction or encoder
of the neuron, αi is a scaling factor, and βi is a constant bias current. When modeling a
neurobiological system, ei, αi, βi can be sampled such that the resulting tuning curves
match key properties of the modeled neurons, such as maximum firing rates and the
number of active neurons for a particular stimulus x [1].

Importantly, this tuning curve family is more powerful than it may seem. Remember
from our discussion above that the exact representation of a stimulus as a vector x is an
arbitrary modeling choice; we can, for example, make the dimensionality d as large as
we would like. (The number of dimensions d is limited in practice. Decoding x from a
group of neurons requires diverse neural tuning that covers all different “directions” in the
d-dimensional space. This number of directions grows exponentially in d, unless the vector
space X has special structure.). In turn, this allows us to model any tuning curve shape by
representing x in a high-dimensional space and projecting onto a current J by choosing
an appropriate encoder ei. This “projection trick” is a common technique borrowed from
machine learning, and can, for some stimulus mappings, be interpreted as an instance of
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the “kernel trick” [20]; we revisit this in the context of Spatial Semantic Pointers (SSPs)
below. Examples of nonlinear-linear tuning curves are depicted in Figure 2, which depicts
the tuning curves of various neurons used in the models discussed in this article.
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Figure 2. Examples of tuning curves in the linear-nonlinear tuning-curve family with a LIF nonlinear-
ity G. (A) Using d = 1 results in monotonic tuning over a quantity x. Coloured lines correspond to
individual neurons i. (B) Bell-shaped tuning-curves can be obtained with d = 2 and transforming
x = (sin(πx), cos(πx)). (C) Tuning curve of a single hexagonal grid cell constructed using spatial
semantic pointers (SSPs) with d = 7 (deep blue corresponds to a firing rate of 100 Hz).

2.3. Spatiotemporal Tuning Curves

We now introduce time back into our models. That is, we extend the linear-nonlinear
tuning curve model from Equation (1) so that it supports spatiotemporal tuning. In other
words, we can define ai as a pattern of activity over time as a response to the temporal
signals x instead of the atemporal vectors x. This can be desirable, since the response of
individual neurons in the brain depends on the stimulus history x and not only on the
momentary stimulus x. Even the original data from the Hubel and Wiesel experiment
(Figure 1B) clearly shows a strong decay in activity after the stimulus onset.

To account for this in our tuning curve model, we need to replace the atemporal
stimulus x with the past stimulus history x : R− −→ X ⊂ Rd, and the encoder (i.e., the
“preferred direction”) ei with a temporal encoder ei : R+ −→ X. Then, the linear-nonlinear
tuning curve model returning the current activity of the ith neuron in the network is:

ai(x) = G[Ji(x)] = G
[

αi

∫ 0

−∞
〈ei(−τ), x(τ)〉dτ + βi

]
. (2)

Assuming that ei is normalised, the integral term in this equation can be thought of as
computing a cosine similarity between the actual stimulus history x and some “preferred”
stimulus history ei. That is, each neuron has a preferred pattern over time that will cause that
neuron to fire maximally. This is the temporal generalization of the more standard preferred
stimuli used in Figure 2. Similar models of spatiotemporal tuning have been explored since
the 1980s in the context of motion perception [21–23]. For example, consider a neuron in
visual cortex tuned to downwards motion. As is depicted in Figure 3, we can model such a
neuron by setting the temporal encoder ei(t) to a prototypical downwards-moving pattern.

While we can specify anything we want as the spatiotemporal tuning curve, we can
also define them on theoretical grounds. For example, we can model the rapid decay
in activity in the Hubel-and-Wiesel experiment (Figure 1B) by setting ei to the impulse
response of a high-pass filter combined with the original atemporal ei that picked out the
particular direction ϕ to which the neuron was sensitive.

Note that it is possible to partially account for the temporal properties of the model
neuron by replacing G in Equation (2) with a temporal response model Ω[J]. This can be
used to account for neural adaptation [24]. Similar formalizations have been used to extend
the NEF to support a variety of biologically detailed neurons [19].
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Figure 3. Model of a neuron in visual cortex tuned to downwards motion. The spatiotemporal
encoder e is a two-dimensional Gabor filter sampled in two spatial dimensions ξ1, ξ2 that correspond
to coordinates in the visual field [25,26]. (A,B) Different slices through e. Blue corresponds to positive,
red to negative values. (C) Computing the neural activity for a grating pattern x moving in the arrow
direction. Downwards motion results in the strongest response amplitude.

Of course, for all of the above it must be noted that all we are doing is specifying the
desired behavior of the neurons. We are using the temporal encoders ei to indicate the
behavior we want from the model, but we have not yet determined how these responses
actually arise from the connectivity of the network. Importantly, this tuning curve formu-
lation is agnostic as to whether the spatiotemporal behaviour stems from some intrinsic
neural dynamics, is realised on a network level by combining pre-synaptic activity, results
from a specific synaptic filter, or some combination of these factors. All we have done so
far is indicated the desired behavior and the last step in the NEF process will take care of
determining how this arises.

2.4. Transforming Represented Values

The second step of our modeling technique is to decide what computation should
be performed by the network. Put differently, and assuming that pre-synaptic neurons
are tuned to signals x = (x1, . . . , xd), we need to specify how these signals influence
the activity of the neurons in the post-population. Mathematically, we can establish
this relationship by specifying a function y = f (x) that defines how the signals the pre-
populations are tuned to relate to the signal y to which the post-neurons are tuned. Once
we have defined these relationships, we can solve for synaptic weights that establish
these relationships.

As an atemporal example, consider a population of neurons tuned to a scalar x. We
can then express that a target population should be tuned to a scalar y that happens to be
the square of x, i.e., y = f (x) = x2 (Figure 4). Of course, we can also define multivariate
mappings. For example, if a pre-population is tuned to x = (x1, x2), then we can define
that y = f (x) = x1x2.
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Figure 4. Transforming signals. (A) Two LIF neuron populations (blue, green) are tuned to variables
x, y. The first population projects onto to the second; we impose the relationship y = f (x) = x2 when
solving for weights. The black “neuron” is a linear readout with G[J] = J. (B) Tuning curves of the
neurons depicted in (A). Left column depicts the tuning curves over x, right column the tuning curves
over y. The tuning of the first (blue) population is undefined with respect to y. When controlling
the stimulus variable x the network implicitly computes f (x) = x2. (C) Spike raster of the two LIF
populations when varying the stimulus x over time; although we solve for weights using a rate
approximation G[J], the resulting network is compatible with spiking neurons.

This example can even be extended to the time dimension; for example, we can state
that the target population should represent the product between x1 and x2 as it was θ1
and θ2 seconds ago, that is f (x1, x2)(t) = x1(t− θ1) · x2(t− θ2). We can similarly construct
dynamical systems such as ẋ = Ax + Bu or even ẋ = f (x, u). This formulation is useful
for defining integrators (which can act as memories, since they maintain their value when
given no input), oscillators (useful for pattern generators such as walking or swimming
motions), and other dynamic systems.

Importantly, as with the original NEF, while it is often convenient to define these
mappings f in terms of a mathematical function, the same methods work in cases where
we only have samples x1 7→ y1, . . . , xN 7→ yN as well. Such samples could for example
stem from empirical studies, or be the result of sampling a computer program.

Of course, merely postulating that the neural network should perform a certain
computation does not guarantee that it is actually possible to perform this computation
in the final network. Indeed, the network will in general only approximate the desired
function, and if it lacks the correct neural resources, it may be a poor approximation. For
example, in the case of synapses that linearly combine the pre-synaptic activities (that is,
a current-based synapse model [27]), a function can only be well-approximated by the
network if it is also possible to linearly combine the input neuron’s filtered spatiotemporal
tuning curves to approximate that desired function. That is, knowing the spatiotemporal
tuning curves and synaptic filters puts constraints on the class of functions that can be
computed by neural connections coming out of those neurons. For example, it is not
possible to accurately compute the product between x1 and x2 unless there are neurons
whose ei values are non-zero for both x1 and x2 [1]. This limitation can be overcome by
including passive dendritic nonlinearities. In this case, a larger class of nonlinear functions
including x1 · x2 can be computed even if x1 and x2 are represented in independently tuned
populations [18,28].
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2.5. Solving for Synaptic Weights

The third and final step in our technique is to solve for synaptic weights such that
the desired neural tuning and computation “emerge” in the final network. One potential
approach would be to perform global optimization using gradient descent. However,
globally optimizing large neural networks across time is computationally expensive and
often requires a large amount of training data.

We can work around this by presuming that each neuron in our network already has
the tuning that we assigned to it in step one. In a sense, we are setting up a self-fulfilling
prophecy: assuming that the network behaves a certain way, we solve for the connection
weights needed to make it behave that way. Specifically, for current-based synapses, solving
for weights wi = (wi,1, . . . wi,n) reduces to a linear regression problem:

wi = arg min
wi

∑k

(
Ji( f (xk))−∑j wij(hij ∗ aj(xk))(0)

)2
. (3)

Here, Ji is the current that we need to inject into the ith post-neuron according to the
tuning-curve constraint (Equation (2)). Furthermore, hij(t) is the impulse response of the
synaptic filter between the pre-synaptic neuron j and the post-synaptic neuron i. This term
describes the post-synaptic current over time as a response to a single input spike. The
term (hij ∗ aj(xk))(0) describes the filtered activity of the pre-neuron in response to the
represented value xk in the present moment, t = 0.

While Equation (3) may look intimidating, solving for synaptic weights is relatively
straight-forward in practice. First, we randomly sample N signals xk. Given those signals,
we can compute the filtered response of each pre-synaptic neuron j according to its tuning
curve, as well as the post-synaptic current Ji that results in the activity described by the
post-synaptic tuning-curve for f (xk). The weights wi are then the solution to a linear
least-squares problem that approximates the desired target currents by linearly combining
the pre-actvities. Note that we can also add further constraints to this equation, such as
nonnegative connection weights for modeling Dale’s principle and synaptic sparsity [29],
and, as mentioned above, account for passive nonlinear dendrites [18,28].

There are special cases under which Equation (3) can be simplified even further. For
example, if all hij are first-order exponential low-pass filters, then we can solve for weights
that realise dynamical systems without the need to sample activities through time—we just
need to compensate for the synaptic low-pass filter not being a perfect integrator [1,30].

Furthermore, for linear-nonlinear tuning curves, the resulting weight matrices wi
are generally of low-rank, which can be exploited to further reduce optimization and
simulation time. Indeed, the original Neural Engineering Framework was derived for these
special cases [1], and the simulation tool Nengo harnesses the low-rank weight matrix to
speed up simulations [17].

Importantly, note that while the weights wi are locally optimal, we are not guaranteed
that the solution is globally optimal; this is because our solution hinges on the assumption
that we can perfectly realise the desired tuning ai in every neuron. In practice, this is
never the case, and we would have to iteratively solve Equation (3) using the actually
achieved tuning; however, just like any other global optimization scheme, this approach
does not guarantee convergence to a global optimum. Nevertheless, in practice, our general
approach works well in a single iteration. In the remainder of this paper we present a
variety of systems that were constructed using the technique presented here.

3. Time

As we discussed in the previous section, the NEF describes a method for constructing
neural networks in which each neuron realises some desired spatiotemporal tuning. The
goal of this section is to provide some examples that focus on the temporal aspect. In
particular, we discuss two ways in which the techniques presented above can be used to
model time cells, first by directly solving for time cell tuning and then by realising temporal
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bases. We close this section by demonstrating how networks realising temporal bases can
be extended to predict time-series.

3.1. Time Cells and Temporal Bases

Time cells are neurons that exhibit a delayed reaction to a stimulus x. First discovered
in rat hippocampus [31], time cells have been described in various brain areas, including
medial prefrontal cortex, striatum, and cerebellum [32].

We can model a population of time cells using our techniques from Section 2. All
we need to do is to choose appropriate temporal encoders ei, such as the bell-shaped ei
with different delays θi depicted in Figure 5A. In accordance with in vivo observations,
we bias θi toward smaller values and increase the spread in activation for time-cells with
larger θi [33,34]. Solving for recurrent synaptic weights using Equation (3) and simulating
the network results in a recurrent spiking neural network that exhibits the desired neural
impulse response. Importantly, each neuron’s activity (bottom of Figure 5A) arises from
the recurrent connections with all of the other neurons, and those weights have been
optimized so that each neuron’s temporal tuning curve follows the desired temporal
encoder (top of Figure 5A). (Remember that the tuning curves differ from the temporal
encoders depicted in Figure 5A as per Equation (2). The tuning curve additionally includes
the neural nonlinearity G as well as gains αi and biases βi; these ingredients are what
enables nonlinear computation in the first place). The resulting system does not perfectly
exhibit the desired ideal temporal tuning, but still the overall system correctly exhibits the
desired time cells. The accuracy of the match between the desired temporal tuning and the
actual temporal tuning generally increases with the number of neurons.

As for why it might be useful for a biological system to have these tuning curves,
remember that the set of spatiotemporal tuning curves defines the class of functions that
can be decoded from these neurons. In particular, a network with time cell tuning implicitly
retains a memory of the stimulus history over some window of time. This means that it
is possible to compute functions that involve the past history of the stimulus, such as the
delayed product f (x1, x2)(t) = x1(t− θ1) · x2(t− θ2). In other words, the tuning curves of
a population of time cells form a temporal basis [30,35,36].

However, this temporal basis that we created using the temporal encoders in Figure 5A
is not optimal, in that it is a non-orthogonal basis [24]. Imposing dynamics onto a neuron
population such that they explicitly generate an orthogonal temporal basis leads to an
alternate and more principled solution to the problem of enabling computation across time.
For example, and as is a recurring theme in this article, we could use a higher-dimensional
representation x to achieve this complex tuning behaviour over a lower-dimensional stimu-
lus variable u (cf. Section 2.1). In other words, we would like to implement a dynamical
system of the form ẋ = f (x, u) such that the impulse response of the system corresponds
to an orthogonal function basis over a finite time window. Given an f with this property,
we could implement the corresponding dynamics in a neural network using the methods
discussed in Section 2.4. (Implementing an LTI system ẋ = Ax + Bu as a transformation f
is mathematically equivalent to setting the temporal encoders ei(t) to a linear combination
of the impulse response of the individual state dimensions [24]. We can thus either think
of the basis-generating LTI systems discussed below in terms of carefully choosing tem-
poral tuning curves ei(t), or as implementing a dynamical system on top of a represented
space x).
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Figure 5. Realising time cells in NEF networks. (A) Top: Manually selected temporal encoders ei

modelling core properties of biological time cells: bias towards shorter delays θi, and larger spread in
activity for larger θi. Bottom: Activities of 200 recurrently connected integrate-and-fire neurons in
response to a positive pulse after solving for weights realising the ei. Activities are normalised to the
maximum activity of each neuron (yellow). Only active neurons are depicted; 50% of the neurons are
“off”-neurons that react to negative input pulses. (B,C) Qualitatively similar activities can be obtained
when selecting a linear combination of temporal basis functions as temporal encoders. The basis
functions depicted here are the impulse response of the Legendre Delay Network (LDN) and the
Modified Fourier (MF) Linear Time Invariant (LTI) systems for q = 7. Having closed-form state-space
LTI systems with matrices (A,B) simplifies solving for recurrent weights in the NEF.

Indeed, dynamical systems that (approximately) generate orthogonal temporal bases
exist. The seminal example of such a “basis-generating system” is the Legendre Delay
Network (LDN) [30]. The LDN is the mathematically optimal implementation of a time-
delay of length θ as a q-dimensional Linear Time-Invariant (LTI) system ẋ = Ax + Bu. By
implementing a delay, the system compresses the last θ seconds of the input u into its
state x. The impulse response of the LDN approximates the Legendre polynomials (thus
providing its name), an orthogonal function basis. The Modified Fourier (MF) system is
similar in principle, but generates the Fourier series as a function basis [24].

Curiously, as is depicted in Figures 5B,C, implementing these LTI systems in a neural
population results in temporal tuning that is qualitatively similar to our “ad hoc” approach
from Figure 5A; indeed, the LDN reproduces key features of hippocampal time cells [30].
That is, by creating this network that is just meant to optimally store information across a
window in time, the resulting tuning curves are a close match to those seen in biological
systems. This result is robust across a variety of temporal bases, with different bases having
some advantages in certain conditions [24].

If the constraints of the original formalisation of the NEF [1] are met (e.g., synapses are
homogeneous first-order low-pass filters), then realizing basis-generating LTI systems in
neural populations is not only mathematically more principled, but also computationally
efficient (cf. Section 2.5). If these constraints are not met, or manual control over individual
tuning curves is required (as in Figure 5A), then modellers can always fall back to the
newer generalized version of the NEF discussed in Section 2.
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Given these temporal tuning curves, we can now define neural networks that compute
functions based on the past history of the inputs. This could be simple mathematical
functions such as a delayed temporal product x1(t − θ1) · x2(t − θ2). Alternatively, the
network could compute any function that maps from a temporal sequence of inputs to
given outputs. For example, this could be used for word recognition, if these inputs are
sound frequencies and the outputs are the classification of word utterances. Indeed, the
LDN can be thought of as generating an optimal reservoir for encoding information over
time, and we do not need to train any of the recurrent weights (since they are solved for
using the NEF). Because of this optimality, these networks outperform state-of-the-art
methods such as LSTMs and transformers on tasks that require recognizing patterns over
time [6,7,37] (see Section 3.4).

3.2. Predicting Dynamic Systems

In addition to using the NEF principles to directly solve for the connection weights
that result in some desired output, we can also combine NEF methods with online learning
rules to create neural networks that learn over time. This is particularly important for
modelling biological systems that learn about their environment and how their bodies
interact with it.

As an example, consider a network for predicting the current position of a simple arm
model, i.e., a single-joint pendulum (cf. Figure 6A,B). We feed into the model the torque
commands τ(t) being sent to the arm and a delayed version of the position of the arm
ϕ(t− θ′). This delay reflects the fact that in biological systems there tends to be a significant
(tens of milliseconds) delay in data returning from the sensory periphery. Feeding these two
signals into a neuron population with time cell tuning, (Implementing time cell tuning over
two variables u = (u1, u2) can be accomplished by implementing two LDN LTI systems in
the same neuron population; i.e., the represented state variable is x = (x1, x2) [24]). We now
have a neural population that encodes in its temporal tuning curves these two important
variables (the command sent to the arm and the last known position of the arm) over a
window in time.

The desired output of the system is the current position of the arm. To learn this, we
need to apply an error-driven learning rule to the connection weights coming out of the
neural population with the engineered tuning curves. We start these weights as initialize
these weights as all zero, and then use a variant of the standard delta learning rule [38]
known as the Prescribed Error Sensitivity rule (PES; [39]). The PES is conceptually
similar to the delta rule (∆ωi = −λaiε, where ai is the activity of the ith neuron and ε is
the current error), but is adjusted to deal with spiking neurons and for the output and
the error itself to be represented by neurons using the NEF tuning curve approach. In
this case, the error is ε(t) = ϕ̂(t)− ϕ(t), the difference between the predicted and the
actual angle.

Figure 6C shows that the system learns to predict the pendulum location, taking both
the history of the pendulum angle and the input torque into account.
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Figure 6. Using neurons with time cell tuning to predict nonlinear pendulum dynamics.
(A,B) Overview of the experimental setup. The torque τ(t) and a delayed angle ϕ(t − θ′) are
fed into a recurrent neural network with time-cell tuning over two dimensions. We use the delta
learning rule to learn connection weights online that recombine the neural activities to predict the
angle in θ′ seconds. (C) The system learns to predict the pendulum angle with a normalized RMSE of
about 20%.

3.3. Learned Legendre Predictor: Online Multi-Step Prediction

For a more complex example, we turn to the problem of predicting the future trajectory
of the arm, rather than its current position. This sort of prediction is needed for many
approaches to motor planning, especially in biological contexts where there are significant
delays. However, note that the above approach of using a standard error-driven learning
rule cannot be applied here, because the error cannot be known at the time of the prediction.
Since the prediction is about the future, we need to wait for the future to arrive before we
can evaluate the error in our prediction.

To deal with this problem, we note that to compute the error, we need to remember
our past predictions over some window of time. This is exactly what the LDN can do.
Furthermore, in order to compute the weight updates for a delta-based learning rule, we
also need the activity of the neurons in the past (i.e., when the prediction was made). This,
again, can be encoded with an LDN.

Taking this approach, we developed the Learned Legendre Predictor (LLP) learning
algorithm [40]. It uses the LDN approach to encode the past history of predictions and
the past neural activity, and then applies error-driven learning to the weights once the
true observations become available (i.e., for a prediction 0.5 s into the future, the true
observation is available 0.5 s later). Importantly, rather than doing prediction for just one
point in time in the future, it does it over an entire future trajectory, and learns based on
the entire past history. Furthermore, since this history is linearly encoded in the Legendre
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space, the learning rule itself ends up being linear, and only requires information local to
the synapses involved, making it an efficient and biologically plausible local learning rule.

Figure 7 demonstrates LLP learning to predict the movement of a ball bouncing in
a box over 0.5 s into the future. Initially, the algorithm makes no useful prediction, but
as it collects more observations it learns to accurately predict the future motion over that
window of time. We assess the performance of the model by looking at the RMSE between
the predicted, x̂, and actual, x, trajectory of the ball at time t (Figure 7C).
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Figure 7. One trial of LLP learning to predict the motion of a ball bouncing off the walls of a box with
lossless collisions. (A) Initially the system cannot predict the future motion of the ball. (B) Using a
LDN dimensionality of q = 10, the LLP learns to predict the future motion of the ball. (C) shows the
windowed mean (window of 1 s) of the root mean square error of the predicted path for the LLP
algorithm with three different context representations over 100 trials. The LDN context uses an LDN
to summarize the recent motion of the ball. The SSP context encodes the current position of the ball,
and the SSP Speed context encodes the position and velocity of the ball. For each context encoding
we used the largest learning rate that provided a stable learning rule. The solid line is the average
performance, and the shaded regions (not visible in plot) represent a 95% confidence interval. While
the SSP algorithms learn more slowly than the LLP with the LDN context, they ultimately reach
lower prediction error. In all cases, by working in the LDN’s compressed representation we can learn
to predict delayed signals, updating historical predictions with simple linear operations.

For this case, while we use the LLP to learn the output of the network, the neurons
themselves are defined using the same temporal representations used in the previous
example, although here the inputs are the x and y location of the ball, using temporal
tuning curves that store the previous 0.5 s of that position. As an extension, we also show
the effects of using an alternative approach to representing spatial information (the SSP)
that will be discussed in the next section.

Beyond biology, the LLP has machine learning applications as a memory-efficient
algorithm for multi-step prediction. Offline, deep approaches to multi-step prediction
require explicit storage of observed data. At the cost of compression loss, the LLP provides
a time and memory-efficient, online algorithm.

3.4. Applications of Time Cell Tuning and Temporal Bases

So far we have presented the LDN in the context of modelling temporal prediction.
However, we have also found that the LDN is a useful tool for representing time series
in general machine learning applications; we refer to the LDN combined with a linear
encoding layer and nonlinear readout as the “Legendre Memory Unit” (LMU) [6]. Chilkuri
and Eliasmith [7] exploit the fact that the linear recurrence relations inherent to the LMU
can be solved for, allowing for LMUs to be trained in parallel. This resulted in 200-fold
improvement in training speed relative to LSTM networks, and 10-fold improvement in
data efficiency relative to transformer models [37].

However, the LDN component of the LMU is not simply an algebraic hypothesis for
representing time, it has also been mapped onto cerebellar circuits involved in learning
precise timing in a simulated eye blink task [41]. Stöckel et al. [41] implements a model
of cerebellum that builds on sparsely connected recurrent networks by implementing the
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specific dynamics of the LDN. The dynamics of the LDN are mapped on to the dynamics of
populations of Golgi and granule cells. This approach reproduced temporal conditioning
behaviour observed in animals, while matching the empirical properties of cells in the
cerebellum.

In addition, the LDN has also been used as the basis for modelling how animals can
estimate time intervals [42]. In that work, a spiking LDN model that produces an output
after an interval of time is analyzed in terms of the variance of its outputs, and it is shown
to produce both the behavioural scaling effects seen in humans (increased variance for
increased intervals, but only for intervals larger than 500 ms) and the neural firing patterns
seen in monkeys.

These results show that the LDN is not just a useful mathematical construct, but that
it also has a explanatory power for understanding neurobiological models of learning in
temporal tasks.

4. Space

Having described models employing temporal tuning, we will now shift focus to
examples of the spatial aspect of spatiotemporal tuning. What is meant by “spatial" in this
section is quite literal—we are interested in modelling neural representations of physical
space, rather than abstract atemporal stimuli in general.

The existence of continuous spatial representations in animals is supported by psy-
chology and biology. Spatiotemporal continuity informs how events and objects are per-
ceived [43]. Animals can discover novel shortcuts in environments [44] and humans are
hypothesized to estimate distances by mentally scanning continuous routes [45]. Addition-
ally, humans seem to have an intuitive understanding of Euclidean geometry [46]—though,
not all aspects of spatial perception align with Euclidean geometry [47].

Neurophysiological data has provided insights to the neural substrates of spatial
representations. Numerous classes of neurons with distinct spatial tuning curves have been
discovered. Place cells in the hippocampus fire at select locations in an environment [48].
Boundary cells, found in the medial entorhinal cortex (MEC) and parasubiculum, fire when
an animal is near the boundaries of an environment [49]. Also in the MEC are object
vector cells, with firing fields dependent on distance and direction to objects in the environ-
ment [50]. Of particular note are grid cells, which activate at hexagonally tiled points in an
environment and are believed to provide a metric of space [51,52].

Given the tight relationship in the NEF between the neural tuning curves and the class
of computations that can be performed using those neurons, we want methods for spatial
representation that not only explain this rich diversity of tuning in neurobiological systems,
but also allow for the computation of behaviorally meaningful outputs using those neurons.
The spatially sensitive neurons in the hippocampus-entorhinal circuit are believed to be
involved in many cognitive processes—from path integration to the formation of episodic
memories.

4.1. Spatial Semantic Pointers

To introduce the Spatial Semantic Pointer (SSP) representation, let us start with the
NEF default of a linear-nonlinear tuning curve model, G[J(x)] = G[αi〈ei, x〉+ βi]. To assign
the nonlinear tuning curves of place, boundary, and grid cells to neurons in our models,
we use the aforementioned projection trick. That is, we take a low dimensional variable,
x ∈ Rm (where m is usually 2 or 3 in the context of spatial cognition), and project it into a
high dimensional vector space by φ : Rm → X ⊂ Rd (with d� m), where we can specify
tuning curves that reproduce neurobiological data. The resulting high dimensional vector
φ(x) we call a SSP [53].
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Specifically, the SSP mapping is defined by

φ(x) = IDFT
{

eiAx
}

, (4)

where IDFT is the inverse discrete Fourier transform, and A ∈ Rd×m is the encoding matrix
of the representation. The low dimensional x is projected onto a set of d lines in Rm space,
given by the rows of the encoding matrix. These scalars are then stored in the phases of
complex exponentials (Figure 8A). This mapping was originally devised as a continuous
extension of the binding operation used in holographic reduced representations, a com-
putational method that uses distributed representations to encode complex, structured
information. (By design SSPs were developed as a type of “fractional binding”. Interest-
ingly the resulting mapping is similar to the encoding used in Random Fourier Features
(RFF), a popular kernel method in machine learning [54]).

Figure 8. (A) Illustration of the projection to the frequency domain of the SSP space given in
Equation (4). The dot products between a 2D variable x and a set of three vectors {aj} are cast as the
phases of a set of phasors, {eiaj ·x}, which reside on the unit circle in the complex plane. The IDFT
of the vector [eia0·x, eia1·x, eia3·x] is a SSP representation of x, which resides in a higher dimensional
vector space. In this example, the SSP is only 3-dimensional, but in practice a much larger set {aj} is
used to produce high dimensional SSPs. (B) Consider how these phasors change for a x′ traversing
2D space. The banded heat maps shows how the real part of the vectors {eiaj ·x} repeats over a 2D
region of x′ values. Each component of the SSP in the Fourier domain is a plane wave with wave
vector aj. The gridded heat map is the similarity between the SSP representation of x from (A) and
SSPs of neighboring points: φ(x) · φ(x′). The similarity map is periodic due to the inference pattern
of all plane waves. Here a hexgaonlly gridded similarity pattern is obtained.

The SSP projection requires an encoding matrix A. This matrix must have certain prop-
erties, such as conjugate symmetry and a row of zeros corresponding to a zero-frequency
term to ensure the final SSP φ(x) is real-valued and unit length. Further constraints on
the encoding matrix can be enforced to design tuning curves matching those of biological
neurons. It should be noted the underlying mathematics of the SSP are the same as those
in fractional power encoding [55,56]. The core difference is that here we show how these
operations can be computed by an arbitrary neural network using the NEF.

SSPs were developed in the broader context of holographic reduced representations
(HRRs). In HRRs, concepts and symbols are represented by high-dimensional vectors,
which can be combined to represent organized, hierarchical data and encode the relation-
ships between concepts. The cosine similarity between these symbol-like vectors measures
the semantic similarity between symbols. Symbol-like vectors are combined by addition, to
represent sets of symbols, and binding or circular convolution, for slot-filler representations.

To give a concrete example of these sorts of representations and how they can be
used with SSPs, consider a simple 2D environment consisting of different objects and
landmarks: a rat, two pieces of cheese, and a wall (see Figure 9A). The position of the
rat, (x1, y1), can be encoded as a SSP, φ(x1, y1). This, in turn, can be bound (i.e., circularly
convolved) with the vector representation of the concept of a rat, R, to obtain R~ φ(x1, y1)—
this represents a rat at a particular location. Likewise, the vector representation of the
concept of cheese can be bound with SSP encoding of their locations, (x2, y2) and (x3, y3),
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to obtain C ~ (φ(x2, y2) + φ(x3, y3)). In this case, the sum of SSPs to used to represent a
set of locations. The wall in the environment covers an area, which can be represented by
integrating the SSP encoding over the area,

∫ ∫
D φ(x, y)dA. This can be bound with the

vector representation of the concept of walls, W. All together, the complete environment
can be represented by adding all these object-location vector encodings:

E = R ~ φ(x1, y1) + C ~
(
φ(x2, y2) + φ(x3, y3)

)
+ W ~

∫ ∫
φ(x, y)dA (5)

This vector was constructed and “queried” for different locations with approximate
unbinding. The results of this are shown in Figure 9B–D. The high-dimensional SSPs are
visualized in this figure via their similarity to neighbouring points.

A B C DEnvironment Rat query Cheese query Wall query

Figure 9. Map encoding using SSPs. (A) A 2D environment consisting of a rat, walls, and cheese.
Information about the objects and their locations was encoded in single vector E, as per Equation (5).
(B) The vector E was queried for the location of the rat by approximate unbinding: E ~ R−1 ≈
φ(x1, y1)+ noise. The cosine similarity between the query output and SSP representations of points
gridded over 2D space was computed and plotted to produce the above heat map. (C) The similarity
map obtained from querying the map E for the location of cheese. (D) The similarity map obtained
from querying for the wall area.

4.2. Place, Grid, and Border Cells

Grid cells are believed to provide a basis for hippocampal cognitive maps and are
considered instrumental for path integration. The phase, scale, and orientation of the
pattern varies among grid cells. Patterns of different phases are found scattered amongst
each other, while the pattern spacing of neurons is organized from small to large scales
modules along the dorso-ventral axis of the medial entorhinal cortex (MEC) [57].

A neuron given an SSP as input will have activity proportional to 〈e, φ(x)〉 =
〈DFT{e}, eiAx〉, i.e., a linear combination of plane waves. By careful selection of A and e,
particular interference patterns can be generated. For example, the interference pattern
of three plane waves with wave vectors 120◦ apart is a hexagonally gridded pattern (see
Figure 8B). Using this fact we can construct encoders that ‘pick out’ different grid patterns,
and, thus, a neural population consisting of grid cells with varying grid phase, scale, and
orientation that represent an SSP φ(x) (see [12] for details). An example grid cell from a
simulated spiking network is shown in Figure 10A.

Other neuron types can be generated as well. A neuron whose encoder is the SSP
representation of some location φ(x′) and given SSP input, will have place cell-like activity
with a place field centred at x′ (see Figure 10B). Object vector and border cells can be
obtained from populations encoding SSPs representing vectors to objects or walls (see
Figure 10C,D).

Biological plausibility aside, it is also the case that this SSP approach to representation
outperforms other continuous encoding methods — radial basis functions, tile coding, one
hot encodings, and normalized input — on 74 out of 122 ML benchmarks [13], including
a mix of classification and regression problems. In particular, the SSPs constrained to
create grid cell-like activity patterns were found to be the best encoding method on the
benchmarks, while randomly chosen SSPs were the second-best encoding method. Further-
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more, the grid-cell SSPs improved the speed of learning in a spatial reinforcement learning
task [14].

A B C DGrid cell Place cell Object vector cell Border cell

Figure 10. Firing patterns of LIF neurons representing SSPs. (A) A grid cell from a population
encoding φ(x(t)), where x(t) is the path shown in grey (obtained from [58]). Red dots indicate the
positions at which the cell fired. (B) A place cell from a population encoding φ(x(t)). (C) An object
vector cell from a population encoding the SSP representation of the vector between x(t) and any
objects in view. Object locations are marked with an ‘x’. (D) A border cell from a population encoding
the SSP representation of the vector between x(t) and a wall along the right side of the environment.

4.3. Sparse Representations

One key observed feature of place cells and grid cells is that they have very sparse
activity. That is, each neuron is only active for a small proportion of possible inputs. It is
believed that this feature may be key to the hippocampus’ ability to store spatial maps for
multiple environments and may improve episodic memory capacity [59]. Sparse coding
is important as a general principle, and when we generate models with grid cells, we can
also specify the sparsity when we set desired tuning curves. This corresponds to the bias
current parameter, βi, in Equation (1).

Since sparsity is believed to help when learning, we again turn to an online learning
example that combines the NEF methods of creating neurons with particular tuning curves
and more traditional methods of changing weights in the network based on an error signal.
Here, we use the SSP approach to generate neurons that represent the spatial location
and orientation for an agent in a Reinforcement Learning task. We then use a standard
Advantage Actor-Critic learning rule to learn the Value (expected future reward) and Policy
(which action to perform) for a basic MiniGrid task [60].

In this task an agent has to navigate to a goal location in an otherwise empty 8× 8 grid-
world environment. The agent’s state consists of its (x,y) coordinate location in space, and a
vector describing the direction it is facing. This state information is fed into a population of
non-spiking grid cell neurons (implemented using the approach described in Section 4.2).

The results are shown in Figure 11 which illustrates how changes in sparsity can
drastically effect performance, with reliable and accurate performance occurring when 10%
to 25% of the neurons are active at any given time, consistent with biological data [61]. In-
terestingly, having too many neurons active (more than 50%) is detrimental to performance,
unless there are only a very small number of neurons.
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Figure 11. Mean reward gained over 200 learning trials for each configuration of the Actor-Critic
network exploring how sparsity (proportion of neurons active at any given time) and number of
neurons impacts network performance on a spatial reinforcement learning task (MiniGrid).

5. Space and Time

We have introduced tools for incorporating spatial representations, such as the lo-
cations of objects and landmarks, in neural network models. However, in reality spatial
relationships are not fixed in time; rather, they are dynamic and constantly changing as
an animal moves through the environment. In order to accurately navigate and interact
with the world, the brain must be able to integrate both spatial and temporal information,
taking into account the changing positions of objects and the animal itself over time.

Many cognitive processes necessitate incorporating dynamics into spatial represen-
tations. An example is path integration, the process by which an animal’s self-position
estimate is continuously updated based on motion information. This allows an animal to
maintain a sense of its location and orientation within an environment even when it is not
directly perceiving visual landmarks or other external cues.

Additionally, there are some tasks where it is also necessary to consider the history or
trajectory of a dynamic variable. For example, an animal may need to remember the path it
has taken in order to return to a specific location, or it may need to track the movements
of a prey animal over time in order to predict its future location. In these cases, the brain
must be able to integrate both spatial and temporal information in order to generate an
appropriate response.

In this section we present models that make use of continuous spatiotemporal repre-
sentations to perform path integration and temporal integration.

5.1. Path Integration

As an animal moves through an environment its internal estimate of self-position
will change over time. This continuous updating of spatial information is known as path
integration. The tools of the NEF allow us to model this computation using SSPs. Let
φ(x(t)) be the SSP representation of an agent’s position estimate. The SSP estimate can be
updated using velocity input ẋ(t):

φ̇(x(t)) = IDFT{iAẋ(t)}~ φ(x(t)), (6)

where ~ is circular convolution. Path integration with SSPs can be realized through
repeated convolution, or by continuous rotations in the Fourier domain. Let φ̄(t) be the
SSP in the frequency domain. Consider the dynamics of its jth component,

d
dt

[
Re φ̄(t)j
Im φ̄(t)j

]
=

[
0 −aj · ẋ(t)

aj · ẋ(t) 0

][
Re φ̄(t)j
Im φ̄(t)j

]
. (7)
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These are the dynamics of an oscillator in the complex plane with time-varying fre-
quency, aj · ẋ(t). This is a velocity controlled oscillator—the core component of oscillator-
interference models of path integration—that is integrating linear motion in direction aj.

These dynamics can be realized with the NEF to construct a model of path integration.
A set of neural populations is used to represent the SSP in the Fourier domain, φ̄(t); with
population j encoding the real and imaginary parts of φ̄(t)j, along with its time-varying
frequency, aj · ẋ(t). Each population is recurrently connected to itself. Equation (3) is used
to solve for the synaptic weights on the recurrent connections that best approximate the
dynamics of Equation (7). See [62] for a detailed description of this model. Figure 12 shows
that this model can accurately track a rat’s trajectory over 60 s exploring a cylindrical room
180 cm in diameter.
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Figure 12. The path integration model results on a 60 s long 2D path (a rat’s trajectory running in a
cylinder with a diameter of 180 cm; obtained from [51]). The grey line is the ground truth. As input
the model received a initial position and the velocity along the path (computed via finite differences).
The output of the model was a position estimate, in the form of an SSP, over time. The 2D path
estimate plotted as a black dashed line was decoded from the raw SSP output.

5.2. Temporal Integration

While we have presented the SSP representation approach as being used for space, in
general it can be used for any continuous values. One possibility is to use it as a method
for storing the past history of a value over time. For example, instead of storing an (x, y)
location, we can store a scalar x value at a particular point in time t as (x(t), t). This encoded
in the same manner as above [63].

φ(x(t), t) = IDFT
{

ei(Ax(t)+bt)
}

(8)

Time t is projected onto the high-dimensional X space via a encoding vector b ∈ Rd,
just as x(t) is projected using A.

Furthermore, since an SSP can represent multiple points at once, we can also use the
SSP approach to represent an entire trajectory.

Φ(t) =
∫ t

τ=0
φ(x(τ), t− τ)dτ (9)

The result, Φ(t), represents the past history of the spatial variable x in a high-dimensional
vector space. As with all high-dimensional vector-based approaches, the representation
will gradually become less accurate the more information is encoded.

In practice, we want to have a neural system continuously update this representation
as time progresses. The idea here is that we want to take the current representation and shift
it into the past, and then add in the new x(t) value. In this way, the system is constantly
maintaining the past history of a value. In the ideal case, this stores an infinite amount
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of information (i.e., the entire past history of the variable x(t)), but due to the constraints
of the system the representation will gradually become less accurate for data farther into
the past.

This provides an alternate approach to the LDN for encoding information, but one
that can also be neurally implemented using the NEF spatiotemporal tuning curves. This
will result in different classes of tuning curves, and will be suitable for different types of
computations. In particular, there is no explicit bound on the amount of time into the past
that can be stored, unlike the LDN, which is specifically optimized for conditions where
we know the time window that is of importance.

To implement this sort of memory as a neural system, we note that shifting the
representation into the past is exactly the same operation as is occurring for the path
integrator, except that the shift here is a constant, rather than a variable. Continuous
updating of such an SSP can be accomplished by adding baseline frequencies (given by
the encoding vector of the time in the SSP, b) to each oscillator. Baseline oscillations could
correspond to the hippocampal theta oscillations (but these are not necessary for integrating
φ(x(t)) alone [64]).

In order to build a neural system that encodes this sort of memory Φ(t), we construct a
recurrent neural network that realizes a dynamical system using the methods in Section 2.4
The dynamics of this trajectory representation (shifting the current representation and
adding the new value) are given by

Φ̇(t) = IDFT{ib}~ Φ(t) + φ(x(t)). (10)

Circular convolution of IDFT{ib} and Φ(t) is equivalent to multiplying Φ(t) by a
circulant matrix constructed from the vector IDFT{ib}, and so this is an LTI system. In fact,
this system has the same dynamics matrix as the Modified Fourier (MF) system used in
Section 3.1.

Figure 13 shows the output of a such a neural system where the input is the current
physical location (x, y), so the network is storing the past trajectory. For simplicity, we only
consider storing x here, but the overall system generalizes to multiple dimensions. The
encoded SSP Φ(t) is constantly updated by the recurrent neural network that computes
Equation (10). To interpret Φ(t) at two points in time, we use shading to indicate the
similarity (dot product) between Φ(t) and the ideal SSP for that location in the graph.
Darker shading can be interpreted as an indication that the trajectory was at that location
at that point in time.

Overall, these examples show that spatial and temporal information can be encoded in
the same system, and that the NEF can be used to create neural networks that manipulate
this information in biologically meaningful ways. The mathematics for all of these methods
are continuous in time, and this continuity is taken into account by the NEF when being
encoded into neurons. Thus, these examples show how the low-level temporal dynamics
of synapses and neurons combine with neural connectivity to create overall behavior such
as path integration or remembering a full trajectory.
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Figure 13. Results from temporal integration of SSPs to obtain trajectory representations. Path
integration was performed on a 2D path (the black line in (B)). The output of the path integrator
was fed into a temporal integrator, with dynamics given by Equation (10). (A) Two panels show
the x-dimension of the trajectory output at different points (indicated by black stars) over the
simulation time (the x axis). The output Φ(t) is visualized by a contour plot of its similarity with SSP
representations across x-space. This is analogous to a probability distribution of the x position at
different points in the past (see Section 6). (B) The 2D trajectory estimate, decoded from Φ(t) at the
end of the simulation, as a blue line that fades with how far the estimate is into the past.

6. Quasi-Probability Representations

In this section, we revisit the previous statement that the shading in Figure 13 can
be interpreted as something like a probability, and show that this leads to a novel way
to encode and manipulate probabilities in neurons, allowing for (approximate) Bayesian
optimization. We start by reiterating that Spatial Semantic Pointers can represent points
in both physical and arbitrary spaces (i.e., the variable x does not have to correspond to
a physical position, but can be any vector). Furthermore, we note that the dot product
between two SSP representations induces a measure of similarity that approximates kernels
that are valid for use in kernel machines [56,65]. Consequently, SSPs provide tools for
designing neural tuning curves that introduce probability into neural models.

The relationship between SSPs and kernel functions is defined

φ(x) · φ(x′) = IDFT
{

eiAxeiAx′
T
}
≈ k(x, x′) (11)

where k(·, ·) is the kernel function that is induced using frequency components A, as in
the Random Fourier Feature method of Rahimi and Recht [54]. It follows that weighted
sums of SSP-encoded data are potential probability distributions, and probabilities are
realized by the dot product between memory-vectors (sums of SSPs, such as the integral
encoding path information in Equation (10)) and query points encoded as SSPs. Using
the linear-nonlinear neural model, we can design neurons whose firing rates approximate
a probability distribution [66]. Combining SSPs with Bayesian linear regression, we can
construct populations of neurons that approximate Gaussian process regression [65].

Kernel density estimation then can be approximated by neurons using SSPs by simple
substitution.

P(X = x|D) = 1
n ∑

xi∈D
k(x, x′) ≈ φ(x) · 1

n ∑
xi∈D

φ(xi) (12)

However, our commonly used methods for specifying frequency components, A, often
induce kernels which are not strictly non-negative, e.g., the sinc function for uniformly
generated A, or weighted products of sinc functions that produce the hexagonal grid pattern
described in Section 4.2. Since these can be negative, we consider the represented values to



Brain Sci. 2023, 13, 245 23 of 29

be quasi-probabilities. Glad et al. [67] presented a conversion between quasi-probability
values and true probabilities, given in Equation (13).

P(X = x) ≈ max

{
0, φ(x) · 1

n ∑
xi∈D

φ(xi)− ξ

}
(13)

The value ξ is a correction to ensure that
∫

x P(X = x)dx = 1. This conversion has the
form of a ReLU neuron, where either the sum of SSPs, or the query point φ(x) can play the
role of the synaptic weights, and the term ξ, the neuron bias. Figure 14 shows the tuning
curve of a ReLU neuron that approximates a probability distribution over an arbitrary
probability distribution.
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Figure 14. Kernel Density Estimators (KDEs; green line) approximate probability distributions
(shaded region). Using the Spatial Semantic Pointer representation we can approximate the Fourier
Integral Estimator (FIE)—a density estimator using a sinc kernel function. More importantly, we can
represent probability with finite neural resources, and interpret operations on that representation as
probability statements. Figure adapted from [66].

We can also use the kernels induced by dot product in combination with Bayesian
linear regression to approximate Gaussian process regression over the structures that are
implicitly represented in the encoding φ(x). This has permitted us to construct a model of
Bayesian Optimization, which we used as a model of curiosity [66]. This approach draws a
connection between information theoretic models of exploration and the tuning curves of
biological neurons. Figure 15 shows that the performance of our Bayesian optimization
model achieves statistically indistinguishable regret compared to exact implementations,
but with substantial improvements in the computational efficiency of performing action
selection.

Our probability formulation can be used as a component of larger neural models.
Individual neurons can be interpreted as representing probabilities, and furthermore,
this allows large groups of neurons to represent probability distributions. Represented
distributions can be manipulated for different tasks (e.g., properties like entropy can be
computed, distributions can be learned online etc.). Additionally, probabilities can be
computed over complex, structured data (e.g., trajectories, or environment maps). The
implication of this work is first, that cognitive models built using SSPs may be interpreted
as probabilistic models, and second, that our quasi-probability model may be a hypothesis
for how uncertainty arises in the brain.
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Figure 15. The regret performance of Bayesian optimization implemented using Gaussian processes
with a Matern kernel (GP-BO Matern) and implemented using the Hexagonal Spatial Semantic
Pointer representation (SSP-BO Hex) on the Himmelblau standard optimization test function (A). The
regret performance of SSP-based algorithms is statistically equivalent to the GP methods, however,
by working in the neurally-plausible feature spaces, the computation time becomes constant in the
number of samples collected (B). Figured adapted from [65].

7. Discussion

Our purpose in this paper has been to both describe a continuous spatiotemporal
extension to the Neural Engineering Framework, and to provide a broad sampling of
networks built using this approach, for the purposes of empirically establishing the breadth
of the theory. It is clear that in doing so, we have introduced additional algorithmic (e.g.,
LDNs and LLPs) and representational (e.g., SSPs) considerations that play an important role
in developing the final models. However, all of the work consistently adopts a continuous
approach to characterizing the temporal and state space properties of each application and
its neural implementation. It is thus the spatiotemporal approach we have taken that is the
unifying thread throughout.

The seven examples we have provided cluster naturally into those focused on tem-
poral processing (i.e., time cells and the LLP), those focused on spatial processing (i.e.,
hippocampal cell types, sparsity, probability), and those focused on combining time and
space (i.e., path integration, and temporal integration). Furthermore, the LDN, which
lies at the heart of our temporal processing examples and was originally developed to
account for neural time processing, has turned out to beat state-of-the-art methods such as
LSTMs and transformers on a variety of ML benchmarks in terms of both accuracy and
efficiency [6,7,37]. While the utility of the LDN and LMU for machine learning provides
a clear example of transferring what we learn from biological computation to engineered
systems, we believe that it also provides a highly reusable component for building more
sophisticated brain models and modelling a wide variety of brain areas. The ever increasing
number of areas that exhibit time cell-like tuning [32] goes some way to supporting that
suspicion.

Similarly, past work has shown that SSPs are particularly effective at representing
continuous data for machine learning applications [13]. However, our focus here has
been on demonstrating a range of applications of this new method for representing con-
tinuous spaces in a manner that is efficient for biologically plausible neural learning and
computation. We have shown this both for spatial (i.e., hippocampal cell types) and spa-
tiotemporal (i.e., path integration and temporal integration) applications. As well, we have
demonstrated how this same representation can be used in a simple reinforcement learning
task, and how changing the sparsity of such a representation at the neural level impacts
performance. And, lastly, we described a more speculative connection between SSPs and
probabilistic processing in the brain. We show that an SSP-based approach to Bayesian
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optimization is far more efficient than standard techniques. Given the close connection
between SSPs, detailed neural implementations, and the SPA cognitive architecture, we
hypothesize that this technique can provide a new perspective on probabilistic processing
in the brain.

Taken together, we believe that these examples provide support for our claim that our
approach is a general one for understanding the biological basis of neural computation.
The most important advantage this extension has over the original NEF is the ability to
include a much wider variety of single neuron and synaptic dynamics. That is, we have
created a new tool in the tool-chest of neural cognitive modeling: the ability to specify
that neurons in a particular part of a model have particular spatiotemporal tuning curves,
and to solve for the connection weights that will cause this to occur, taking into account
biological constraints. This provides the ability to systematically explore how ubiquitous
dynamics, such as adaptation, can improve the efficiency of certain neural computations,
while guaranteeing that the network-level functionality remains as desired. In addition
to this core advantage, this approach can be applied to any variety of linear or nonlinear
spatiotemporal processing, it can effectively generate known neural responses in functional
models, and it connects directly to an established architecture for biological cognition.

There are some limitations to these methods. The probability work makes strong
assumptions about where the representation comes from and how the network can be
trained. The LLP algorithm smooths the signals it keeps track of, and performance is
sensitive to hyper-parameters. In addition, other researchers use different, more broad,
definitions of tuning curves, in which they capture any neural dynamics; for example,
spatiotemporal dendritic interactions or effects of modulator neurotransmitters. This is
perhaps outside the scope of our definition; the mapping between stimulus and spikes.
Furthermore, to obtain non-linear tuning curves with the nonlinear-linear model used
in this work, care is needed in selecting correct input representations—an issue akin to
feature engineering in ML. However, the representational tools we’ve presented in our
examples provide a good starting point for researchers seeking to utilize the NEF in their
own models.

Much work remains to be done to take advantage of this approach. For instance,
using these techniques to create or expand large cognitive models like Spaun should allow
us to systematically explore the effects of single neuron and more sophisticated synaptic
dynamics on high-level cognitive function. In addition, many of the examples above
use algorithms that have not been integrated into such a large-scale model, including
using LDNs for characterizing temporal and predictive behaviors, and using SSPs for
navigation, learning, and probabilistic processing. It will be important to determine
what kinds of single cell dynamics can be successfully incorporated into such models in
practice and what limitations there are. The majority of examples we have explored to
date have dynamics that are not as complicated as those found in sophisticated multi-
compartmental single cells models. It is generally possible to include more detailed passive
dendrite models in the NEF [28]. Additionally, active dendrites and conduction-based
synapses have been modelled in, what’s called, the oracle-supervised Neural Engineering
Framework (osNEF) [19]. While, this greater biological fidelity comes at the cost of a more
computationally expensive training regime, this is necessary to model the dynamics of
actual neurons. Indeed, active dendrites are necessary to capture the complex neuronal
dynamics of, for example, FS basket cells in hippocampus [68] and Purkinje cells of the
cerebellar cortex [69,70]. It remains to be seen if the tools presented in this work could be
successfully deployed on the more biologically complex osNEF.

8. Conclusions

We have shown throughout this paper how expanding the principles of the NEF while
continuing to adopt its core assumptions supports building a wide variety of biologically
constrained neural models. In particular, developing models that start with continuous
spatiotemporal representations and computations can be accomplished systemically and
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successfully for behaviours ranging from learning online prediction and motor control to
spatial navigation and probabilistic inference. Of course, the examples provided in this
paper, while disparate, are only a small sampling of the range of behaviours observed in
biological systems. As such, the main aim of this paper is to canvas the general theoretical
approach and encourage adoption of the core assumptions by demonstrating their utility.
Given these successes, we can cautiously update the original observation of the NEF as “a
‘zeroth-order guess’ about how neural systems function,” (p. xiii, [1]). Since the expansions
to the NEF described in this paper allow us to better capture the details of single-neuron
and synaptic dynamics, we are now perhaps warranted to call this version of the NEF a
“first-order guess” about how neural systems function.
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