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A Spiking Neural Model of Decision Making and
the Speed–Accuracy Trade-Off

Peter Duggins and Chris Eliasmith
Centre for Theoretical Neuroscience, University of Waterloo

The speed–accuracy trade-off (SAT) is the tendency for fast decisions to come at the expense of accurate
performance. Evidence accumulation models such as the drift diffusion model can reproduce a variety of
behavioral data related to the SAT, and their parameters have been linked to neural activities in the brain.
However, our understanding of how biological neural networks realize the associated cognitive operations
remains incomplete, limiting our ability to unify neurological and computational accounts of the SAT. We
address this gap by developing and analyzing a biologically plausible spiking neural network that extends
the drift diffusion approach. We apply our model to both perceptual and nonperceptual tasks, investigate
several contextual manipulations, and validate model performance using neural and behavioral data.
Behaviorally, we find that our model (a) reproduces individual response time distributions; (b) generalizes
across experimental contexts, including the number of choice alternatives, speed- or accuracy-emphasis,
and task difficulty; and (c) predicts accuracy data, despite being fit only to response time data. Neurally, we
show that our model (a) recreates observed patterns of spiking neural activity and (b) captures age-related
deficits that are consistent with the behavioral data. More broadly, our model exhibits the SAT across a
variety of tasks and contexts and explains how individual differences in speed and accuracy arise from
synaptic weights within a spiking neural network. Our work showcases a method for translating
mathematical models into functional neural networks and demonstrates that simulating such networks
permits analyses and predictions that are outside the scope of purely mathematical models.

Keywords: drift diffusion, random dot motion task, Neural Engineering Framework, empirical validation

The speed–accuracy trade-off (SAT) is the well-documented
tendency for individuals who make quick decisions to make more
errors, compared to individuals who gather more information and
deliberate longer. The SAT occurs in both natural and artificial
contexts and has been widely studied by researchers interested in
the cognitive mechanisms of decision making (DM). Neural and
behavioral results indicate that a variety of individual differences
and contextual factors influence how humans (Drugowitsch et al.,
2015; Kanai & Rees, 2011) and animals (Chittka et al., 2009)
accommodate the SAT (Sih & Del Giudice, 2012). Various models
have been developed to explain the cognitive mechanisms that give
rise these differences (Brown & Heathcote, 2008; Rao, 2010;

Ratcliff & McKoon, 2008). One model in particular, the drift
diffusion (DD) model, explains how DM arises from the noisy
accumulation of evidence toward one or more decision bounds
(Ratcliff & McKoon, 2008). Over the past few decades, DD models
have been quite successful in describing patterns of speed (or
response time, RT) and accuracy across individuals, contexts, and
tasks (Huang & Rao, 2013; Ratcliff et al., 2016). Furthermore,
neural activity in specific brain regions has been shown to correlate
with the decision variables (DVs) and parameters proposed by DD
(Hanks et al., 2014; Turner et al., 2015), suggesting that DD
may be consistent with DM processes in the brain. However, our
understanding of the relationship between the cognitivemechanisms
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of DM (as proposed by DD and other mathematical models) and the
neural mechanisms of DM (as realized by networks of biological
neurons in the brain) remains incomplete.
In this article, we aim to integrate neural and cognitive

explanations of the SAT using a spiking neural network (SNN)
model. Our goals are twofold. First, we show that the cognitive
mechanisms proposed by DD can be directly implemented in
biologically plausible neural networks, and that the mathematical
parameters proposed by DD (especially those responsible for
individual differences and the SAT) can be instantiated within
synaptic connection weights. Successfully achieving this goal
demonstrates that neural mechanisms within the brain are capable
of supporting the cognitive mechanisms laid out by DD, bridging
algorithmic and implementational descriptions. Second, we show
that a neural model of DM can explain (and make predictions
about) classes of phenomena that are outside the scope of purely
mathematical models. Successfully achieving this goal demon-
strates that biologically plausible neural network models have
utility beyond the original DD model, improving our understand-
ing of cognition in the brain.
To this end, we develop a SNN model of DM with two key

properties: Its architecture is based on the functional neuroanatomy
of the brain; and its dynamics realize the mechanisms and
parameters of the DD model. While our model realizes the
processes of evidence accumulation and thresholding that are central
to DD, it departs from (and extends) DD in several respects. First,
our model posits an additional cognitive operation that we call
“valuation,” in which accumulated evidence may be considered in
either absolute or relative terms. We argue that parameterized
valuation captures an important feature of DM that is sometimes
obscured in evidence accumulation models and show that including
valuation in our model improves behavioral fits. Second, while
many DD models posit trial-to-trial variance in parameters like
drift rate, starting point, or threshold, we treat our model parameters
as invariant properties for each individual. In our model, variance
instead emerges as a result of spike noise and neural communication,
allowing us to recreate observed distributions of speeds and
accuracies without positing parametric variation at the cognitive
level. Third, our model can make predictions that span neural and
cognitive levels of analysis: For instance, we can predict the
cognitive deficits that arise from simulated neural degeneration or
neurotransmitter deficits, a capacity that is important for studying
and eventually treating age-related and mental disorders. Last,
our model offers two key advantages over other neural network
realizations of DD: (a) It can be described in terms of high-level
DVs and cognitive operations, facilitating explainability and
direct comparison with mathematical models; and (b) it leverages
a modular, functional organization that can scale to accommodate
more complex operations and more difficult tasks, which we
demonstrate by using the same architecture across multiple tasks
and experimental manipulations. Overall, the ways in which our
network implements DD should be of interest to both psychol-
ogists and neuroscientists who study DM and the SAT.
We begin by describing our network in detail, discussing how it

relates to the DD model and showing its basic behavior. We then
evaluate the model’s performance by comparing its outputs to neural
and behavioral data from four separate empirical experiments. In
Experiment 1, we apply the model to the canonical random dot
motion (RDM) task, investigating two experimental manipulations:

the degree of motion coherence (task difficulty), and contextual task
instructions (speed vs. accuracy). We show that our model exhibits
the well-established SAT curve relating task accuracy to RT across
the spectrum of motion coherences, subject to speed versus accuracy
instructions (Hanks et al., 2014). We also identify neurons in our
model that exhibit ramping activities similar to those observed in
cortical accumulators. We demonstrate that their buildup rate is
higher in the speed-emphasis condition, but that their activities
converge immediately before a decision is made; both these results
are consistent with neural data from the same experiment (Hanks
et al., 2014).

In Experiment 2, we illustrate the scalability of our model by
applying it to a RDM task that features either two or four directions
of motion (Churchland et al., 2008). We show that our model
reproduces the SAT curves for both two- and four-choice variant
without any structural changes. We also show that the model has
longer RTs on error trials with high motion coherence, a result that is
consistent with the behavioral data (Churchland et al., 2008).

In Experiment 3, we showcase the utility of neural modeling by
simulating the effects of aging in our SNN. Compared to young
individuals, elderly individuals have longer RTs and reduced
accuracy, both in speed- and accuracy-emphasis conditions on RDM
tasks (Forstmann et al., 2011). Similar speed–accuracy deficits have
been observed in individuals with attention-deficit/hyperactivity
disorder (Mulder et al., 2010), schizophrenia (Fish et al., 2018;
Schweitzer & Lee, 1992), and prefrontal tumors (Campanella et al.,
2016). These functional deficits have been attributed to numerous
biological sources, including impaired working memory resulting
from degraded connectivity in prefrontal cortex (Nissim et al., 2017;
Park & Holzman, 1992) and impaired threshold setting resulting
from degraded connectivity between subcortical and cortical regions
(Bogacz et al., 2010; Forstmann et al., 2008). In this experiment, we
train our SNN to match the performance of young individuals, then
simulate the process of aging by degrading particular synaptic
connections within the network. We show that some, but not all, of
these hypothesized biological factors induce cognitive deficits
reminiscent of elderly individuals, lending support to the corre-
sponding cognitive theories and demonstrating the utility of our
neural implementation of DD.

In Experiment 4, we move beyond the RDM task to study the
SAT in a nonperceptual (i.e., cognitive), temporally extended
setting. In this task, participants sample noisy evidence about stock
prices over time, and must decide which stock to invest in after a
self-truncated sampling period. Participants complete as many trials
of the task as possible within the allotted timeframe and are
rewarded for the total number of correct choices. Participants who
sample fewer cues before deciding will complete more trials overall,
but will be less accurate than participants who sample more cues:
This task thus establishes an explicit SAT with respect to the
rewards obtained. Experimental evidence shows that individuals
adopt different strategies when performing this task, but that most
humans are biased toward strategies that overemphasize accuracy
(Fiedler et al., 2021). We apply our model to this task with the goal
of recreating individual differences between these strategies and
their corresponding behaviors. We fit models to each of the 55
participants in the empirical data set, attempting to reproduce a
particular “training” subset of the behavioral data while reserving
the remainder as a “validation” subset. We show that our fitted
models reproduce (a) the behaviors characteristic of strategies across

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

2 DUGGINS AND ELIASMITH



SAT spectrum (a fast-inaccurate, a middle-of-the-road, and a slow-
accurate strategy) and (b) the SAT curve evident across the entire
population (mean accuracy vs. mean number of sampled cues for all
individuals). Furthermore, our model (c) recreates the observed
accuracy bias and (d) generalizes to data outside the training set,
making accurate predictions about the number of cues sampled and
resulting accuracy for novel task difficulties.
In order to highlight the advantages of our SNN model for

understanding the SAT, we also simulate two mathematical models,
the DD model and the extrema detection model, and analyze
their behavior in these four experiments. These two simple models
represent traditional approaches to computational modeling of the
SAT, and their behavior serves as a baseline against which we
compare the behavior our relatively complex model. We find that,
while DD and extrema detection can fit the observed RT distributions,
these models struggle to predict data outside the training set, often
make incorrect accuracy predictions, and perform poorly in the
nonperceptual task.
We conclude with a discussion of how our model relates to other

computational models, to empirical data, and to more complex tasks.
We first review the biological and cognitive plausibility of our
model: We lay out our theoretical assumptions and enumerate the
unique predictions made by our model, then analyze how well our
model captures the brain’s cognitive abilities in this limited domain.
In doing so, we discuss how our model derives from DD and how it
extends DD through neural implementation; we also compare our
network to existing neural network models of DM. We argue that
our model helps integrate multiple levels of analysis by describing
how neural mechanisms in the brain implement key cognitive
mechanisms of DM, and that such an understanding helps improve
our understanding of individual differences with respect to the SAT.
We finish by proposing extensions for the model and identifying
directions for future work.

Background

Decision-Making Task

To study the neural and cognitive mechanisms of DM, researchers
use cognitive tasks that require individuals to sample information
from the world, evaluate that information with respect to some goal,
and choose between alternative actions. Different tasks involve
different processes for sampling, evaluation, and decision, and
therefore inform our understanding of DM in different ways. In
this article, we study two classes of DM task: perceptual and
nonperceptual.
In perceptual tasks, participants are presented with sensory input

andmust classify the input as quickly as possible, given the presence
of distractors. Speed is measured as the time between stimulus
presentation and choice selection (RT), while accuracy is measured
as the mean number of correct responses across many trials. Task
difficulty is determined by the number of distractor stimuli; a greater
fraction of distractors from the incorrect category implies a more
difficult trial. Perhaps the most widely studied perceptual
discrimination task is the RDM task (Brown & Heathcote, 2008;
Churchland et al., 2008; Hanks et al., 2014; Lo et al., 2015; Palmer et
al., 2005; Ratcliff et al., 2016). In this task, participants must identify
the predominant direction of motion among a cloud of moving dots.
Some of the dots move in random directions (distractors), and the

remainder move in a coherent direction (signal). The percentage of
dots moving in the coherent direction (or motion coherence, C)
determines the task difficulty: when C ≃ 100%, participants
complete the task quickly and accurately, but when C ≃ 0%,
participants take longer to respond and are less accurate.

In nonperceptual or cognitive tasks, participants are presented
with symbolic information and must choose between alternative
actions, given some abstract goal. Speed is measured as the amount
of information collected, while accuracy is measured as the mean
number of correct responses across many trials. Task difficulty is
determined by the relative uncertainty of the presented information
with respect to the goal. Uncertainty and speed in nonperceptual
tasks are intended to be independent of the brain’s perceptual
system: uncertainty is defined in abstract or symbolic terms, and
speed should depend on deliberative cognitive processes rather than
perceptual ones. For example, in the task developed by Fiedler et al.
(2021), participants are presented with sequential evidence about the
changing financial value of two hypothetical stocks (“A” and “B”)
and are asked to select the stock with greater value. Participants
view a screen that displays information about Stock A on the left
and Stock B on the right. Every 500 ms, the screen displays new
evidence about one stock, indicating whether it increased or
decreased in value. Samples alternate between Stocks A and B.
Participants may press a button at any time to stop sampling, then
another button to select Stock A or Stock B. Once participants
complete a single trial, the next trial begins immediately. In this task,
speed is the number of samples taken before a decision, and
accuracy is the mean number of correct selections across multiple
trials. Behind the scenes, each stock has a hidden, unique probability
P of increasing in value. The difference in probabilities between A
and B is fixed for each trial and determines the task difficulty; larger
ΔP implies an easier task (less uncertainty), which produces faster
and more accurate decisions.

There are important similarities and differences between
perceptual and nonperceptual tasks with respect to DM and the
SAT. In both tasks, the brain must continuously reevaluate potential
actions as more information is gathered (Domenech et al., 2018;
Kayser et al., 2010; Turner et al., 2015), and studies have shown that
multiple factors, such the quality of incoming evidence and the need
for urgency, influence people’s behavior in these tasks (Yau et al.,
2020). Similarly, both tasks involve the SAT: Some individuals
perform the task quickly but inaccurately, while others do so slowly
but accurately; and participants can adjust their strategies to
accommodate task instructions to emphasize speed or accuracy
(Fiedler et al., 2021; Hanks et al., 2014). However, some researchers
have questioned whether perceptual tasks are well-suited to
investigate high level, deliberative DM (Fiedler et al., 2021).
Perceptual tasks rarely require conscious deliberation, extended risk
assessment, or the voluntary seeking of additional information, three
features that define high-level DM in humans. Furthermore, the SAT
must often be externally incorporated into perceptual tasks: For
instance, experimenters must instruct participants to favor speed or
accuracy (Hanks et al., 2014; Palmer et al., 2005), create payoff
structures that reward fast versus accurate decisions, or impose
external deadlines for responses (Heitz, 2014). The extent to which
these explicit instructions influence perceptual processes is a matter
of debate. Finally, differences in speed and accuracy in perceptual
tasks are often determined by perceptual abilities and by the
allocation of attention, rather than by individual differences in DM
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(Fiedler et al., 2021). In contrast, nonperceptual tasks, such as those
presented in Gluth et al. (2014) and Liu et al. (2022), naturally
address many of these concerns. Even without explicit instructions
or payoff structures, participants in nonperceptual tasks conceptu-
ally understand they are faced with a SAT, and attempt to behave
accordingly, with varying levels of success (Fiedler et al., 2021).
Sampling information in nonperceptual tasks is also largely divorced
from sensory processing, meaning that individual differences in
perceptual abilities do not confound the analysis of the SAT. That said,
perceptual tasks have a rich history in the DM literature (Heekeren
et al., 2008), supported by neural and behavioral data (Churchland et
al., 2008; Hanks et al., 2014; Palmer et al., 2005) and mathematical
theory (Brown & Heathcote, 2008; Ratcliff & McKoon, 2008).
In this article, we investigate DM and the SAT using both

perceptual and nonperceptual tasks. By simulating perceptual tasks,
we can (a) compare our model with existing theories of DM and
(b) validate our results against well-known behavioral and neural data.
By simulating nonperceptual tasks, we investigate whether our model
(c) applies to temporally extended, deliberative DM and (d) captures
the variety of high-level cognitive strategies exhibited by individual
humans. Finally, by applying our model to both tasks, we show the
generality, scalability, and predictive power of our approach.

Neuroanatomy

Extensive evidence supports the idea that the brain maintains
value estimates for candidate actions via neural accumulators
(Luo, 2018; Pärnamets et al., 2020; Rusch et al., 2020; Suzuki &
O’Doherty, 2020), and that accumulators for different modalities are
realized in domain-specific working memory buffers throughout
cortex (Christophel et al., 2017; Sreenivasan et al., 2014). In
perceptual tasks, evidence accumulation occurs primarily in visual
areas like the lateral intraparietal area (LIP), frontal eye fields,
medial temporal area (MT), and the fusiform gyrus (Churchland
et al., 2008; Hanks et al., 2014; Heitz, 2014; Kayser et al., 2010; Yau
et al., 2020). In nonperceptual tasks, evidence is abstract and is often
processed in cortical areas such as ventromedial prefrontal cortex,
dorsolateral prefrontal cortex (dlPFC), orbitofrontal cortex, and
anterior cingulate cortex (Domenech et al., 2018; Gluth et al.,
2014; Gupta et al., 2021; Liu et al., 2022; Mulder et al., 2014).
Interestingly, value accumulation is also apparent in parts of motor
cortex, such as the supplementary motor area and the premotor
cortex, for both perceptual and nonperceptual tasks (Gupta et al.,
2021; Kayser et al., 2010), indicating that internal representations
of the action plans themselves might accumulate evidence.
Various brain areas have been implicated in flexibly controlling

the SAT. Areas like dlPFCmay influence the weighting of incoming
information, based on the reliability of evidence or the urgency of
acquiring more information (Domenech et al., 2018). Various areas
of the basal ganglia (BG), including the caudate nucleus,
substantia nigra pars compacta, and the subthalamic nucleus,
are also thought to effectively shift decision thresholds through
projections to cortex (Gupta et al., 2021; Yau et al., 2020). The
involvement of these areas in thresholding decisions is further
supported by data from humans with Parkinson’s, schizophrenia,
and autism: disrupted substantia nigra pars compacta and
subthalamic nucleus activity in these disorders correlates with
higher decision thresholds and slower evidence accumulation
(Gupta et al., 2021). Other researchers have argued that changes in

decision threshold and/or the rate of evidence accumulation are
realized directly in cortical areas, where sensory processing
evaluates, and working memory integrates, evidence (Domenech
et al., 2018; Simen, 2012; Standage et al., 2011). Finally, action
selection is often thought to involve winner-take-all competition,
either through inhibitory connections within the cortex (particularly
motor regions) or via mutual connections between cortex and BG
(Guthrie et al., 2013; Redgrave et al., 1999).

Computational Models

Many mathematical and computational models have explored the
neural and cognitive basis of DM. Evidence accumulation models
describe DM by positing one or more DVs, which encode the
dynamic likelihood of choosing one or more actions. DVs grow and
shrink as the system samples information from the environment.
This growth is termed accumulation. When a DV reaches a
threshold, a decision is triggered: The time between this event and
the onset of the stimulus (i.e., the start of the simulation) is taken to
be the RT. While most evidence accumulation models share these
core features, they make different assumptions about the processes
of sampling, accumulation, and thresholding.

Drift Diffusion

The DDmodel is arguably the most widely adopted model of DM:
It has been very successful in modeling animal behavior across many
domains (Ratcliff &McKoon, 2008), and its variables and parameters
have been correlated with neural activity in brains areas associated
with DM (Ratcliff et al., 2016; Steinemann et al., 2022; Stine et al.,
2023; Turner et al., 2015). In DD, the DV begins at some starting
value S, then “drifts” toward the decision threshold as evidence is
sampled and accumulated. This drift is a continuous random walk
process, whose slope is determined by the mean drift rate R and
whose variance is determined by the drift variance parameterV.When
the DV crosses the decision threshold T, the model chooses the action
associated with that DV. The model’s total RT is given by the
decision time (td, the time between when drift begins and ends), plus a
nondecision time (NDT or tnd, the time between when the stimuli is
presented and when drift begins). With respect to the SAT, DD
models have been widely successful in capturing contextual
differences in experiments and in describing individual differences
between participants. For instance, numerous studies have shown that
differences in RT and accuracy, in experiments that emphasize speed
versus accuracy, can be described by differences in R and T, and that
these differences in model parameters correlate with differences in
neural activities between individuals or between experimental
contexts (Karalunas et al., 2012; Kofler et al., 2013; Palmer et al.,
2005; Ratcliff & Childers, 2015; Trueblood et al., 2014; Turner et al.,
2015; Vallesi et al., 2015; Zhang & Rowe, 2014).

Conceptually, the parameters and processes in DD represent
various DM processes in the brain. The starting point S captures bias
toward a decision that is formed before a trial beings; these biases
reflect prior beliefs held by an individual and may arise from
numerous sources, including decision statistics from trials in a
previous experimental block (Hanks et al., 2011), or a failure to
properly reset the DVs represented in working memory (Simen,
2012). Incorporating S helps DD capture behavioral phenomenon
related to perseveration (Urai & Donner, 2022) and RTs on error
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trials (Ratcliff et al., 2016). The ramp rate R (and its variance V )
capture the processes of sampling and accumulation. R is set
according to the motion coherence: The direction of motion
determines the sign of R and the value of C determines the
magnitude of R. Larger values of V drive greater variance in the drift
of the DV; this may arise from noise in either the perceptual
sampling process (e.g., more jitter in the random dots) or the
accumulation process (e.g., imprecise representations of the DV in
working memory). The decision threshold T dictates the amount of
evidence that must be accumulated before the model is ready to
make a decision. Finally, tnd captures the time delay between the
presentation of sensory stimuli and the initiation of the accumulation
process; including tnd allows DD to account for unknown perceptual
processes and improves the ability of DD models to fit RT data.
The DD model can be modified in many ways. Researchers

have extended the basic model described above with the goal of
increasing the model’s cognitive realism and fitting more behavioral
data. Some models assume that decision thresholds shrink over time
as the pressure to make a decision steadily increases (Drugowitsch
et al., 2012; Kira et al., 2024): The existence of a ramping urgency
signal is consistent with behavioral data (Ditterich, 2006) and neural
data (Cisek et al., 2009), though the strength of this effect has been
called into question (Evans et al., 2017). In other models, the drift
rate increases as time pressures increase, leading to faster decisions
(Murphy et al., 2016). Finally, confidence may also stimulate
changes in model parameters, speeding or slowing decisions based
on past performance, current evidence estimates, or elapsed time
(Kiani et al., 2014; Kira et al., 2015; Lee &Usher, 2021). In contrast,
other models have sought to simplify the mechanisms of DD while
preserving the ability to fit neural or behavioral data. For instance, in
the linear ballistic accumulator (LBA) model (Brown & Heathcote,
2008), the DV grows linearly, rather than according to a continuous
random walk. This accumulation can be contrasted with other
ballistic accumulator models (Brown & Heathcote, 2005), which
place fewer constraints on the mathematical form of accumulation;
or with competitive accumulator models (Usher & McClelland,
2001), which assume that DVs compete with (i.e., inhibit) one
another as they grow. Despite their relative simplicity, LBA models
have managed to reproduce many of the behavioral phenomenon
explained by DD models (Brown & Heathcote, 2008; Donkin
et al., 2011).

Extrema Detection

Many other mathematical models of the SAT are based on
cognitive heuristics for DM. These models involve various methods
for sampling, evaluating, and comparing alternative actions that are
typically biased or irrational in some manner, in that they discard or
discount some information in service of making decisions quickly or
efficiently. A comprehensive review of these models is beyond the
scope of this work, but we refer interested readers to Pietsch and
Vickers (1997), which tests a number of sampling and memory
heuristics for DM in perceptual tasks; to Canellas and Feigh
(2016), which compares heuristic models within the “fast-and-
frugal” family on naturalistic decision tasks; and to Gigerenzer and
Gaissmaier (2011), which reviews heuristic DM in applied settings
such as business and health care. Here, we highlight one family of
models, called “nonintegration” models, which do not involve
accumulating evidence over time. Surprisingly, studies have shown

that simple nonintegration models can sometimes reproduce
empirical speed and accuracy data in many perceptual tasks
(although not always, Kira et al., 2015). For instance, the “extrema
detection” model chooses an option if it observes any sample that
exceeds a decision threshold T; despite its simplicity, this model
behaves similarly to DDmodels in the RDM task (Stine et al., 2020).
Interestingly, Stine et al. (2020) found that several commonly
accepted signs of evidence accumulation were also predicted by
nonintegration strategies. These results showcase the importance
of studying DM using models other than DD, which currently
dominates the field, as well as the explanatory power of simple
models. In this work, we compare our model, which resembles DD,
to an extrema detection model in order to highlight their similarities
and differences.

Neural Models

Although the DD model has been instrumental in advancing our
understanding of DM and the SAT and provides an intuitive high-
level description of the cognitive mechanisms of DM, it does not
(directly) provide a low-level description of the neural mechanisms
that support these cognitive mechanisms. We believe, in conjunc-
tion with other researchers (Frank, 2006; Lo et al., 2015; Shen et al.,
2023; Standage et al., 2011), that SNN models are critical for
explaining these neural mechanisms, and have the potential to
explain how the mathematical operations described by DDmight be
realized in the brain. By implementing DD in an SNN, researchers
can show how the brain might realize the proposed cognitive
mechanisms, thereby supporting the claim that DD explains DM in
biological systems. Conversely, if an SNN implementation of DD
cannot explain animal behavior, this raises questions about whether
the biological brain actually performs the cognitive operations
described by DD. Such a failure might motivate a search for more
biologically compatible explanations, either by modifying the
cognitive mechanisms of DD or by adjusting the neural mechanisms
of the SNN.

More practically, neural models make predictions about
phenomena that may be outside the scope of behavioral models.
For example, SNNs generate patterns of neural activity that can be
directly compared with single-unit activities in the brain. Previous
SNNs have produced spiking activities that align closely with the
activity in visual areas such as LIP and superior colliculus (Lo et al.,
2015; Shen et al., 2023), supporting theories about the neural codes
underlying DVs (Steinemann et al., 2022; Stine et al., 2023).
Furthermore, SNNs can potentially predict the deficits induced by
mental disorders (schizophrenia, Parkinson’s, etc.), neurotransmitter
deficits (dopamine, seratonin, etc.), or physical damage to the brain
(Duggins & Eliasmith, 2022; Frank, 2006). Cognitive models explain
these deficits by fitting model parameters to healthy versus impaired
groups: For example, DD models have been applied to explain
DM deficits in older adults (Forstmann et al., 2011) and individuals
with attention-deficit hyperactivity disorder (Mulder et al., 2010) or
schizophrenia (Moustafa et al., 2015). However, the resulting
explanations are often descriptive (top-down) in nature: They
summarize the effects of biological deficits on the dynamics of DM,
but do not predict how a novel biological perturbation would change
these dynamics. In contrast, SNNs have the potential to explain the
neural origins of cognitive deficits in a mechanistic (bottom-up)
manner. For example, in this article, we model the cognitive effects
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of aging by simulating the biological deficits induced by aging. We
test three different biological hypotheses related to aging and the
SAT (Bogacz et al., 2010) by degrading the synaptic connectivity of
our SNN in specific ways. We then simulate the model performing a
RDM task and generate bottom-up predictions about the resulting
behavioral deficits. Our results support the conclusion that working
memory deficits induced by cortical degeneration are the best
explanation for age-related decline in accuracy and speed.

Summary

Both the cognitive explanations provided by mathematical
models (such as DD and extrema detection) and the neural
explanations provided by SNNs (such as our model) are valuable for
understanding DM and the SAT: They are concerned with different
levels of analysis and appeal to different scientific audiences. We
believe that a robust understanding of these phenomena requires a
diversity of such explanations, and that models that integrate
multiple perspectives are especially valuable. In the remainder of
this article, we aim to develop just such a model. We use a well-
established theoretical framework to develop a SNN that imple-
ments evidence accumulation in a biologically plausible manner.
We apply our model to both perceptual and nonperceptual tasks and
validate our predictions using a variety of neural and behavioral
data. We also compare our simulated results to the behavior of DD
and extrema detection models in these tasks. Later, we review the
neural and cognitive realism of our model, arguing that it extends
existing SNNs in several respects. We conclude by summarizing the
ways in which our model expands our current understanding of DM
and the SAT and by suggesting directions for future work.

Materials and Method

Neural Engineering Framework

Our spiking neural DMmodel is built using the Neural Engineering
Framework (NEF) developed by Eliasmith and Anderson (2003).
The NEF characterizes spiking activity within populations of
neurons as encoding information in a latent state space. While
spikes are the physical means of communication between neurons,
cognition can be analyzed as transformations of these states,
permitting a more compact description of what brains do (Boerlin
et al., 2013; Gallego et al., 2017; Recanatesi et al., 2022). We
assume that states in this state space can be represented by a vector-
valued signal x(t), and that the cognitive operations performed in
the brain may be described as dynamical transformations of x(t).
The NEF defines methods for encoding and decoding between

neural activity and the state space. A neuron will fire most frequently
when presented with its particular “preferred stimulus” and will
respond less strongly to increasingly dissimilar stimuli. Each
simulated neuron i is accordingly assigned a preferred direction
vector or encoder. When driven with an external signal x(t), the
firing rate of the neuron is given by

aiðtÞ = G½αiei · xðtÞ + βi�, (1)

where ai(t) is the spiking activity of neuron i, G is the neuron model
with electrical current inputs [·], αi is the gain, βi is the bias current,
and ei · xðtÞ is the dot product between the state space inputs and the
neuron’s encoder. A distributed encoding extends the notion of

representation: If x(t) is fed into multiple neurons, each with a
unique tuning curve defined by ei, αi and βi, then each neuron will
respond with a unique spiking pattern ai(t), and the collection of all
neural activities will robustly encode the signal.

In order to recover, or decode, the state space information
encoded in neural spike trains, the NEF also defines decoders di,
which either perform this recovery or compute arbitrary functions,
f(x), of the represented vector. A functional decoding with d f

i allows
networks of neurons to transform the signal into a new state, which
is essential for performing cognitive operations. To compute these
transformations, a linear decoding is applied to the neural activities:

f̂ ðxðtÞÞ =
Xn

i=0

aiðtÞd f
i , (2)

where ai(t) is the activity of neuron i, n is the number of neurons, and
the hat notation indicates that the computed quantity is an estimate
of the target function. Connectionweights between each presynaptic
neuron i and each postsynaptic neuron j are composed of encoders
and decoders:

w = e × d f: (3)

In our model, encoders are chosen by sampling vectors from a
D-dimensional hypersphere, ensuring that each neural population
effectively represents a state space signal x ∈ RD. Decoders are
computed by specifying the target function f(x) for each connection
in the model, then performing an offline least-squares optimization
to solve for decoders that minimize the error between the neural
estimate and the target function. For further details on encoder
selection and decoder optimization, see Eliasmith and Anderson
(2003) and Bekolay et al. (2014).

A Spiking Neural Model of Decision Making

Our model, summarized in Figure 1, contains five spiking neural
populations and one nonneural component. We begin by describing
the nonneural perceptual system, which samples information from the
environment. In general, we are more interested in investigating the
cognitive processes of DM than in characterizing the perceptual
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Figure 1
Network Architecture for the Decision-Making Model

Note. The populations (sensory, memory, value, gate, and action) each
contain 500 spiking LIF neurons. Grey arrows are external inputs and
outputs, and black arrows are current-based exponential synapses connecting
neural populations. Boxes indicate cognitive operations being computed via
synaptic weights (black) or in a preprocessing step (gray). The model’s three
free parameters (R, L, and T) are indicated next to the corresponding
operation. LIF = leaky integrate-and-fire. See the online article for the color
version of this figure.
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processes of encoding external stimuli. However, we recognize
that, especially in perceptual tasks, these processes may substan-
tially affect the quality of the representations that are manipulated
by subsequent cognitive processes. We hypothesize that perceptual
processes introduce noise into DVs that, in conjunction with the
noise inherent to computation in SNNs, contribute to trial-to-trial
variance in individual behavior. This hypothesis is supported by
evidence that both external noise and noisy neural communication
increase the internal noise of DV representations, reducing task
performance (Chen et al., 2014; Lu & Dosher, 1998). In this article,
we use a nonneural system for sensory sampling that generates
noisy estimates of percepts in the RDM task; these representations
are then fed to the SNN as inputs. In the Discussion section, we note
that previous NEF models have simulated this sensory sampling
system using a more complete biologically plausible model of the
visual system and discuss how such a system could be incorporated
into our model in future work.
In the RDM task, our sampling module takes as input the motion

coherence value of the current trial and returns an estimate of the
perceived motion in each direction (i.e., fraction of dots moving in
each direction) for the current sampling period. To do so, we first
calculate the true percentage of motion in each direction from
coherence: For example, in a two-choice task with a coherence value
of C = 0, these percentages are P = [0.5, 0.5]; and in a four-choice
task with C = 100, these fractions are P = [0, 0, 0, 1]. Next, we
assume that our system cannot perfectly perceive these percentages
and instead takes periodic, noisy samples based on P to estimate the
current fraction of dots moving in each direction. Specifically, our
system draws perceptual samples from a normal distribution with
mean P and variance σ every ts seconds. The input to our model is
therefore given by the motion input vector i = N(P(C), σ), and i is
resampled every ts seconds. Note that σ and ts are free parameters of
the model: σ controls the magnitude of perceptual error (how far
perceived motion in each direction differs from the ground truth),
while ts controls how long these errors are propagated before
resampling occurs. In the nonperceptual stock market task, inputs
are presented for a sustained duration without any distractors, so we
simplify the sampling module to remove noise and resampling:
inputs alternate between i = [c, 0] and [0, c] every ts = 0.1 s.
Negative cues are assigned a value of c = 0, and positive cues are
valued at c = 1.
The input vector i(t) is sent to our first neural population, labeled

sensory, which encodes i(t) in spiking neural activities according to
Equation 1. Activity in this population thus represents the currently
perceived motion strength in each direction. This information is then
passed to the memory population, which is recurrently connected to
itself: This combination of feedforward and recurrent connectivity
implements a neural integrator, which continuously adds the
currently perceived motion strength into a running estimate of
the cumulative motion in each direction. As noisy percepts are
accumulated in memory, the model’s cumulative motion estimates
drift up or down: The drift rate is proportional to motion coherence,
C determines P and hence the mean of i(t), and the extent of random
walk is proportional to σ and ts. However, we also introduce a ramp
rate parameter R, which is used to scale the magnitude of synaptic
weights between sensory and memory. Higher R directly scales the
rate of accumulation in the model and is the first free parameter that
we assume differs between individual participants.

Importantly, memory tracks the cumulative motion in each
direction independently, but every neuron in memory is sensitive to
every direction of motion. In the Discussion section, we compare
this method of neural coding with other neural models of DM and
argue that permits a greater degree of flexibility and scalability.
One consequence of this encoding scheme is that each DV can be
separately decoded from the population activities in memory, but
these activities can also be used to compute functions over multiple
DVs. We make use of this property to flexibly evaluate each action
based on the history of accumulated information. The NEF allows us
to compute arbitrary functions of this information; in this article, we
use the connection between memory and the downstream value
population to realize a simple form of “valuation.” Specifically, this
connection computes a function that considers accumulated
evidence in either absolute or relative terms,

ViðtÞ =
1

A − 1

XA

j≠i
MiðtÞ − LMjðtÞ, (4)

where V is the value assigned to each candidate action i, A is the
number of possible actions, and j indexes alternative actions. M is
the cumulative motion estimate encoded in memory, and L is a free
parameter of the model that changes whether value computation is
relative or absolute. In a two-choice task, Equation 4 reduces to

V0ðtÞ = M0ðtÞ − LM1ðtÞ, (5)

V1ðtÞ = M1ðtÞ − LM0ðtÞ: (6)

When L = 0, V(t) simply reduces to the cumulative motion
estimate M(t), and we can interpret the DV represented in value as
the absolute sensory evidence for each action. On the other hand,
when L = 1, V(t) reduces to the relative difference between the
cumulative estimates for leftward and rightward motions; positive
values indicate one estimate is greater than another. Finally, values
of L between 0 and 1 lead to mixed evaluation, which accounts for
both the absolute amount of evidence that has accumulated for a
given choice and the relative difference between each choice and its
alternatives. The parameter L governs how the model evaluates its
estimates of cumulative motion and is the second free parameter of
the model that we assume differs between individual participants. In
the Discussion section, we argue that this parameterization helps
clarify a distinction that is often ambiguous in mathematical models.

Finally, the model must use the DV represented in value to make a
decision. Neurons in the action population are tuned such that they
exhibit minimal activity if the combined inputs to action are less
than zero. This population receives two inputs: The DV estimates
from value, and an inhibitory hold from the gate population.
Consequently, the excitatory signal from value will only produce a
decision when it overcomes the inhibitory signal from gate. The
amount of inhibition applied by gate is determined by the third (and
final) free parameter of the model, the decision threshold T. When
any element ofV(t) exceeds T, neurons in action become active, and
we decode an action from the model. Note that this thresholding
mechanism is agnostic about how the value function is computed:
When L = 0, actions are thresholded based on the absolute
cumulative motion, whereas when L = 1, actions are thresholded
based on the relative dominance of one motion direction.
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To summarize, our model has three parameters: the decision
threshold T, the ramp rate for motion accumulation R, and the
relative valuation parameter L. An individual model is instantiated
by choosing values for these three parameters, randomly selecting
gains and biases for each neural population, and using the NEF to
train a neural network whose synaptic weights realize the necessary
cognitive operations. It is important to note that these three
parameters are theoretical abstractions: They functionally describe
how the network manipulates the represented information when
performing the task and influence the selection of synaptic weights,
but do not govern network dynamics during the simulation itself.
Instead, the network operates solely via the communication of
spikes through weighted synaptic connections. Each population in
our model contains 500 spiking leaky integrate-and-fire (LIF)
neurons, which typically fire at a rate below 80 Hz. Neurons
communicate via spikes transmitted through current-based exponen-
tial synapses with time constant τ= 30ms (the recurrent connection in
memory has a longer time constant, τ = 100 ms).

Drift Diffusion Model

We simulate a DDmodel to provide a point of comparison for our
SNN model and to contrast the assumptions and behaviors of our
relatively complex model with a traditional computational model of
DM. The model begins each trial by waiting tnd seconds, after which
the DV begins to drift. tnd is drawn from a normal distribution on
each trial: tnd = N(μnd, σnd). However, we choose to eliminate
intertrial variance in the NDT by setting σnd = 0 in all four
experiments; our preliminary experiments suggested that optimizing
σnd did not improve fits to the RT training data, but that doing so
reduced the quality of fits to RT data in novel contexts, and lead to
poorer accuracy predictions. Next, the DV is set to its starting point
S, which is also drawn from a normal distribution on each trial: S =
N(μS, σS). However, we simplify our DD model slightly by setting
μS = 0 for all experiments. During drift, we update the DV every
Δt = 0.001 s by sampling a new percept from the distribution N(R,
V) and adding the result to the current DV. R is the trial-specific drift
rate and V is the trial-independent drift variance. In order to ensure
thatR is systematically related to the coherence of RDM, we draw R0

from a normal distribution on each trial, R0 = N(μR, σR), then
compute R by multiplying by the motion coherence: R = R0C. This
method for setting R differs somewhat from other approaches, which
typically fit a unique value of R to each value of C. Finally, when the
DV crosses the trial-independent decision threshold T, a choice is
made. For the two-choice tasks in this article, a correct choice occurs
when the DV crosses +T and an incorrect choice occurs when the
DV exceeds −T. In summary, our DD model contains six free
parameters: μnd, σS, μR, σR, V, and T. Below, we discuss how these
parameters are fit to the behavioral data.

Extrema Detection Model

Although integration models like DD capture many of the neural
and behavioral phenomena associated with the SAT, they are not the
only class of models capable of doing so. Recent work by Stine et al.
(2020) has shown that nonintegration models fit data from RDM
tasks as well as DD in many experimental setups. This finding adds
to a long history of work with simple mathematical models, dating
as far back as Pietsch and Vickers (1997), Smith and Vickers (1989),

and Vickers et al. (1971), that have also been applied to nonperceptual
tasks (or “expanded judgment” tasks, Ratcliff et al., 2016). The exact
criteria and computations required for decisions range widely between
these models (Pietsch & Vickers, 1997), but most are considerably
simpler than DD.

We simulate and analyze a nonintegration model to provide
another point of comparison for our SNN model. However,
choosing which simple model to simulate is problematic, because
not all models are applicable to all DM tasks. For instance, some
nonintegration models use clusters (runs) of consistent information
to drive decisions: If T consecutive samples all point to the same
decision, the model will choose that action. This model can be
applied to nonperceptual tasks that involve sequential sampling, but
not easily to perceptual tasks with continuous sampling (such as
RDM, where the consistency of each sample is poorly defined). On
the other hand, other nonintegration models use extreme samples to
drive decisions: If the magnitude of some sample is greater than T,
the model will choose that action. This can be applied to perceptual
tasks with noisy, real-valued information, but not easily to
nonperceptual tasks where samples have equal magnitude (such as
the task in Fiedler et al., 2021, where each sample is ±1).

We adopt an extrema detection model in this article for several
reasons. First, Stine et al. (2020) showed that this model behaves
similarly to DD in many experiments, raising questions about
whether a simple heuristic may explain DM as well as an extended
reasoning process. Second, extrema detection is mechanistically
simple (samples are taken, compared to a threshold, and immediately
rejected or accepted) and parametrically simple, the decision
threshold T is the critical parameter, although we also include a
normally distributed NDT tnd = N(μnd, σnd). Third, extrema
detection is flexible enough to simulate various tasks with the
appropriate definition of a “sample.” For the RDM, we adopt the
same sampling procedure for extrema detection that is used in
the SNN model: a new sample i = N(P(C), σ) is taken every ts, and
its magnitude is compared with the decision threshold T. For the
stock market task, we add a simple memory: The model stores the
length of the current “run” of consecutive, consistent samples. If a
new sample arrives that points in the same direction as the last
sample, this memory is incremented by one; otherwise, it is reset to
one. If a run longer than T is detected, the model chooses that
option. These mechanisms (memory and cluster detection) are
reminiscent of several models previously applied to nonperceptual
tasks (Pietsch & Vickers, 1997), while preserving the core one-
shot heuristic of extrema detection.

Results

Dynamics and Parameters

We begin by inspecting the dynamics of the model in a two-
choice RDM task. Figure 2 plots the cumulative motion estimates
(left panel) and the value estimates (right panel) as percepts are
dynamically sampled from the environment. The memory population
integrates external signals represented in the sensory population,
causing cumulative motion estimates to grow at a rate proportional
to R (here, R = 1.5). For comparison, we plot the ground truth
cumulative motion, which we calculate by multiplying the true
motion probabilities P by R. In this trial, motion coherence is set to
C = 6.4%, leading to P = [0.436, 0.564]. The memory population
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maintains a reasonable estimate M(t) of this true value, but sample
noise and spike noise lead to drift over time (as we would expect in
any biological system). The right panel shows the DVs represented
in the value population, after the synaptic connection between
memory and value computesV(t) according to Equation 4. Here, we
show an absolute value computation (L = 0). For the given decision
threshold (T = 0.25), the DV for leftward motion overcomes
inhibition at t = 0.37 s, leading to a correct decision with a RT of
0.37 s on this trial.
Figure 3 shows another trial with the same experimental setup

(identical model and motion coherence) but a different random seed
for perceptual sampling. In this trial, noisy sampling and neural
representation lead to inaccurate representations of M(t), causing
the model to make the incorrect choice after 0.49 s. While these
inaccuracies could be solved by increasing the number of neurons in
our model (improving the signal-to-noise ratio), or by reducing
sampling noise by lowering σ and ts, these inaccuracies are an
important source of incorrect decisions in our model. In fact, we

found that they are necessary to reproduce the behavioral variance in
RT and accuracy observed in the empirical data. To reduce model
complexity, we hold the number of neurons, and their maximum
firing rates, constant across all our experiments.

An alternative strategy for handling noisy motion estimates is to
compute value based on relative evidence rather than absolute
evidence. Figure 4 show the same trial (perception seed) as in
Figure 3, but with the network computing relative value (L = 1)
using a lower decision threshold T = 0.1 (the sensory and memory
populations are identical to the previous simulations). When
computing relative value, the network estimates minimal
difference between the two DVs during the first 0.2 s of simulation:
Only when M0(t) ≫ M1(t) does relative value cross threshold,
resulting in a slower RT (0.78 s) but a correct choice (unlike the L =
0 network in Figure 3). Of course, relative valuation does not
guarantee correct choices in the face of noise: using a lower
threshold (e.g., T = 0.01) may still result in an incorrect choice,
while using a higher threshold may prevent decisions altogether. In
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Figure 2
Network Dynamics in a Two Choice, Random Dot Motion Task (Correct Choice)

Note. The left panel shows the cumulative motion in each direction (blue for leftward motion, orange for
rightward motion): The dotted lines are the ground truth, and the solid lines are the estimates ofM(t) decoded from
the spiking activity ofmemory. The right panel shows the computedDVs: For an absolute value calculation (L= 0),
V(t) mirrorsM(t), although spike noise is reduced due to additional synaptic filtering. The red dashed line plots the
decision threshold T; when either DV crosses this line, excitation from value overcomes inhibition from gate, and
action neurons begin to fire, producing a decision. On this trial, the model makes the correct decision after 0.37 s.
DVs = decision variables; L = left; R = right. See the online article for the color version of this figure.

Figure 3
Network Dynamics in a Two Choice, Random Dot Motion Task (Incorrect Choice)

Note. On this trial, spike and sampling noise lead to inaccurate representations of M(t) and poor separation
between the DVs represented by V(t), causing the model to make the incorrect choice after 0.49 s. DVs =
decision variables; L = left; R = right. See the online article for the color version of this figure.
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many cases, an intermediate value of L is the ideal compromise:
Including an absolute component in valuation ensures that the DVs
always grow toward threshold as time passes, while including a
relative component in valuation reduces the likelihood that small,
momentary differences between the DVs will prompt a hasty
decision. Essentially, choosing 0 < L < 1 ensures that the model
simulates an urgency signal, but requires a degree of certainty before
choosing between two comparable options. An example is shown
in Figure 5, which demonstrates that a mixed-valuation network

(L = 0.7) can make decisions quickly (faster than a L = 1 network)
and accurately (more correct choices than a L = 0 network).

Variance and Noise

To estimate the effects of noise in our model and to visualize the
distributions of RTs that result, we created a model with middle-of-
the-road parameters (R = 1.5, T = 0.25, L = 0.7, σ = 0.3, ts = 0.02),
simulated 500 trials with different perception seeds, and analyzed
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Figure 4
Network Dynamics in a Two Choice, Random Dot Motion Task (Relative Valuation)

Note. When computing relative value from cumulative motion strength (L = 1), the network can avoid errors
caused by small DV fluctuations near the decision threshold. The downside is a slower RT (0.78 s) and greater
sensitivity to T. RT = response time; DVs = decision variables; L = left; R = right. See the online article for the
color version of this figure.

Figure 5
Network Dynamics in a Two Choice, Random Dot Motion Task (Mixed Valuation)

Note. When valuation includes both an absolute and a relative component, temporal urgency guarantees an
eventual decision as the “effective relative threshold” shrinks over time, but decisions are still driven by
differences between the cumulative motion estimates. Here, we show a mixed-valuation network (L = 0.7)
choosing correctly on both the previous trials, with intermediate RTs. RT = response time; L = left; R = right.
See the online article for the color version of this figure.
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the variance. Recall that there are two sources of randomness in our
model: noisy perception of the external world, which occurs in
our sampling module; and different realizations of spike noise on
each trial. We do not simulate trial-to-trial variance in any model
parameters. The left panel of Figure 6 depicts model dynamics:
Each line represents the DV associated with the correct choice on
each trial (decoded from the value population) and is colored
according to whether the model chose correctly (blue) or incorrectly
(orange) on that trial. The right panel plots the distribution of RTs
across all trials, again color-coded by accuracy.
Several patterns are apparent in the simulated data. First, the

decoded DVs exhibit significant variation, both over time and across
trials. This variation qualitatively resembles the DVs decoded from
monkey LIP while performing the RDM task (Steinemann et al.,
2022). Second, DV variation produces a distribution of RTs whose
mean and variance depend on the model parameters. Third, it
appears that error trials have longer RTs on average; this result (slow
errors) is qualitatively consistent with behavioral results in the RDM
task (Ratcliff et al., 2016). Together, these results suggest that
variance within and across trials may be explained by sample and
spike noise in a neural network, rather than by variance in model
parameters across trials (as is common in DD models, see the
Discussion section). In the following sections, we compare simulated
neural and behavioral variancewith empirical datamore quantitatively.

Parameter Fitting Procedure

To validate our model against empirical data in the following
experiments, we fit the SNN parameters (T, R, L, σ, ts), the DD

parameters (μnd, σS, μR, σR, V, T ), and the extrema parameters (T,
μnd, σnd, σ, ts), to behavioral data using an iterative procedure
with the Optuna optimization framework (Akiba et al., 2019). In this
procedure, we randomly choose values for each parameter, build the
model with these parameters, simulate the model on a large number
of trials using different sampling and/or network seeds, and record
the RT and accuracy on each trial. Depending on the experiment,
we hold some of these parameters constant across experimental
conditions. For instance, in the RDM experiments, we assume
that all model parameters stay the same for different values of the
motion coherence C; and in the speed- versus accuracy-emphasis
experiments (Experiments 1 and 3), we only allow one model
parameter (the decision threshold T ) to vary between conditions.
We explain how these choices support our claims about model
generalization and prediction in the corresponding section for each
experiment.

Following simulation, we create histograms of RTs for the
simulated and empirical data, then calculate the difference between
these histograms by computing a kernel density estimate, evaluating
each kernel over the range of RTs, and computing the root-mean-
square error between them. The resulting loss measures how
different the distribution of simulated RTs is from the empirical RT
distribution. Optuna uses this loss metric, along with a tree-structured
Parzen estimator algorithm, to generate a new set of parameters to
test. This resampling and testing continues for a fixed number of
optimization trials, with the algorithm generally finding better
parameters as the search continues. Note that this fitting procedure
is qualitatively different from the parameter estimation techniques
used to fit DD models to empirical data (Ratcliff & Childers, 2015).
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Figure 6
Variance in Decision Variables (Left) and Response Times (Right) Arise From Sample Noise and Spike Noise
Within the Network

Note. We simulated 500 trials with unique seeds for sensory sampling, then analyzed how DVs and RTs varied within and
across trials. We held all model parameters (R, T, L, etc.) constant across trials: All intertrial variance emerged from noise within
the network. Plotting the distribution of RTs across trials, we observed that (a) the model exhibited significant behavioral variance
due to this noise and (b) error trials tended to have longer RTs than correct trials, despite the absence of parametric variance or a
starting point parameter S in the model. DD = drift diffusion; RT = response time; DVs = decision variables; LIP = lateral
intraparietal area. As expected from Figures 2–5, the DVs decoded from our spiking neural activities drifted over time, consistent
with the DD model and with DVs decoded from neurons in LIP (Steinemann et al., 2022). See the online article for the color
version of this figure.
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Importantly, we do not provide accuracy data or neural data to the
fitting procedure:We treat these data as a separate “validation set” that
the model must predict, given that it has been calibrated to the
“training set” of RTdistributions.We review these topics further in the
Discussion section. The fitted parameter values for all simulations can
be found in Table A1.

Experiment 1: Speed Versus Accuracy Emphasis

Having established the basic behavior of our model, we now seek
to validate it against various classes of empirical data related to the
SAT. Studies have shown that instructing participants to favor speed
or accuracy leads to systematic behavioral changes in RDM tasks:
Emphasizing speed leads to shorter RTs but lower accuracy, while
emphasizing accuracy leads to longer RTs and higher accuracy
(Palmer et al., 2005; Rae et al., 2014; Vandekerckhove et al., 2011;
Voss et al., 2004; Wagenmakers, 2009). Other studies have shown
that these behavioral changes are associated with specific patterns of

neural activity: The firing rate of LIP neurons steadily increases
during dot motion but converges to a consistent firing threshold
immediately before decision (Churchland et al., 2008; Hanks et al.,
2014; Steinemann et al., 2022). In this experiment, we first show that
our model can perform the RDM task with speed and accuracy
comparable to monkeys, then recreate the effects of speed- and
accuracy-emphasis by adjusting a single model parameter, the
decision threshold T. In doing so, we demonstrate that executive
control may adjust the cognitive strategy realized by our model,
shifting its behavior in a manner consistent with neural and
behavioral data.

We begin by fitting our model to recreate the RTs of an individual
monkey from Hanks et al. (2014). Figure 7 plots RT and accuracy as
a function of motion coherence for this individual, our fitted model,
and the fitted DD and extrema models. Qualitatively, all three
models captured how RT decreases as coherence increases for the
accuracy-emphasis condition (upper right) and were able to predict
the corresponding changes in accuracy (lower right). We then
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Figure 7
Response Time (Top) and Accuracy (Bottom) as a Function of Experimental Instructions to Favor Speed (Left) or
Accuracy (Right) in a Two Choice RDM Task

Note. We fit model parameters to reproduce the empirical RT distributions for a single monkey (see Figure 8), keeping all
parameters the same between conditions except for the decision threshold T. Our model (orange) reproduced the monkey’s RT
curves with reasonable accuracy in both the speed and accuracy conditions. While the DD model (green) and extrema model
(red) qualitatively reproduced the shape of the RT curves, their RT estimates were consistently worse than our SNN: The DD
model produced longer and more variable RTs, while the extrema model failed to capture the relationship between RT and C in
the speed condition. All three models successfully predicted the monkey’s accuracy curves, despite not being trained on
accuracy data. Plotted data are the mean and 95% bootstrapped confidence intervals across all trials. DD = drift diffusion; RT =
response time; RDM = random dot motion; SNN = spiking neural network; LIP = lateral intraparietal area. Empirical data are
from Hanks et al. (2014). See the online article for the color version of this figure.
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lowered the T parameter in all three models to emulate the speed-
emphasis condition. As expected, this change decreased RT and
accuracy while preserving the characteristic shape of coherence
curves. Overall, our SNN, the DD model, and the extrema detection
model all reproduced the SAT in this task, predicted the changes in
accuracy accompanying the changes in RT, and accommodated
contextual changes (speed-emphasis) through changes in a single
model parameter, the decision threshold.
To compare the quantitative performance of these three models,

we computed the mean absolute error between the empirical data
and the simulated data for each value of C in Figure 7, for both
experimental contexts (speed- vs. accuracy-emphasis) and depen-
dent variables (RT and accuracy). We found that our model had the
lowest average error in two conditions, RT error in speed condition
(0.009 ± 0.01) and accuracy error in accuracy condition (1.96 ±
1.62), while the extrema model had the lowest average RT error in
the speed (0.005 ± 0.004), and the DDmodel had the lowest average
accuracy error in the speed condition (2.32 ± 2.0). However, despite
these successes, the mathematical models fell short in several
respects. For example, the extrema model did not predict a
significant decrease in mean RTwithC, and the DDmodel produced
a few slow responses for each C, leading it to overestimate the mean
and variance of RTs.
There are several reasons why the DD and extrema models

struggle to recreate the RT data. First, the effect size is quite small in
the speed condition (a difference of about 20 ms between C = 3.2
and C = 51.2), compared to the accuracy condition (a difference of
about 100 ms). In the speed condition, individuals will sometimes
answer as quickly as possible, regardless of coherence, making
an analysis of RT versus coherence unreliable. In fact, the other
monkey in the Hanks et al. (2014) data set had an even smaller effect

size. Second, we placed an important constraint on model fitting:
All parameters except T were identical in the two experimental
conditions. While this choice enforced a cognitive constraint that we
argue increases model realism (see the Discussion section), it limited
the flexibility of our fitting procedure. Indeed, we found that when
we allowed all model parameters to vary between the speed- and
accuracy-emphasis conditions, our model fits improved significantly
(for all three models). Notably, our constraint that drift rate in the
DD model be directly proportional to motion coherence (R = R0C)
and identical across speed-emphasis conditions significantly limited
the performance of the DD model, compared to the traditional
approach in which R is fit to every value of C and/or experimental
context separately. Third, and perhaps most important, we argue that
focusing on changes in the mean RT obscures an important aspect of
the model fit: The ability to capture variance in RTs across trials.
Figure 8 plots the distribution of RTs for each C and provides a
richer picture of how RTs vary across both trials and motion
coherence. For instance, this plot shows that, in both simulated and
empirical data, the RT distributions generated by all three models
have long tails at low C but short tails at high C. Overall, these
results demonstrate that our model can capture (and predict) the
behavioral differences induced by explicit instructions to favor
speed or accuracy.

Next, we recorded the spiking activity from neurons in the value
population of the fitted models and analyzed their dynamics. As
mentioned above, previous studies have measured ramping
activities in purported neural accumulators in sensory and motor
cortex (Heitz, 2014; X.-J. Wang, 2008); many of these studies
suggest that higher motion coherence is associated with faster
ramping, but that firing rates converge to a set firing rate threshold
immediately before a decision is made (Churchland et al., 2008;
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Figure 8
Response Time Distributions as a Function of Motion Coherence and Speed/Accuracy Emphasis

Note. These data expand on the top panel of Figure 7, showing that, while the model may not exactly reproduce the mean RT, it
reproduces the entire distribution with surprising accuracy. DD= drift diffusion; RT= response time. See the online article for the color
version of this figure.
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Hanks et al., 2014). To select model neurons that had the appropriate
tuning curves, we recorded spikes from simulated neurons in the
value population that were strongly selective for motion in the
direction of coherent motion (i.e., those that had encoders with large,
positive components in the appropriate direction). We then filtered
our simulated spikes using a low-pass filter (τ = 0.03 s) and plotted
the mean activity (with confidence intervals across neurons and
trials) over time. Figure 9 shows the firing rate of model neurons in
the 0.4 s following stimulus presentation (left panel) and the 0.3 s
preceding action selection (right panel).
Several trends are apparent in the neural data. First, both

simulated neurons exhibit ramping activities that start approxi-
mately 0.05 s after stimulus presentation: starting from a baseline
firing rate, neurons monotonically increase their firing rate, and the
“buildup rate” is higher in trials with greater motion coherence.
Second, if the spikes across trials are aligned to the RT (instead of
the start time), simulated neurons ramp to a final firing rate that
seems to be constant across motion coherence. Third, ramp rate
appears to be greater in the speed-emphasis condition, but the firing
rate threshold is not strongly affected by speed-emphasis. These
trends are all consistent with neural data in previous studies
(Churchland et al., 2008; Hanks et al., 2014; Steinemann et al.,
2022). However, a closer look at firing patterns in the empirical data
reveals that the activities preceding stimulus presentation and
following action selection are not well-approximated by our model.
We attribute these differences to startup transients and resetting

dynamics dictated by parts of the brain outside the scope of the
current project (see the Discussion section).

We also recreated the analysis from Hanks et al. (2014) in which
the authors calculate the mean buildup rate and threshold for neural
activities at multiple coherence values, then plot these twometrics as
a function of coherence. We calculated the buildup rate B as

Bi =
Aðt1Þ − Aðt0Þ

t1 − t0
, (7)

where i is the neuron index and A(t) is the firing rate at time t, which
is calculated by smoothing i’s spikes with a low-pass filter. We
choose t0 to be 0.1 s after stimulus presentation and t1 to be 0.1 s
before the recorded RT: discarding the initial and final 100 ms
eliminates irrelevant spiking activity at the beginning and end of the
simulation. Figure 10 plots the mean B and mean A(t1) as a function
of motion coherence and speed-emphasis. B increases with
coherence, and the rate of this increase is similar for both the
speed- and accuracy-oriented models. However, the speed-oriented
model exhibits greater B for each value of C, reproducing the offset
apparent in the empirical data. In contrast, the final firing rates
change very little as coherence increases, regardless of speed-
emphasis. This result is also consistent with the neural data: see
Figure 4 of Hanks et al. (2014). We again note that the model was
not built with these neural constraints in mind, nor were model
parameters fit to reproduce these neural data.
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Figure 9
Neural Activities Following Stimulus Presentation (Left) and Preceding Action Selection (Right) as a Function of
Motion Coherence and Speed/Accuracy Emphasis

Note. We recorded the spikes from direction-selective neurons in the value population while the fitted model performed the
task, smoothed them using a low-pass filter, and plotted the mean and variance (95% bootstrapped confidence intervals) over
time. The left panel clearly exhibits ramping activity as motion evidence from the sensory population accumulates in memory
and drives activity in value, while the right panel shows that neurons in value reach approximately the same firing rate about 0.1 s
before the model makes a decision. Higher motion coherences are associated with a faster buildup in firing rate, but do not affect
the observed final firing rate. See the online article for the color version of this figure.
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Overall, these results confirm that the firing properties of our
model are consistent with empirical data from monkeys performing
the RDM task. In particular, we have recreated the differences (or
lack thereof) in firing rates that are induced by instructing monkeys
to favor speed versus accuracy. One interesting conclusion is that,
while the decision threshold parameter T is the only parameter that
changes between these conditions, we do not observe significant
differences in the firing rates of neurons immediately before a
decision. In the Discussion section, we explain how this is possible
given our distinction between “threshold” in decision variable space
and neural activity space, and argue that, compared to other neural
models of the SAT, our model is uniquely capable of exploring their
relationship.

Experiment 2: Multiple Alternative Actions

In this experiment, we apply our model to a RDM from
Churchland et al. (2008), in which dots may move toward either two
targets (the upper right or lower left of a square screen, 180°
separation) or four targets (each corner of a square screen, 90°
separation). Our goal is to show that the model naturally scales to
tasks that feature more than two decisions, and that the same neural
network architecture can complete both the two- and four-choice
variants. As before, we validate our model by comparison to both
behavioral and neural data from monkeys in Churchland et al.
(2008). To fit the model parameters, we use the same approach as in
Experiment 1, but we relax the constraint that model parameters
are the same in the two- and four-choice conditions. However,
we reiterate that our model architecture (the number of neural
populations and their structural connectivity) does not change
between these conditions; the only difference between the models

performing the two- and four-choice variant of the task are (a) the
amount of sampling noise (σ and ts) and (b) the synaptic weights,
which realize the cognitive parameters (T, R, L). We did not apply
the DD model to the four-choice task: while some studies have
extended the DD model to multiple alternative actions (Krajbich &
Rangel, 2011; Roxin, 2019), doing so requires significant changes to
the model that are outside the scope of the current work.

Figure 11 plots RT and accuracy as a function of motion
coherence for an individual participant, our fitted model, and fitted
DD and extrema models. The simulated data from all three models
closely match the RT data in both task conditions. In addition, all
three models predict the correct shape for the accuracy curves in
both experimental contexts, but overestimate accuracy to varying
degrees. As in Experiment 1, the simulated RT distributions have
long tails at low C but short tails at high C, matching the empirical
distributions. Similarly, we observe coherence-dependent ramping
of neural activities, and coherence-independent firing thresholds,
that are consistent with the neural data from Churchland et al.
(2008), and which capture the differences between the two- and
four-choice contexts. We omit these two plots for brevity.

We also analyzed how the distribution of RTs differed between
correct and incorrect trials. As mentioned above, individuals
performing RDM tasks will often have longer reaction times on
trials in which they choose incorrectly. To reproduce this trend, DD
models typically employ trial-to-trial variance in S, R, or T (Ratcliff
et al., 2016). We were curious whether our model would exhibit
“slow errors” without these mechanisms. Figure 12 plots the
distribution of RTs for correct and incorrect trials at each value of C
for the two-choice context. Monkeys frequently produce slow errors
for C > 3.2%. Our model predicts the same trend, with an effect size
comparable to the empirical data. In contrast, the DD model only
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Figure 10
Firing Rate Buildup (Left) and Final Firing Rate (Right) of Direction-Selective Value Neurons as a Function of
Motion Coherence and Experimental Instructions

Note. Buildup rate and final rate are calculated from neural spikes according to Equation 7, once for each neuron (70) and each
trial (100). We plot the mean values of B and A(t1) for each C; error bars depict data between the 40th and 60th percentile, giving
a coarse indication of the variance in firing rate (buildups) across neurons and trials. Buildup rates increase linearly with motion
coherence regardless of speed- or accuracy-emphasis, but these rates are consistently higher when participants are instructed to
favor speed over accuracy. In contrast, final firing rates are largely independent of motion coherence or accuracy instructions:
Any differences in mean rates are small in absolute terms and are dwarfed by the variance across neurons and trials. Both these
model trends are consistent with empirical trends reported in Figures 3 and 4 of Hanks et al. (2014). See the online article for the
color version of this figure.
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exhibited slow errors for C > 25.6%, and the extrema model did not
exhibit slow errors at all. We observed similar trends in the four-
choice context. We also investigated whether removing our
constraints on R and μS for the DD model would produce more
slow errors. However, when we fit μR, σR, and μS separately for each
value of C, we did not observe an increase in slow errors and instead
observed poorer accuracy predictions.
Overall, these results show that our model naturally scales to

multiattribute decision tasks without architectural changes, indicate
that our model better predicts performance of monkeys in these tasks
than does the DD or extrema model, and suggest that sampling and
spike noise may be an alternative explanation for the slow errors
observed in RDM tasks.

Experiment 3: Aging and Cognitive Decline

By investigating DM and the SATwith spiking neuron models, we
gain the ability to explore how low-level biological changes impact
high-level cognitive performance. In this experiment, we recreate the
changes in speed and accuracy that accompany aging by perturbing
the synaptic connectivity in our model. As mentioned in the

introduction, different cognitive theories attribute these age-induced
changes to different biological deficits. We investigated three
potential biological origins of age-related decline: perceptual
inaccuracy, visual working memory deficits, and impaired threshold
setting. According to the first theory (Faubert, 2002; Hutchinson
et al., 2012), elderly individuals have an impaired ability to perceive
or encode visual motion signals, leading to deficits in perceptual DM
tasks. According to a second theory, aging degrades connectivity
within cortical areas that realize visual working memory (such as
neural integrators in LIP), introducing noise into the neural estimates
of accumulated DVs, reducing task performance, and increasing RTs.
Given that working memory deficits may underlie decreased RDM
performance in patients with attention-deficit/hyperactivity disorder
(Mulder et al., 2010) and schizophrenia (Fish et al., 2018; Schweitzer
& Lee, 1992), we hypothesize that comparable working memory
deficits in elderly individuals (Nissim et al., 2017; Reinhart &
Nguyen, 2019; M. Wang et al., 2011) could also explain elderly
speed–accuracy deficits. Finally, according to the third theory, elderly
individuals have an impaired ability to switch between prioritizing
speed and accuracy according to task instructions (Forstmann et al.,
2011). Neural and anatomical data show that elderly individuals have
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Figure 11
Response Time (Top) and Accuracy (Bottom) as a Function of Motion Coherence and Number of Candidate
Actions in a RDM Task With Two (Left) or Four (Right) Choice Alternatives

Note. As in Figure 7, we fit the parameters of our model (orange), the drift diffusion model (green), and the extremamodel (red)
to reproduce the empirical RT data (blue), then had the models predict accuracy in the two- and four-choice contexts. All three
models successfully reproduced the RT curves in both contexts, but our model better predicted accuracy in the two-choice
context. RT= response time; RDM= random dot motion. Empirical data are from Churchland et al. (2008). See the online article
for the color version of this figure.
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degenerated white matter connectivity between cortex and striatum,
whichmay impair their ability to set the decision threshold, especially
when switching between speed- and accuracy-emphasis conditions
(Bogacz et al., 2010; Forstmann et al., 2008).
To test these three theories, we began by fitting the parameters of

our model to the RTs from young participants in Forstmann et al.
(2011). We fit one model to the RTs of each of the 18 young
participants in this data set, then predicted their accuracy. Each
individual model was characterized by a unique combination of the
parameters (R, L, T1, T2, σ, and ts), where T1 and T2 are the decision
thresholds applied during the speed- and accuracy-emphasis
conditions, respectively. The results are shown in blue in Figure 13;
as expected, both models reproduce the mean RTs (and the shape of
the RT distributions, not shown) and predict the effects of speed-
emphasis on accuracy. To simulate aging, we then degraded the
synaptic connectivity between specific neural populations in the
model by setting some fraction of the connection weights to zero,
effectively simulating the partial loss of connectivity between
those populations. To test the perceptual theory, we applied this
degradation to the connection between sensory and memory. To test

the workingmemory theory, we weakened the recurrent connections
in the memory population, which correspond to LIP. To test the
“striatal” theory of threshold setting, we created a new population
labeled threshold, which receives external input about the desired
T for the current context, and which modulates the gate population.
This new threshold population corresponds to cortical populations
that modulate the decision network according to task instructions
(Bogacz et al., 2010), while the gate population corresponds to
striatum, inhibiting action until the decision threshold is exceeded.
To simulate aging, we then weakened the “corticostrialtal”
connections between threshold and gate. We implemented these
three degradations for each of the previously fitted models, then
simulated them to predict the resulting changes in RT and accuracy
in the elderly cohort.

The results are shown in the center panel of Figure 13. Consistent
with the empirical data, the elderly models have higher error rates
than their young counterparts. However, only the accuracy deficits
produced by degrading neural accumulators in LIP (shown in
orange) captured the magnitude of the accuracy deficits observed in
the elderly population. Furthermore, this manipulation produced
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Figure 12
Response Time Distributions for Correct Versus Incorrect Trials as a Function of Model Type and Motion Coherence

Note. RTs from trials in which the individual monkey gave the correct response are shown in blue, and incorrect trials are shown in orange. Monkeys exhibit
slower RTs on error trials (slow errors), especially for higher motion coherences C. Our model (second row) exhibited a similar trend, as does the DD model
(third row) to a lesser extent, but the extrema model (fourth row) does not. DD = drift diffusion; RT = response time; RDM = random dot motion. Empirical
data are from the two-choice RDM task in Churchland et al. (2008). See the online article for the color version of this figure.
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longer RTs that resemble the slower responses of elderly individuals.
In contrast, the other manipulations did not fit the behavioral data as
well. Weakening connectivity between the perceptual system and
neural accumulators did increase the RT in the expected way, but did
not degrade accuracy by a substantial amount. Surprisingly, we found
that weakening the model’s corticostriatal connections actually
reduced model RTs, contrary to the proposed theory. Our model
therefore predicts that the empirical trends in Forstmann et al. (2011)
are best explained by age-induced deficits in visual working memory
related to weakened recurrent connectivity within the cortex. We
discuss these results further in the Discussion section and hope that
future neuroanatomical studies will directly test this prediction by
examining the relationship between RDM performance and cortical
connectivity.
We also fit the DD and extrema model to the human data and

generated predictions about changes in task performance. In these
mathematical models, there was no way to simulate degraded
synaptic connectivity, so we instead performed separate parameter
fits for the young and elderly cohorts independently. As before, we
only allowed the decision threshold T to change between the speed-
emphasis and accuracy-emphasis conditions. The results are shown
in the right panels of Figure 13. Both the DD and extrema models do
a good job fitting the mean RT across ages and emphases, capturing
the trend that all individuals have longer RTs in the accuracy
condition, and that older individuals have longer RTs overall.

However, neither model made good predictions about the resulting
accuracy. The DDmodel correctly predicted that accuracy-emphasis
leads to lower error rates, and that elderly individuals have higher
error rates overall, but the magnitude of these trends was small
compared to the empirical data. The extrema model predicted high
error rates in all conditions, an insignificant increase in errors among
the elderly cohort, and an increase in error rates in the accuracy
condition. In the Discussion section, we argue that purely
mathematical models, and especially the extrema model, are too
simple to correctly predict how age independently influences RT
and accuracy, but that our neural network model is able to dissociate
these two trends and provide novel insights about the relationship
between biological aging and cognitive performance.

Experiment 4: Speed–Accuracy Trade-Off in a
Nonperceptual Task

In the final experiment, we apply our model to the stock market
task from Fiedler et al. (2021). Recall that in this nonperceptual task,
participants are presented with information about the rising or
falling value of two stocks, each of which has a hidden probability of
rising on each sample. Participants view samples sequentially and
may choose either option at any time. After choosing one stock, the
next trial begins immediately. Participants continue this process for
a total of 20 min and are rewarded based on the total number of
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Figure 13
Mean Response Time (Top) and Accuracy (Bottom) as a Function of Experimental Instructions and Age

Note. After fitting our model to each young individual in Forstmann et al. (2011), we artificially aged our model by degrading the synaptic
connections between specific model populations. We then compared the speed and accuracy of our young models (blue) with our elderly models
(orange). We found that degrading the recurrent connections in the memory population produces changes in RT and accuracy that most closely
resemble the empirical data from elderly individuals. In contrast, the DD and extrema models cannot fully reproduce the accuracy deficits of
elderly individuals, even when all model parameters are allowed to vary between the young and elderly populations. DD = drift diffusion; RT =
response time. See the online article for the color version of this figure.
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correct responses they give. This task is distinct from RDM tasks in
three respects: The SAT is implied by the reward structure of the
task, rather than verbal instructions to emphasize speed or accuracy;
sampling is divorced from sensory processing, while memory and
deliberation occur over cognitive timescales (seconds, rather than
milliseconds); and individuals frequently adopt dramatically
different strategies to complete the task. These features allow
us to investigate temporally extended, deliberative DM, as well as
the high-level cognitive strategies exhibited by individuals.
One key feature of this task is that the correct choice is not

immediately available to the viewer, and a momentary dominance in
cumulative evidence for one choice over another does not imply that
choice is correct. Even with perfect perception and noiseless internal
representations, an individual cannot be assured of a correct choice
until they sample multiple cues, and only when the maximum
number of cues per trial (24) have been displayed does the
cumulative evidence dictate the correct answer. Thus, a speed-
oriented decision maker may choose an action after viewing several
cues that objectively favor one action, but an accuracy-oriented
individual may, after waiting to view all the available cues, discover
that the other action is the correct choice.
Fiedler et al. (2021) argued that the best strategy in this task is to

sample very few cues per trial, but complete many trials in the
20 min allotted by the experiment. This is because, while accuracy
increases with the number of cues sampled, these gains are subject to
diminishing returns; that is, accuracy begins at chance (50%) and
increases rapidly for the first few samples, but plateaus as more
samples are gathered (asymptotically approaching 100% after the
final cue). In contrast, the number of trials that an individual can
complete in 20 min decreases linearly with the number of cues
sampled. Given certain assumptions (e.g., the losses for an incorrect
decision are symmetric with the gains for a correct decision), the
optimal strategy heavily favors speedy decisions over accurate ones
(Fiedler et al., 2021). However, when the authors asked humans to
perform the task, they found that people exhibited a consistent
“accuracy bias”: They sampled far more cues per trial than the
optimal decision strategy recommends. This trend held across
multiple experimental conditions designed to provide instructive
feedback to participant about their performance and the SAT. We
were curious whether our model could reproduce the various
strategies that humans exhibited in these experiments and to see
whether our models exhibited a comparable accuracy bias.
Our model remains the same as in the previous experiments,

except that we simplify the sampling module to remove noise and
resampling, as described previously. Noisy visual sampling and
NDT were also removed from the extrema model: NDT is not
relevant in this task because real-valued timing is replaced by
integer-valued sampling. The extremamodel insteadmade decisions
using a simple memory: The model remembers the length of the
current run of consecutive samples, and if a run longer than T is
detected, the model chooses that option.We tested two definitions of
“consecutive samples.” In the first, the model only tracks the longest
run of positive samples for each stock, and chooses when one run
exceeds T. In the second, the model tracks the longest run of positive
samples and the longest run of negative samples for each stock; the
model chooses a stock if its positive run exceeds T or if the negative
run of the alternative stock exceeds T. These mechanisms of memory
and cluster detection are intended to capture the sampling andmemory
heuristics of successful models from Pietsch and Vickers (1997)

while preserving the simplicity and flexibility of extrema detection
models from Stine et al. (2020). Finally, to apply our DD model to
this nonperceptual task, we assumed that sampling cues was
analogous to sampling percepts in the RDM task. Recall that, in this
task, each stock has a probability P of increasing in value for each
sample, such that largerΔP between the two stocks implies an easier
task. We accordingly set the drift rate R proportional to the task
difficulty (R = R0ΔP) and had the model update its DV at every
timestep by drawing samples from the distribution N(R, V). To
ensure DD dynamics were comparable to our SNNmodel, we used a
simulation timestep of Δt = 0.001 s and defined one cue to be
equivalent to 0.1 of simulation; that is, if the DDmodel chooses after
1.2 s of simulation, we codify this as a RT of 12 cues. However, note
that while both our model and the DDmodel update their DVs every
Δt = 0.001, our model samples a new cue value every 0.1 s, while
the DD model necessarily samples a new cue value every Δt.

We began by selecting participants from the human data set that
exhibited three different strategies: a slow-but-accurate strategy, a
middle-of-the-road strategy, and a fast-but-inaccurate strategy. The
strategic behavior of each participant was consistent across the three
difficulty conditions (ΔP) tested in the experiment. Each participant
also tended to sample more cues as the task became more difficult,
confirming that these strategies were context-sensitive. As before,
we fit model parameters to RT data and predicted the resulting
accuracy data for each individual. In this task, RT is defined as the
number of cues sampled before a decision is made. To demonstrate
the generality and predictive power of our model, we trained the
model using only RT data from the moderate difficulty condition;
we then tested the model in the easy and hard difficulty conditions,
predicting both RT and accuracy in these novel contexts. We trained
the extrema model in the same way. Figure 14 plots RT as a function
of task difficulty for these three behavioral strategies. We found that
our model, as well as the DD extrema models, fit the training data
well, but that our model gave the best RT predictions across all
conditions, see Table 1. Furthermore, our model predicted human
accuracy as well as, or better than, the other models. These initial
results suggest that our model can capture diverse strategies for
navigating the SAT, but that simpler models may fail to do so.

Next, we investigated whether our model exhibited the same
population-level speed–accuracy trends as the humans in Fiedler
et al. (2021). We fit one model to each participant in the data set,
again using only RTs in the moderate difficulty condition to fit the
model. To investigate the SAT across the population, we recorded,
for each individual, (a) the mean number of cues they sampled, as
well as (b) the total number of trials they completed correctly within
20 min and (c) their mean accuracy. We then repeated the analysis
from Fiedler et al. (2021). Figure 15 plots mean accuracy versus
mean sampled cues, and Figure 16 plots the total number of correct
trials versus mean sampled cues. In these figures, each data point
corresponds to one individual in the data set. Several features of the
human SAT are apparent. First, mean accuracy increases as a
function of mean cues sampled; this trend appears linear in the
moderate and hard conditions, but asymptotic in the easy condition,
in which individuals regularly reach 100% accuracy. Second, the
number of correct trials completed within the allotted 20 min
decreases as a function of mean cues sampled; this trend appears
exponential in all three conditions, with slower individuals correctly
completing less than half the trials as the fastest individuals. Our
model predicts both these features.
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To verify the similarity of the simulated and empirical data, we
performed an analysis of covariance on the data from Figure 15, with
mean accuracy as the dependent variable, mean cues sampled as the
covariate, and participant type (human or model) as the factor
variable.We found no statistically significant difference between the
model and human trends in any of the three conditions (p > .01). In
fact, the only noticeable differences between simulated and empirical
data in Figures 15 and 16 are that (a) the model completes more trials
and achieves higher accuracy in the easy difficulty condition, and
(b) the human data contains more extreme outliers, whose accuracy
departs significantly from the population trend. To further quantify

model performance, we computed a loss metric between simulated
data and empirical data for both RT and accuracy. The former was
identical to the loss function computed during optimization and
quantified the dissimilarity between RT distributions by calculating
a kernel density estimate over the RTs using SciPy’s gaussian-kde
function (Virtanen et al., 2020), evaluating the kernel for all possible
values of sampled cues, then computing the root-mean-square error
between the evaluated kernels. The latter was simply the absolute
difference between mean accuracy across all trials. Across all
individuals and difficulties, our model had an RT error of ΔRT =
0.488 ± 0.662 and an accuracy error ofΔAcc = 4.73 ± 5.54. Overall,
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Figure 14
Response Time Distributions in the Nonperceptual Stock Market Task

Note. Each row depicts the behavior of one individual who demonstrates a different SAT strategy: fast-but-inaccurate (top, ID 6), middle-of-
the-road (middle, ID 61), and slow-but-accurate (bottom, ID 43). Each column depicts a different difficulty condition: easy (ΔP= 0.4, left), easy
(ΔP = 0.2, center), and hard (ΔP = 0.1, right). Colors indicate participant type: blue (human) our SNN model (orange), the DD model (green),
and the extra model (red). As in the human experiment, we allowed each model to complete as many trials in the allotted time window as possible
and recorded its RT and accuracy on each trial. We then drew histograms, plotted kernel density estimates, and computed the mean accuracy in
each condition. Differences between human andmodel RTs and accuracies are reported in Table 1. Grey backgrounds indicate model predictions
in novel contexts: Empirical data from these plots were not used to fit model parameters. SAT = speed–accuracy trade-off; DD = drift diffusion;
SNN = spiking neural network; RT = response time. See the online article for the color version of this figure.
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our model reproduces multiple aspects of the SAT that are evident in
the human data, including the accuracy bias reported in Fiedler et al.
(2021) and makes accurate predictions about the behavior of
individual humans in novel difficulty conditions.
The DD and extrema models, in contrast, did not provide good fits

to the empirical data across the population. While these models did an
acceptable job capturing the mean number of cues sampled for each
individual in the moderate difficulty condition, and in qualitatively
predicting the changes in accuracy associated with changes in
difficulty, their quantitative fits to the SAT data were lacking. The
extrema model predicted a trend between mean accuracy and mean
cues sampled, but significantly underestimated human accuracy
across all conditions. Similarly, the DD model predicted a weak trend
between speed and accuracy, but it consistently gave poor predictions
for both RT and accuracy, and included many outliers that departed
significantly from the overall trends. An analysis of covariance
analysis revealed a statistically significant difference between the
human trends and the DD trends in all three difficulty conditions (p <
.01), and between the human and extrema trends in all three conditions
(p < .01). Across all individuals and difficulties, the DD model had a
RT error ofΔRT= 0.74 ± 0.6 and an accuracy error ofΔAcc= 10.57 ±
10.24, while the extrema model had a RT error of ΔRT = 0.74 ± 0.56
and an accuracy error of ΔAcc = 9.25 ± 7.68. In the Discussion
section, we speculate as towhy the DD and extremamodels did poorly
in this nonperceptual task.

The Role of Valuation

One novel feature of our model is the computation of absolute and
relative value from sensory information. We hypothesized that a

neural integrator (memory) tracks accumulated information and
that a separate value population computes action values from the
representations in memory. We also assumed that this value
computation may differ between individuals and/or contexts. In our
model, value is a mixture of the absolute evidence for a given action
and the relative surplus of evidence for that action compared to other
actions (Equation 4). Does our hypothesized valuation mechanism
help explain the empirical data?

To answer this question, we removed complex valuation from our
model and repeated Experiments 3 and 4. Specifically, we fixed
valuation to be absolute (L= 0), fit our model to the empirical data as
before, and computed the validation error metrics for RT (ΔRT) and
accuracy (ΔA) described in the previous section. Table 2 reports
these errors across tasks and experimental conditions, comparing the
reduced models (fixed L) with the full model (fitted L). The model
that produced results closer to the empirical data (smaller error,
averaged across individuals) is highlighted for each condition. The
full model produced the best fits to the RT data in four of five cases
and predicted empirical accuracy better in four of five cases. These
results support the idea that valuation has both a relative and
absolute component, which may manifest differently across
individuals and contexts.

Discussion

In this section, we begin by reviewing the central goals, methods,
and results for our model, including a detailed summary of model
predictions and empirical validation. We then examine the
biological and cognitive plausibility of the model: We compare
our neural network to the architecture and neural responses of the
brain and reiterate how our functional connections and parameters
realize (and extend) the DD model. We also point out the novel
cognitive capabilities of our model, including the capacity to
simulate both perceptual and nonperceptual tasks, capture multiple
experimental contexts such as speed–accuracy emphasis and
multiple alternative choices, recreate trial-to-trial variance using
spike noise, and predict several classes of behavioral data that are
not used during training. Next, we compare our model to existing
mathematical, computational, and neural models of the SAT and
argue that our model provides a novel understanding that brings
together biological and cognitive explanations. First, we justify our
decision to use SNN models by explaining the unique insights
they provide in comparison to mathematical models. Second, we
compare the results from our model with the results from the DD and
extrema detection models and analyze the pros and cons of simple
versus complex models. Third, we compare our model with other
neural models of DM, ranging from brain-inspired symbolic
models, to DD models constrained by neural data, to other SNN
models. This allows us to review the novel features and unique
predictions made by our model, while also pointing out its
shortcomings. Last, we conclude by presenting directions for future
work, including empirical experiments that can be used to further
validate our model predictions, and theoretical extensions that
would increase the realism and explanatory power of our model.

Goals, Methods, Results, and Predictions

The overarching goal of this article was to integrate neural and
cognitive explanations of the SAT using a SNNmodel of DM (DM).
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Table 1
Differences Between Human and Model RTs and Accuracies for the
Individuals in Figure 14

Type ID ΔRT (Easy) ΔRT (Moderate) ΔRT (Hard)

Model 6 0.24 0.14 0.25
Model 61 0.51 0.41 0.14
Model 43 0.29 0.26 0.41
DD 6 0.59 0.22 0.37
DD 61 1.08 0.64 0.65
DD 43 1.03 0.60 0.77

Extrema 6 0.44 0.33 0.56
Extrema 61 0.67 0.60 0.31
Extrema 43 0.94 0.77 0.90

Type ID ΔAcc (Easy) ΔAcc (Moderate) ΔAcc (Hard)

Model 6 1.96 2.25 5.20
Model 61 3.11 8.03 7.73
Model 43 0.00 0.83 7.61
DD 6 15.87 12.31 1.39
DD 61 0.00 0.02 0.33
DD 43 16.08 28.33 17.78

Extrema 6 3.59 0.83 1.62
Extrema 61 2.97 16.79 14.76
Extrema 43 1.74 11.54 17.31

Note. The model that best predicts the human data for each condition is
bolded. For these three individuals, our model made the best RT
predictions for all three difficulties and did as well as the other models in
predicting accuracies across all conditions. DD = drift diffusion; RT =
response time.
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We sought to show that the cognitive mechanisms of evidence
accumulation and thresholding can be directly implemented in a
biologically plausible neural network, and that this network can be
parameterized to capture differences in how individuals approach
the SAT. We also sought to show that such a neural model can
explain (and make predictions about) classes of phenomena that are
outside the scope of purely mathematical models. In doing so, we
hoped to demonstrate that neural mechanisms within the brain are
capable of supporting the cognitive mechanisms laid out by DD
(bridging algorithmic and implementational descriptions) and that
biologically plausible neural network models can provide novel
insights into our understanding of DM in the brain.

To this end, we designed a SNN model with two key features.
First, the model’s architecture captures the functional neuroanatomy
of DM circuits in the brain. Second, the neural representations
and computations realized by the model capture the dynamics of
mathematical models such as DD. In other words, our model makes
decisions according to a well-vetted cognitive theory while
respecting an array of biological facts. To put our results in context
and to showcase the advantages of neural modeling, we also trained,
simulated, and analyzed the behavior of a simple mathematical
model, the extrema detection model.

We ran four simulated experiments: Experiments 1–3 investigated
the RDM task, while Experiment 4 investigated a nonperceptual
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Figure 15
Speed–Accuracy Trade-Off in the Stock Market Task

Note. We fit one model to each of the 55 participants in the human data set, calculated the mean cues sampled and the mean accuracy for each
individual, and plotted each one as a single data point to identify trends across the population. As expected, sampling more cues leads to
improved accuracy; this trend is approximately linear, although many individuals reach 100% accuracy in the easy condition. We found no
statistically significant difference between the trendlines for the human and SNNmodel data in any of the three difficulty conditions. In contrast,
the extremamodel was significantly less accurate, and the DDmodel was significantly more variable; bothmathematical models did a poor job in
recreating the human SAT trend. DD = drift diffusion; SNN = spiking neural network; SAT = speed–accuracy trade-off. See the online article
for the color version of this figure.
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“stock market” task from Fiedler et al. (2021). In Experiment 1, we
reproduced the RT distributions of monkeys (a) across a spectrum
of motion coherences and (b) under speed- or accuracy-emphasis
instructions. Consistent with the theory that speed–accuracy
instructions primarily impact participant’s decision threshold (see
the Discussion section below), only the parameter T varied between
the speed and accuracy conditions. We predicted the corresponding
accuracy data and recreated the SAT curves of RT versus coherence
and accuracy versus coherence (Hanks et al., 2014). We also
identified model neurons that exhibited ramping activities similar to
those observed in cortical accumulators and demonstrated that
(a) their buildup rate is higher in the speed-emphasis condition but
(b) their activities converge immediately before a decision is made
(Hanks et al., 2014). In Experiment 2, we illustrated the scalability
of our model by applying it to both a two- and four-choice RDM
task (Churchland et al., 2008) without any structural changes. We
reproduced the SAT curves frommonkeys for both tasks, once again

predicting accuracy data across motion coherences. We also showed
that the model has empirically consistent slower responses on error
trials (Churchland et al., 2008), despite the model lacking any
mechanism for starting point bias. In Experiment 3, we showcased
the utility of neural modeling by simulating the effects of aging via
biological perturbation. We trained our model to match the RTs
of young individuals, then simulated the process of aging by
weakening particular synaptic connections with the network. We
predicted the behavioral signatures of aging (Forstmann et al., 2011)
by degrading cortical tissue and connectivity, lending support to
the theory that impaired working memory explains deficits in the
elderly cohort. We also showed that changing T captures how
people respond to speed–accuracy emphases across a population of
individuals. In Experiment 4, we studied the SAT in a nonperceptual,
temporally extended setting. Once again, we showed that our fitted
models reproduces (a) a spectrum of individual strategies in this task
and (b) the SAT curve of the entire population (Fiedler et al., 2021).
Furthermore, our model (c) recreated the observed accuracy bias and
(d) generalized to data outside the training set, making accurate
predictions about speed and accuracy for novel difficulty conditions.
In the following sections, we expand our analyses of these results in
relation to other models, and describe our predictions in detail.

Biological Plausibility

We labeled the neural populations in our model according to
their functional properties (see Figure 1), but its structure and
connectivity can be mapped onto various parts of cortex and BG,
as we described in the Background section. Processing of sensory
information occurs in modality-specific regions, such as V1–V4
and MT for visual processing, or cortical regions like dlPFC,
orbitofrontal cortex, and anterior cingulate cortex for abstract
processing. Working memory buffers are found throughout the
brain and are also modality specific: Visual memory may be
realized in areas such as LIP, frontal eye fields, and MT, while
memory for abstract information may require dlPFC, orbitofrontal
cortex, and ACC. Projections from these areas to regions like
ventromedial prefrontal cortex and vSTR may compute the value
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Figure 16
Accuracy Bias in the Stock Market Task

Note. As in Figure 15, each data point represents one individual, but we instead plot, as the dependent variable, the total number of
trials completed in the allotted 20 min. Participants who decide quickly complete many more trials, but only have slightly less accuracy;
as a result, individuals who sample fewer cues complete more trials correctly (and hence earned more total rewards) over the course of
the experiment. Both simulated and empirical data were well-characterized by an exponential decrease in completed trials with cues
sampled, exhibiting the accuracy bias reported in Fiedler et al. (2021). Interestingly, the DD and extrema models also exhibited this
trend, despite having significantly lower accuracy than humans. DD = drift diffusion. See the online article for the color version of
this figure.

Table 2
Comparison of Response Time Errors and Accuracy Errors
Between the Reduced Model and the Full Model

Experiment Condition

Reduced
model (L = 0)

Full model
(L ∈ [0, 1])

ΔRT ΔA ΔRT ΔA

Random dot motion Speed emphasis 0.534 5.03 0.497 3.24
Random dot motion Accuracy emphasis 0.588 12.3 0.503 6.49
Stock market Easy difficulty 0.732 2.83 0.663 2.44
Stock market Moderate difficulty 0.364 4.45 0.288 4.65
Stock market Hard difficulty 0.463 7.60 0.512 7.11

Note. We reran Experiments 3 and 4 with a reduced model, in which
relative valuation was removed (L = 0). We then computed a RT error
(RMSE between evaluated RT kernels) and accuracy error (absolute
difference in mean accuracy) between the model and the empirical data.
The smaller error is bolded for each row. In four of five experiments, the
full model had better fits to the RT data; and in four of five experiments,
the full model gave better accuracy predictions. RT = response time;
RMSE = root-mean-square error.
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of information in working memory for the current task, given the
goals and context of the experiment. Value estimates for candidate
actions are sent to areas in motor cortex, including supplementary
motor area and premotor cortex, that may help plan and execute
actions. These motor areas are under the inhibitory control of
nuclei within the BG, which receive value estimates from cortex
and gate action selection by projecting back to cortex. The
dynamic interaction of cortical accumulators, motor cortex, and
BG is therefore anatomically consistent with the functionality we
have described in our model. However, functional networks
resembling Figure 1 likely occur in multiple places throughout the
brain, with each specialized to a different sensory or action
modality. While the exact anatomical mapping between our model
and the brain is therefore up for debate, it is appropriate to claim
that the structure of our model is broadly anatomically plausible.
At the neural level, our model was constructed using populations

of spiking LIF neurons connected via weighted current-based
synapses. DVs, including percepts, accumulated evidence, action
value, and decision threshold, were represented via the dynamic
activity of these populations. Furthermore, cognitive operations,
including sensory accumulation, valuation, and inhibitory thresh-
olding, were realized in the synaptic connections between these
populations. Most importantly, our free parameters (R, T, and L),
which capture individual differences in decision criteria between
different model instances, were all implemented directly within
this biological substrate, either as synaptic weights on particular
connections, or as the background activation of the inhibitory
population. All the cognitive mechanisms within our model were
therefore realized in a biologically plausible manner.
One advantage of using SNNs is that trial-to-trial variability may

naturally arise from the dynamic activity of the network. In our
preliminary experiments, we showed (Figure 6) that intratrial
variance in DVs and intertrial variance in reaction times (RTs) and
task performance (accuracy) arises from two components in our
model: our sampling module, which emulates the visual system’s
noisy perceptual processes; and noisy spiking representations
throughout the network, which lead to dynamically inaccurate
estimates of accumulated evidence, value, and threshold. In our four
main experiments, we showed that these biological mechanisms
naturally produce the behavioral variance in RTs and accuracies
observed across several tasks, experimental contexts, and species.
Below, we argue that this biologically grounded explanation for
randomness (within and across trials) provides a novel explanation
of behavioral variance.
Another advantage of simulating SNNs is the ability to directly

compare simulated neural activities with neural data from behaving
brains. We performed model validation against neural data and
found that, while the model was not designed to recreate activity
patterns from particular experiments, our model neurons reproduced
several empirical regularities. In particular, we observed ramping
activities within our value population that (a) grew faster on trials
with greater motion coherence, (b) converged to a consistent final
firing rate before making a decision, and (c) were systematically
greater when experimental instructions emphasized speed over
accuracy (Hanks et al., 2014). However, we recognize that some
neural dynamics, especially those related to resetting and response
mechanisms in the brain, are not captured by our model; we discuss
these shortcomings further when comparing our model to other
neural implementations below.

Cognitive Plausibility

Our SNN is an evidence accumulation model: It perceives
external information about choice alternatives, accumulates this
information over time, compares DVs to a decision threshold, and
releases action inhibition to make a choice. Here, we briefly review
these components and discuss their cognitive plausibility. For RDM,
the model samples information from the environment using a
sampling procedure that periodically retrieves a noisy estimate of
the fraction of dots moving in each direction. This process coarsely
captures the ways in which the eyes and visual system perceive
inputs in RDM tasks. While this system is admittedly simplistic, we
argue that it is more plausible than directly using the motion
coherence values as inputs, as is common in other neural models of
DM (see below). We also note that previous NEF networks have
modeled the visual stream for RDM tasks in great biological detail
(Hurzook et al., 2013), and that our sampling module could be
replaced with this network to further enhance realism. Next, the
memory population in our model performs evidence accumulation.
While our use of a recurrently connected neural integrator for
this operation is not novel, the scalability and flexibility of this
component contribute to the cognitive plausibility of our model. As
we discuss below, many existing neural models simulate a separate
accumulator for each DV. In contrast, neurons in our memory
population have graded sensitivities to each DV. This distributed
representation allows our model to accommodate tasks that include
multiple action alternatives (including continuous action spaces) or
shared features across DVs, expanding the space of DM phenomena
that our model can potentially explain.

To further expand the cognitive realism of our model, we
introduced a novel mechanism: valuation. In simple DM tasks such
as RDM, the accumulated evidence for each candidate action offers
sufficient information to make a decision. However, in more
complicated DM tasks and in naturalistic settings, accumulated
information must often be compared to other quantities (such as
goals, motivations, context, and alternatives) before a meaningful
decision can be reached. We refer to this additional cognitive step as
“valuation” of evidence. The notion of valuation is commonplace in
neural models of reinforcement learning, where the state of the
world is evaluated relative to an agent’s goals, allowing the agent to
plan ahead and make decisions that maximize its task performance
(Duggins et al., 2022; Rasmussen et al., 2017). Given that the brain
areas involved in biological reinforcement learning closely overlap
with those involved in DM (Gęsiarz & Crockett, 2015; Glimcher,
2011; Lee et al., 2012), it is reasonable to suppose that many forms
of DM involve some form of valuation. In this article, we incorporated
valuation into our model by having the connection between the
memory and value population compute a value function.

We chose to investigate one common valuation criteria: comparison
between competing choices. We introduced a parameter L to
determine the extent to which valuation was absolute versus relative:
when L = 0, each DV in our model captures the absolute amount of
accumulated evidence for the corresponding choice; and when L = 1,
each DV captures the relative gains in evidence for that choice
compared to all others. We believe that this parameterization captures
a meaningful dimension of variance that is often obscured in evidence
accumulation models. Specifically, some mathematical models of
two-choice RDM tasks simulate two DVs (one for each choice
alternative) and feed each accumulator the instantaneous amount of
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motion in that direction (the “absolute” case); while other models
simulate one DV and feed to the accumulator the instantaneous
difference in motion between the two directions (the “relative” case).
In an extensive review, Teodorescu and Usher (2013) noted the
theoretical differences between these approaches and developed a
detailed taxonomy for models that feature competition at various
processing stages (stimulus, input, response, etc.). They showed that
these models make different predictions in DM tasks, validating the
study of models that feature DV competition. We note that the
valuation mechanism in our model (Equation 4) can be expressed as
either the average difference between evidence for option i and each
alternative j, or as the evidence for i minus the average evidence
for all alternatives j; this latter formulation closely resembles the
“input competition” mechanism in their taxonomy (Equation 2 in
Teodorescu & Usher, 2013) and has also appeared in mathematical
models such as the “advantage” LBA (van Ravenzwaaij et al.,
2020). However, we argue that our model is able to capture both
independent and competitive accumulation without any structural
changes, promoting cognitive flexibility. Specifically, because L is a
free parameter in our model, we account for the possibility that
valuation (or the degree of DV competition) varies between
individuals, potentially capturing an important dimension of
strategic variability with respect to the SAT. In future work, it
would be interesting to examine different forms of competition,
either by changing which neural populations feature competition,
or by changing the mathematical form of the competitive
interaction.
Interestingly, when valuation is neither strictly absolute nor

strictly relative (0 < L < 1), our model will wait to make a decision
until the evidence favors one alternative over the other(s), but its
threshold for the required disparity will effectively shrink over time.
This is because the absolute value of both alternatives gradually rises
over time, bringing both closer to the decision threshold. In other
words, our valuation mechanism effectively implements relative
DM in the context of a rising urgency signal, which is thought to be
an important decision criteria, both in empirical studies (Cisek et al.,
2009; Ditterich, 2006) and computational models (Lee & Usher,
2021; Murphy et al., 2016). Indeed, our results showed that mixed
valuation improves the behavioral performance of our model in
Experiments 3 and 4. Overall, we believe the addition of valuation
is a significant theoretical development that can improve our
understanding of the cognitive mechanisms of DM, our ability to
predict animal behavior, and the flexibility of our models in more
sophisticated cognitive tasks.
The modular, functional structure of our model accommodates a

wide range of cognitive tasks and experimental manipulations. We
demonstrated its flexibility by (a) applying it to both perceptual and
nonperceptual tasks; and (b) investigating numerous contextual
manipulations, including instructions to favor speed versus
accuracy, the number of choice alternatives, the age of simulated
individuals, and the task difficulty. Given previous successes in
building large-scale brain models using the NEF and Semantic
Pointer Architecture (Eliasmith, 2013), further extensions and
applications of our model should be straightforward. For instance,
we can replace the nonneural sampling component with a neural
network that is trained to process particular kinds of visual inputs
(Hurzook et al., 2013), experiment with more complex valuation
functions and thresholding rules using Bayesian inference (Furlong &
Eliasmith, 2022; Sharma, 2018), incorporate sophisticated inhibitory

competition using a detailed BG model (Stewart et al., 2010), and
expand the complexity of the underlying neural representations to
accommodate symbollike cognitive manipulations (Dumont et
al., 2023).

We extensively validated the cognitive capacity of our model by
comparing its outputs with behavioral data. We reproduced the RT
distributions of humans and monkeys in four separate experiments
and predicted the resulting accuracies. Beyond these successes, it is
insightful to compare our process of model fitting, and the nature of
our model’s predictions, to existing mathematical models. Recall
that our model has five free parameters that determine an
individual’s behavior: the ramp rate R, the decision threshold T,
and the relative valuation L; plus two sensory sampling parameters
for the RDM experiments, the sampling period ts and variance σ.
These parameters remain constant across trials and experimental
conditions. The only exception is the parameter T, which varies to
accommodate speed instructions; this manipulation is consistent
with previous work using DD models, which have shown that
varying T can reproduce behavioral differences when participants
are asked to favor speed versus accuracy (Voss et al., 2004;
Wagenmakers, 2009). While DD models use similar parameters,
they often specify a mean and variance for these parameters and
draw new values from these distributions when simulating each new
trial. This variance, in combination with mechanisms for starting
point variability S and NDT tnd, allow DD models to robustly fit
empirical RT distributions, especially in error trials (Evans, 2020;
Jones & Dzhafarov, 2014). However, varying such high-level
parameters requires varying neural connection weights in most
neural implementations, which is not consistent with typically assumed
timescales of synaptic plasticity (Bi & Poo, 2001; Pulvermüller et
al., 2021). In contrast, we hypothesized that intertrial variability
arises from sampling noise and spike noise in the brain, rather than
from fluctuation in high-level cognitive parameters. This hypothesis
is consistent with evidence that both external noise (from the
random motion of dots) and noisy neural communication (from a
lack of attention, mental disorders, etc.) introduce internal noise into
the brain’s representations of motion direction, which subsequently
affects task performance (Chen et al., 2014; Lu & Dosher, 1998).
Our experiments confirm that embedded noise is sufficient to
recreate the observed behavioral variance, eliminating the need for
intertrial parameter variation or fitting distributions of parameters to
each individual. These simplifications allow us to interpret our
model parameters as characterizing the persistent cognitive strategy
(and sampling characteristics) of an individual.

With regards to prediction, we adopt an approach that is common
in the field of machine learning, but is relatively rare in DM studies
using mathematical models (although see Shooshtari et al., 2019;
Vabalas et al., 2020). In each of our experiments, we split the
available empirical data into a training set and a validation set: The
former was used to train the parameters of the model, and the latter
was used to assess its performance. This approach can be contrasted
with the prototypical DD study, in which all available data are
used to fit the model, and the subsequent analyses identify the
parameter(s) that explain the most variance. We use term
“prediction” to mean any data generated by the model that was
not used to fit model parameters. It is worth emphasizing that our
validation data is sometimes of the same type as the training data
but in a novel context (e.g., predicting RT in the elderly cohort for
Experiment 3, or predicting RT for the easy/hard difficulty in
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Experiment 4), but it is sometimes of a completely different type
(e.g., accuracy data in Experiments 1–4, neural activities in
Experiment 1, and slow errors in Experiment 2). Below, we argue
that these bottom-up predictions are a novel contribution of our
approach, one which complements the top-down predictions that
are typically made using DD models. More broadly, the result that
our model anticipates the SAT (in multiple tasks, across multiple
species, for multiple experimental contexts, and between indivi-
duals) when provided only with speed data suggests that our
theoretical account of the underlying cognitive processes are sound.

Comparison to Other Decision-Making Models

Drift Diffusion

Throughout this article, we have pointed to the differences
between our model and traditional DD models and shown that
our model outperforms DD in our simulated experiments. We
summarize those differences and results here, then more broadly
discuss the advantages of studying the SAT using SNNs.
Fundamentally, our model implements the same core cognitive
processes as DD: sampling from the environment, accumulation
of evidence, and thresholding for a decision. In contrast to
mathematical models, we realize these operations in a biologically
plausible SNN. In doing so, we (a) formalize how high-level
processes such as accumulation and thresholding are composed of
specific cognitive operations that arise from low-level biophysical
processes and (b) map these operations onto distinct brain areas.
We also introduce valuation as a distinct cognitive processes and
show that it helps capture individual differences in the cognitive
strategies for the SAT. We leverage the biological aspect of our
model to (a) predict simulated neural responses that align with
observed responses in the corresponding brain areas, (b) simulate
internal noise that generates intertrial variability and slow errors,
and (c) predict how age-induced degeneration of synaptic
connectivity induces behavioral deficits. We leverage our fitting
and validation procedure to (a) predict accuracy data when trained
only on speed data and (b) generalize these predictions across
multiple tasks and experimental contexts without changing the
model structure or refitting parameters to each condition.
Biological modeling with SNNs complements mathematical

modeling with DD in multiple ways, and should be of interest to
both psychologists and neuroscientists. First, while DD describes
the cognitive mechanisms of DM, SNNs explain how these
mechanism might be implemented in the brain. As an existence
proof, if a phenomenon can be explained mathematically but not
generated using a biologically plausible model of the brain, we
should be concerned and seek more biologically compatible
explanations. This process is critical for developing rigorous
theories of how the brain works. For example, in the field of
machine learning, neural networks trained using backpropagation
are extremely powerful and can reproduce sophisticated human
behavior, but many researchers argue that the backpropagation
algorithm is not biologically plausible. This concern has driven the
development of biological learning rules, such as Hebbian learning
and spike-timing dependent plasticity, and greatly advanced our
cognitive understanding of learning in the brain. We argue,
alongside others (Frank, 2006; Lo et al., 2015; Shen et al., 2023;

Standage et al., 2011), that SNNs drive an analogous improvement
for cognitive theories of DM.

Second, SNNmodels are able to predict some phenomena that are
outside the scope of mathematical models and to explain other
phenomena at different levels of analysis. In Experiment 3, we
sought to showcase this capacity by studying the differences
between young and old participants in the RDM task. Empirically,
elderly individuals typically have slower RTs and make more errors
than young individuals. Forstmann et al. (2011) showed that RT
differences could be described by the LBA model, which is closely
related to DD. They were able to explain the slower speed of elderly
individuals through changes in the model’s decision boundary and
showed that these changes were correlated with degraded white
matter connectivity between cortex and striatum. This result is
consistent with the striatal theory, which posits that the brain flexibly
adjusts decision thresholds by sending contextual signals from
cortex to striatum and controlling the amount of inhibition applied to
the decision circuit. The approach taken by Forstmann et al. (2011)
showcases the descriptive power of mathematical models: They
captured behavioral differences using a parameter with a clear
cognitive interpretation and related variance in this parameter with a
measured quantity from the behaving brain.

Our SNN model complements this work by implementing the
proposed circuit and testing whether the hypothesized biological
mechanism induces the expected deficits. We found that simply
degrading connections between cortex and striatum did not produce
the desired effect. Instead, we found that degrading the recurrent
cortical connections responsible for accumulating sensory evidence
better explained the observed data: Only this manipulation explained
increases in bothRT and error rate. The biological nature of this deficit
cannot easily be captured by a pure mathematical model, as it cannot
be directly described through changes in model parameters (or their
distributions). Our manipulation relied on perturbing the (simulated)
physical system that implements the dynamics and parameters
proposed by DD and thus explains the phenomenon of aging at a
different level of analysis. Note that we are not claiming to have
disproven the striatal hypothesis: what we have shown is that, given
certain assumptions about the functional role of neural populations
and connections, the proposed mechanism does not explain the
observed deficit, but another mechanism does. It is entirely possible
that an alternative account of how striatum contributes to threshold
setting would better explain elderly behavior. For example, if BG
instead modulates how cortex evaluates sensory data, or conveys an
urgency signal that dynamically controls threshold (Frank, 2006;
Thura & Cisek, 2017), degrading inputs to striatum may have a
different effect on behavior. Our point is that we need SNNs to specify
these theories in enough detail to rigorously test them and to directly
validate them against both neural and behavioral data. Our model and
subsequent analyses exemplify this approach, and our network can be
adjusted to accommodate alternate cognitive theories.

Third, SNNs explain SAT phenomena in a mechanistic, bottom-
up manner rather than a descriptive, top-down manner. Our
explanations are mechanistic in the neuroscientific sense (Machamer
et al., 2000), in that they explain how the coordinated activity of
neural processes give rise to higher level cognitive phenomenon
(Bechtel, 2009). To return to our example from Experiment 3, our
model explained the cognitive deficits of aging by (a) identifying the
biological changes associated with aging, (b) recreating those
changes within the network, (c) simulating the elderly model, and
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(d) analyzing its behavior relative to the young model. In contrast,
Forstmann et al. (2011) explained the cognitive deficits of aging by
(a) fitting mathematical models (the LBA) to the data from the
young and elderly cohort, (b) analyzing the differences in fitted
parameters, (c) identifying the biological changes associated with
aging, and (d) looking for statistical relationships between biological
changes and parameter changes. This analysis exemplifies the
approach taken by many studies using mathematical models. We
believe that both mechanistic and descriptive explanations, as well as
the theories that connect them, are essential to understanding DM and
the SAT, and that our model is a step in this direction.
In order to assess the performance of our model, we simulated a

simple DD model in our four main experiments. To ensure fair
comparisons to our SNN, we used the same optimization procedure
to fit DD parameters as we employed to fit our SNN parameters. This
meant that our DD model was only trained to fit RT data and had to
predict accuracy data without prior knowledge. We also enforced
similar parametric constraints in specific experiments on both DD
and on our model. For example, in all four experiments, we fit a
single drift rate parameter R0 to the data, then set the mean drift rate
on each trial to be proportional to the motion coherence C, μR = R0C
(or ΔP in the case of the nonperceptual task). In Experiments 1–3,
we only allowed one parameter, the decision threshold T, to
vary between experimental contexts, forcing the model to explain
differences in speed- versus accuracy-emphasis (for each individual)
through a single mechanism. However, unlike in our model, we did
allow both NDT and intertrial variability in DD parameters such as R
and S, enhancing its capacity to fully capture variance in RT and
recreate slow errors.
Given these constraints, the DD model performed fairly well,

recreating many of the behavioral trends we observed in the
empirical data. In Experiments 1 and 2, the DD model recreated the
SAT curves, fitting the RT distributions for all motion coherences
and predicting the corresponding error rates with reasonable
accuracy. However, we did notice a slight propensity for the DD
model to generate more outlier trials than did our model, which
caused over- or underestimation of the mean RTs in many cases. We
did not apply the DD model to the four-choice decision task in
Experiment 2, as doing so would have required significant revisions
of the two-choice model. While the previous studies have shown
that multiple alternative choice models of DD can explain
multiattribute DM (Krajbich & Rangel, 2011; Roxin, 2019), we
felt that this investigation was beyond the scope of the present
study. In Experiment 3, we again found that the DD model fit the
RT distributions of 18 individuals in the RDM task and that the
DD model even predicted the corresponding accuracy deficits in
the elderly population. Still, the quantitative fits of our model
were superior, and (as discussed above) our SNN offers a more
mechanistic description of how aging induces the observed
deficits.
However, in Experiment 4, we found that the DDmodel struggled

to fit both the RT and accuracy data of the 55 participants performing
the stock market task. While the DD model was able to fit the RT of
selected individuals in the moderate difficulty condition, we
observed that most fitted models included numerous trials where
the model did not choose until the cutoff time, after 24 cues had
been presented. This was true even for individuals that adopted
fast or middle-of-the-road strategies, as shown in Figure 14. These
behaviors not only made for poor RT fits, but were also associated

with significantly lower (and more variable) accuracy. This was
surprising, given that we applied the same choice criteria to the DD
model upon reaching 24 cues as we did in our SNN model: We
inspected the DV in the final simulation step and had the model
choose whichever option was favored at that time. Even for the
training data, the accuracy predictions of fitted DD models were
often so poor that, in many parameter optimization passes with
different constraints or parameter ranges, we did not observe any
statistically significant trend between speed and accuracy.
Furthermore, even when DD models achieved reasonable fits to
the training data, they often gave extreme predictions for the easy
and difficult conditions: For instance, most DD models predicted
that RTs would become much shorter and that accuracies would
become much higher, in the easy condition. In contrast, the human
data showed more modest changes, which were correctly predicted
by our model. We suspect that these failures were related to
the challenges of applying DD to a nonperceptual task, and in
extrapolating DD performance to data outside the training set.
However, given that DD models have successfully explained
behavior in certain nonperceptual tasks (Dutilh & Rieskamp,
2016), further analysis is needed to establish the exact causes of
these failures.

From these results, we conclude that our SNN model is at least as
good at explaining behavioral DM data as a simple DD model in the
experiments we investigated. However, we acknowledge that more
sophisticated versions of the DDmodel may provide better fits to the
data, and that more advanced tools for fitting DD parameters to the
data may improve DD performance. For instance, recent tools for
fitting DD parameters like the HDDM python toolbox (Wiecki et al.,
2013) have significantly boosted the ability of DDmodels to explain
behavioral (and even neural) data. Furthermore, we suspect that the
constraints we placed on DD parameter fitting (shared parameters,
no access to accuracy data, etc.) significantly impaired the
performance of the DD model. While we felt these constraints
were important for a fair comparison to our model and indeed
provide an interesting set of results on their own, we suspect that an
unconstrained DD model would perform better. Thus, we do not
claim that our model outperforms DD in the general case; we leave a
more rigorous comparison between our model and state-of-the-art
DD models to future work.

Extrema Detection

In our four experiments, we also simulate a nonintegration model
to provide a point of comparison for our SNN model. We adopt an
extrema detection model in this article because (a) it is based on an
intuitive cognitive heuristic for DM, (b) it behaves similarly to DD in
many perceptual tasks (Stine et al., 2020), (c) it is mechanistically and
parametrically simple, and (d) it can be applied to nonperceptual
tasks with modest adjustments. We found that the extrema model
performed well in some experiments, and poorly in others; its
successes and failures offer insights into the explanatory power of
simple versus complex models. In Experiments 1 and 2, which
investigated the RDM task, the extrema model fit the RT data almost
as well as our model: It captured the distribution of RTs at each
coherence value and reproduced the shape of the speed–accuracy
curves. Although its accuracy predictions were slightly worse than
our model, it still did surprisingly well in predicting accuracy data,
given that it was only trained on speed data. Furthermore, the extrema
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model could be flexibly applied to different experimental contexts:
Like our model, it explained changes in how individuals respond to
speed- or accuracy-emphasis using only its decision threshold T (both
in Experiment 1 and 3); and it performed the four-choice RDM task
without requiring any extra components or decision rules.
In other contexts, the extrema model fell short. In Experiment 1,

the extrema model could not make any predictions about neural
activities, whereas our model correctly predicted the relationships
between firing rate building, firing threshold, motion coherence,
and speed-emphasis. This comes as no surprise, as there are no
components in the extrema model that resemble neurons. In
Experiment 2, our model correctly predicted that error trials at high
coherence would have longer RTs, but the extrema model did not. It
is possible that, with more model mechanisms and parameters, the
extrema model might predict slow errors or perseveration; this
seems to be the case for DD models (Ratcliff et al., 2016; Urai &
Donner, 2022). In Experiment 3, the extrema model captured the RT
distributions of individuals in the young cohort, but not as well as
our model (ΔRT = 0.500 for our model and ΔRT = 0.876 for the
extrema model). This was somewhat surprising, given that the
extrema model includes parameters for NDT (μnd and σnd, whose
sole function is to increase fits to RT data), which our model forgoes.
Moreover, its accuracy predictions were quite far off (ΔA = 4.86 for
our model and ΔA = 19.9 for the extrema model).
One significant failure of the extrema model is its inability to

explain or predict age-related phenomena. The simplicity of the
extremamodel makes it difficult to plausibly simulate the bottom-up
effects of biological degradation, as we did with our model: Only by
changing model parameters can the extrema model capture age-
related deficits. When we allowed all these parameters to vary
between the young and old cohorts, we did recreate the RTs of most
elderly individuals. However, when we analyzed the corresponding
accuracy of elderly extrema models, we found that they were more
accurate than their younger counterparts. This directly contradicts
the empirical data, which show that elderly individuals are slower
but also less accurate. Why is this the case? In the extrema model,
longer responses imply more information being sampled from the
environment. Assuming that the sampled evidence reflects the
ground truth (even with large variance), this implies that longer RTs
should, on average, lead to more accurate decisions; this is the
observed trend. In contrast, the (simulated) physical implementation
of our system allows accuracy and/or RT to be partially decoupled
from sampling, given the presence of noise in particular parts of the
system. We showed that degrading visual working memory had
exactly this effect; by removing a fraction of connections in the
neural integrator responsible for accumulating evidence, we
perturbed the represented DVs in such a way that both RT and
error increased. We doubt that this kind of perturbation is possible
in simple mathematical models, but this could be a valuable
direction for future research. Regardless, our ability to (a) directly
implement the biological degradation associated with aging, (b) to
correctly predict the resulting deficits, and (c) to advocate for one
cognitive theory of aging over another showcases the utility of
SNNs relative to the extrema model.
The extrema model (plus memory) also performed poorly in the

nonperceptual task: It had approximately twice the RT and accuracy
error as our model. While it still reproduced the accuracy bias
present in the human data, it had significantly lower accuracy,
leading to a poor representation of the SAT. These failures can be

largely explained by the removal of NDT from the model for the
nonperceptual task. This simplification was motivated by the
timescales present in the stock market task: New cues were
presented every 0.5 s, leading to trial times of 1–12 s. Given that
NDT is intended to capture the cognitive processes associated with
early visual processing, and given that RT in this task was
quantified by the number of cues sampled, simulating NDT did not
make sense for this task. Interestingly, the removal of this model
component, alongside the removal of visual sampling for this
nonperceptual task, seems to significantly reduce the power of the
extrema model. Because the only remaining free parameter was the
decision threshold T, and because extrema detection in this task
occurs over clusters of inputs with integer length, the space of
possible behaviors from the extrema model is quite limited. This
was reflected in the limited number of unique behaviors observed
in Figure 15 and contributed to poor RT fits across the human
population, whose strategies were quite diverse. Once again, it is
possible that an extension of the extrema model may resolve some
of these issues, but doing so would introduce more cognitive
complexity into the model, defeating the purpose of simulating
this simple baseline.

In summary, comparing our SNN to the extrema model
highlighted the advantages of complex models for understanding
the SAT. While the heuristic of extrema detection may explain the
RT and accuracy of individuals in simple perceptual tasks, they fail
to capture features such as slow errors and accuracy deficits in
elderly individuals. Moreover, this simple model relies heavily on
NDT to explain the distribution of RTs and struggles to explain data
from cognitive tasks that involve extended, strategic decisions.
Indeed, in preliminary simulations, we found that removing NDT
from the model in Experiments 1–3 drastically degraded its
performance. While mathematical models based on heuristics for
sampling, memory, and decision have a rich history in the DM
literature (Pietsch & Vickers, 1997; Vickers et al., 1971), our
results support the conclusion that more complex models are
needed to explain phenomena other than RT and accuracy, such as
neural activities, deficits induced by biological changes, and
behavior in nonperceptual tasks.

Neural Models

Others studies have implemented mathematical models of DM
in existing cognitive frameworks, explored the relationship bet-
ween DD models and neural data, and developed SNN models that
resemble DD. For example, several articles have related the
parameters in DDmodels to parameters in the Adaptive Character of
Thought–Rational (ACT-R) DM system (Fisher et al., 2015;
Grennan & Stocco, n.d.). While implementing these models in
ACT-R helps formalize the underlying cognitive mechanisms and
promotes generalization across task contexts, ACT-R is not a neural
framework: Unlike our model, these models cannot be directly
compared to neural data, and any comparison to the biological brain
will require significant abstraction.

In contrast, numerous studies have related DD parameters to
large-scale activation in regions of the brain, then argued that these
brain areas might realize cognitive processes such as accumulation
or thresholding (Forstmann et al., 2016; Gupta et al., 2021; Purcell
& Palmeri, 2017). Other models have used neural data to further
parameterize the DD model, improving its ability to explain
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behavioral differences between individuals (Turner et al.,
2015). While these approaches relate to neural data more closely
than ACT-R models, they still rely on statistical descriptions of
neural activities, such as blood oxygenation level dependent
or electroencephalography responses within brain regions.
Unfortunately, DDmodels are limited in their ability to distinguish
sensory, integrative, and comparative processes, making it hard to
pin down which brain areas are responsible for each of these
cognitive operations. Furthermore, it is difficult to perform certain
classes of simulated experiments with these models: For instance,
once a model has been fit to an individual’s data, it would be
problematic to change some aspect of the model (to simulate, for
instance, a new experimental context) and predict the neural or
behavioral consequences for that individual.
Our model is best compared with other SNNs that implement

evidence accumulation and thresholding to perform the RDM task.
Lo et al. (2015) developed a model that implements accumulation
of evidence via recurrent connections in a population of spiking
LIF neurons. Like our model, this model is constructed using a
framework that optimizes synaptic weights to achieve evidence
accumulation. The authors applied this model to a two-choice RDM
task and reproduced many of the results in Experiments 1 and 2. For
instance, they (a) observed ramping neural activities with slopes
proportional to motion coherence, (b) recreated the RT distributions
associated with speed- versus accuracy-emphasis instructions, and
(c) captured the SAT curves (RT and accuracy vs. coherence) for
individuals performing the task with speed- or accuracy-emphasis.
Similarly, Shen et al. (2023) developed a model that implements
evidence accumulation via recurrent connections and thresholding
via disinhibition. This model uses a framework that optimizes
synaptic weights via divisive normalization, is applied to a two- and
four-choice RDM task, and reproduces many of the neural and
behavioral results from Experiments 1 and 2. For instance, they
(a) observed that firing rate buildup depends on motion coherence
and number of choice alternatives, (b) showed that error trials have
longer RTs at high motion coherences, and (c) captured the SAT
curves. Given that these two models, which we refer to as the
balanced synaptic input model (BSI) model and the disinhibition
and divisive normalization (DDN) model, have a similar structure
and produce similar results as our model, it is worth comparing and
contrasting them in greater detail.
The structure of the neural networks in BSI, DDN, and our model

share several features, but our model differs in a few important
respects. All three models feature populations of excitatory and
inhibitory neurons, which are recurrently connected such that they
integrate an input signal over time. In BSI and DDN, each DV has
a dedicated accumulator, which receives an input conveying the
magnitude of motion in the corresponding direction. These
accumulators connect to a pool of inhibitory neurons, which in
turn connect back to the accumulators, realizing competition that
facilitates a decision. Both models also receive top-down control
signals that flexibly adjust the models’ SAT. Finally, both models
monitor the activity of each accumulator and define a decision as one
accumulator crossing a predefined firing rate threshold. In contrast,
our model features only a single accumulator, which includes neurons
that are partially sensitive to each DV. This population receives
inputs about both motion directions and includes both excitatory
and inhibitory neurons, which are recurrently connected in an all-to-
all manner. This memory population does not implement mutual

competition, but rather connects feedforward to a value population:
this connection can realize competition in the decision space (L > 0),
such that the DV for one action decreases when another increases.
The gate population inhibits the downstream action population and
receives a top-down signal that influences the SAT by controlling the
magnitude of this inhibition. Rather than defining a firing rate
threshold for the accumulator, our model makes a decision when the
downstream action population becomes active, which happens when
the DV in value overcomes the inhibition from gate (i.e., DVi > T).

These structural differences imply different biological and
cognitive assumptions. First, our model predicts that neurons in
the brain should be sensitive to each direction of motion (and each
alternative action) to some degree, even if some neurons are
primarily tuned to a single direction. Most experiments that measure
neural activities in LIP identify highly selective neurons and discard
the rest; we predict that a different experimental design would reveal
a spectrum of tuning curves in neural accumulators that are better
described by our model than by BSI or DDN. This distinction
may appear trivial for two-choice RDM tasks, but we believe that
simulating one accumulator per action alternative will not scale
appropriately to more naturalistic decision tasks. Our model realizes
a more plausible population code: neurons that remember information
or evaluate actions are sensitive to a variety of actions according to
a multidimensional tuning curve, but will respond more strongly
to some actions than others, according to Equation 1. Second,
thresholding and inhibition play a different role in our model: in BSI
and DDN, inhibition facilitates competition within the accumulator,
and thresholding is applied directly to this population; while in our
model, inhibition implements a threshold via a downstream gate. In
general, our model has a more modular, functional design that
captures the interaction of many brain areas: each population and
connection is responsible for one cognitive operation, leading to a
larger network with sparser anatomical connectivity; whereas in the
BSI and DDNmodels, accumulation, competition, and thresholding
all occur within each cortical neural integrator. Our model thus
implements a different hypothesis about the content and target of
inhibitory control signals; our model is closer to the striatal theory,
while BSI and DDN are closer to the cortical theory (Bogacz et al.,
2010). Third, an action is triggered when one accumulator crosses a
predefined firing rate threshold in BSI and DDN, whereas an action
is triggered in our model when the downstream action population is
disinhibited. The former method of decoding actions relies on the
problematic accumulator separation defined above, whereas our
method leverages population (de)coding in the respective popula-
tions. Interestingly, in Experiment 1, we found that, despite
differences in the decision threshold parameter T, neurons in the
value population converged to a similar firing rate immediately
before decision. The conclusion is that, in our model, the state space
decision threshold T is not equivalent to the firing rate threshold: It is
possible to adjust T in response to experimental conditions while
still respecting the biological observation that firing rate thresholds
remain constant (Churchland et al., 2008; Hanks et al., 2014).

Speaking more generally, our model offers several advantages
over the BSI and DDN models. While all three models have similar
degrees of biological realism, our ability to decode simulated
activities and analyze the latent state space greatly enhances
the scalability and explainability of our model. Many of these
differences are derived from the theoretical frameworks used to
optimize synaptic weights within the network. BSI and DDN place
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a greater emphasis on using inhibition to carefully balance neural
dynamics, while the NEF places greater emphasis on using mixed-
weight connections to realize arbitrary cognitive dynamics within
the neural network. Our focus on describing dynamics in the state
space of DVs and cognitive operations is preferable in several
respects. First, we can quantitatively relate the dynamic neural
activities in our model to DVs: That is, we can decode a state space
estimate of the information in each population from spike data,
facilitating cognitive analyses and permitting direct comparison to
modern methods of decoding DVs in the RDM task (Steinemann
et al., 2022). Second, we can build networks that implement
functions specified in the DV space: For example, we can build a
neural accumulator that integrates the input signal over time: That
is, decoding the spike data from memory at any given time will
return the mathematical sum of the input motions, modulo any drift
introduced by spike noise. Similarly, we can define mathematical
operations for valuation or thresholding, with the expectation that
our network will realize those dynamics during simulation: This
allows us to compute the real-time difference between accumu-
lated motion estimates during relative valuation, and to directly
compare the represented DVs to a decision threshold. Third, we
can leverage the above two properties to specify model parameters
in the DV space, ensuring that these parameters have a clear
cognitive interpretation. For example, when we define a decision
threshold T and a ramp rate R, we guarantee that the model will
make a decision when the sum of inputs, multiplied by R, exceeds T.
This property ensures a close alignment between the functional
dynamics of our model and pure mathematical models like DD, and
lets us map our model parameters directly onto DD parameters (as
appropriate). Fourth, we can easily expand our model to simulate
cognitive control from other brain areas or investigate different rules
for valuation and thresholding. This property arises from knowing
what state space variables are represented by each population’s
spiking activities and from the ability to specify changes to these
state space representations using additional connections. For
example, it is possible to extend our model to compute choice
confidence over the history of inputs according to Bayesian inference
(Dumont et al., 2023; Furlong et al., 2022; Sharma, 2018) or to
implement an urgency signal by adding a dynamically valued signal to
the current value estimate (as hypothesized by the cortical theory
and recent theoretical and empirical work, Bogacz et al., 2010;
Murphy et al., 2016). As we have previously mentioned, this
property also allows us to substitute existing model components
with more biologically or cognitively plausible components, such as
a dedicated network for visual sampling (Hurzook et al., 2013) or
inhibitory competition for action selection (Stewart et al., 2010).
While we are not as familiar with the theoretical guarantees of the

BSI and Divisive Normalization Frameworks, our impression is that
these tools implement biologically plausible patterns of excitatory
and inhibitory connectivity within a population, but have not been
shown to be able to implement large-scale networks that realize
complex cognitive dynamics. For instance, Shen et al. (2023)
recreated the dip in neural activities that follow stimulus presentation
but precedes ramping activity, as well as the nonlinear ramping of
neural activities during deliberation. Our model does not currently
recreate these features, which likely arise from the specific patterns
of recurrent connectivity specified by the DDN model (but see
Stöckel et al., 2021, for an example of how to specify such
connectivity using the NEF). However, we believe that our model

offers greater insights into DM and the SAT at the cognitive level
of analysis. The BSI and DDN models do not dynamically decode
the DVs represented by spiking activities and instead rely on mean
activities to approximate these quantities. Similarly, these models
do not precisely define R or T during model training and must
observe the behavior of the networks in order to characterize the
ramp rate and threshold. These shortcomings make it difficult to
directly compare BSI and DDN to mathematical models. More
importantly, we suspect that the optimization frameworks underly-
ing BSI and DDN scale poorly to tasks involving many alternative
actions, multiple interacting networks, or symbolic DM in multi-
dimensional problem spaces. In contrast, the NEF and Semantic
Pointer Architecture have been used to build large-scale brain
models capable of solving complex cognitive tasks, such as the
Tower of Hanoi and Raven’s Progressive Matrices (Eliasmith,
2013), as well as control robots online in naturalistic tasks, such as
exploration and reaching (DeWolf et al., 2020). Indeed, our methods
have been used to build a large-scale model of the brain that contains
6 million neurons and performs 12 different cognitive tasks (Choo,
2018). Overall, we feel that our model provides a better theoretical
understanding of the neural mechanisms underlying the SAT
because it (a) better relates the proposed neural dynamics to high-
level DVs and cognitive operations and (b) is more extensible and
scalable to complex DM tasks.

Future Work

In future work, we plan to extend our model to study other
cognitive tasks and to explain other DM phenomena. In the DD
model, starting point bias S is often included to capture
perseveration, which is the bias toward choosing the same action
in the subsequent trial. We hypothesize that perseveration arises
from two processes: The brain’s attempt to model the underlying
statistics of the environment (i.e., estimating the prior probability
that one action is favorable); and imperfect resetting of the DM
system between trials (i.e., not zeroing the DVs before the next trial).
While modeling the former process requires extensive revisions to
the model (see below), the latter can easily be investigated by
simulating trials in a continuous fashion (in a block, rather than one-
at-a-time). To do this, we would simply add a neural mechanism for
resetting the DV representation in memory following a decision,
such as an inhibitory connection between action and memory, or
simulating the biologically detailed resetting mechanism described
in Stine et al. (2023). We hypothesize that such a mechanism would
cause the model to make perseveration errors and recreate the
postdecision reduction in neural activities observed in RDM tasks
(Churchland et al., 2008; Hanks et al., 2014). We would also like to
add more modulatory control systems to the network, allowing
executive cortical populations to modify R, T, or L in real-time; we
expect these additions would allow the model to change its behavior
over the course of an experimental block, responding more quickly
or more accurately to meet task demands. This would permit the
study of DM tasks where participants adjust their strategies based on
feedback about their performance (Kira et al., 2024). We could even
incorporate reinforcement learning into the model (Rasmussen et al.,
2017), allowing it to learn behaviors that maximize its rewards
through trial-and-error.

In the longer term, we would like to expand the cognitive
complexity of the model in order to simulate more sophisticated
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decision tasks and recreate more sophisticated choice behavior.
For instance, we plan to explicitly model urgency as a cognitive
mechanism. Numerous DD models assume that, as the pressure to
make a decision steadily increases, the decision criteria applied by
the model also shifts: This tendency has been ascribed to various
mechanisms (Bogacz et al., 2010), including a positive bias applied
to neural accumulators (Hanks et al., 2011), a shrinking decision
threshold (Drugowitsch et al., 2012; Kira et al., 2024), and an
increase in drift rates (Murphy et al., 2016). The existence of a
ramping urgency signal is consistent with behavioral data (Ditterich,
2006) and neural data (Cisek et al., 2009). Furthermore, simulating a
dynamic decision threshold T(t) can dramatically improve the fits of
mathematical models to behavioral data in tasks featuring the SAT
(Drugowitsch et al., 2012; Kira et al., 2024). Previous work using
the NEF has already investigated urgency signals in the context of
working memory (Singh & Eliasmith, 2006). In future work, we will
follow a protocol similar to Experiment 3: We will implement
different hypotheses about the neural mechanisms of urgency
modulation, simulate our network to make neural and behavioral
predictions, and compare these predictions with empirical results.
Finally, we plan to add Bayesian inference to our model. Rather

than explicitly tracking DVs, the network would maintain beliefs
about the external world using probability distributions, then use
those beliefs to calculate the expected value of (and confidence in)
each candidate action. Previous work has shown that computational
models of probabilistic inference and belief updating may explain
many aspects of DM under uncertainty, both in perceptual tasks
(Huang & Rao, 2013; Rao, 2010) and social tasks (Khalvati,
Mirbagheri, et al., 2019; Khalvati, Park, et al., 2019). These results
align with empirical studies showing that individuals estimate their
confidence in decision alternatives alongside their expected value,
and weight incoming evidence accordingly (Hanks et al., 2011;
Kiani et al., 2014). Recent work using the NEF has developed neural
networks that implement several of the complex cognitive operations
required for Bayesian inference: For instance, the Legendre delay
network can record an entire history of sensory inputs (Furlong
et al., 2022), and spatial semantic pointers can be used to represent
probability distributions (Furlong & Eliasmith, 2022). We are
interested in building networks capable of Bayesian reasoning using
biologically plausible models (Sharma, 2018) and applying them to
better understand the neural and cognitive mechanisms of DM.

Conclusion

In this article, we presented a spiking neuron model of DM that
implements and extends the DD model while respecting the
functional neuroanatomy of the brain. Our goal was to integrate
neurological and computational accounts of the SAT by showing
that a biologically plausible neural network can realize evidence
accumulation, reproduce empirical results, and make novel predic-
tions. Our model extends previous work in several respects: It
attributes intertrial variance in reaction time and accuracy to sensory
sampling and to noisy neural representations, rather than to variance
in model parameters for accumulation and starting point; and it
introduces valuation of accumulated evidence as a core cognitive
component. Over the course of four experiments, we applied our
model to perceptual and nonperceptual tasks, investigated several
contextual manipulations, and validated model performance using

neural and behavioral data. Behaviorally, our model (a) reproduced
RT distributions in all experiments; (b) generalized across experimental
contexts, including the number of choice alternatives, speed- or
accuracy-emphasis, and task difficulty; and (c) predicted accuracy
data, slower RTs in error trials, and RTs in novel contexts. Neurally,
our model (a) recreated observed patterns of ramping and
converging activities and (b) predicted the deficits observed in
elderly individuals following targeted synaptic degradation. More
broadly, our model explains how individual differences in speed and
accuracy arise from synaptic weights within a neural network, is
applicable to variety of tasks and contexts, and can be extended to
simulate more complex forms of DM. Our work showcases a
method for translating mathematical models into functional neural
networks and demonstrates that simulating such networks permits
analyses and predictions that are outside the scope of the original
mathematical models.
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Fitted Parameter Values
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Table A1
Parameter Values Used in the Spiking Neural Network Model for Each Simulated Experiment

Experiment Figure Details R T L σ ts

Preliminary 2 Seed 0 1.5 0.25 0.0 0.3 0.02
Preliminary 3 Seed 7 1.5 0.25 0.0 0.3 0.02
Preliminary 4 Seed 0 1.5 0.1 1.0 0.3 0.02
Preliminary 5 Seed 0 1.5 0.25 0.7 0.3 0.02
Preliminary 5 Seed 7 1.5 0.25 0.7 0.3 0.02
Preliminary 6 Seeds 0–500 1.5 0.25 0.7 0.3 0.02

1 7–10 Speed 1.18 0.22 0.13 0.62 0.04
1 7–10 Accuracy 1.18 0.33 0.13 0.62 0.04
2 11–12 Two-choice 1.52 0.19 0.7 0.4 0.045
2 11–12 Four-choice 1.96 0.26 0.81 0.32 0.08
3 13 as1t, speed 1.9 0.39 0.035 0.37 0.068
3 13 as1t, accuracy 1.9 0.38 0.035 0.37 0.068
3 13 bd6t, speed 1.9 0.22 0.47 0.067 0.013
3 13 bd6t, accuracy 1.9 0.35 0.47 0.067 0.013
3 13 bl1t, speed 1.6 0.2 0.36 0.055 0.071
3 13 bl1t, accuracy 1.6 0.3 0.36 0.055 0.071
3 13 hsft, speed 2.0 0.32 0.01 0.13 0.029
3 13 hsft, accuracy 2.0 0.4 0.01 0.13 0.029
3 13 hsgt, speed 1.9 0.28 0.18 0.052 0.082
3 13 hsgt, accuracy 1.9 0.31 0.18 0.052 0.082
3 13 kd6t, speed 1.6 0.27 0.24 0.01 0.072
3 13 kd6t, accuracy 1.6 0.31 0.24 0.01 0.072
3 13 kd9t, speed 1.9 0.32 0.094 0.3 0.03
3 13 kd9t, accuracy 1.9 0.41 0.094 0.3 0.03
3 13 kmat, speed 1.8 0.31 0.068 0.6 0.048
3 13 kmat, accuracy 1.8 0.39 0.068 0.6 0.048
3 13 ku4t, speed 1.8 0.23 0.2 0.022 0.068
3 13 ku4t, accuracy 1.8 0.27 0.2 0.022 0.068
3 13 na1t, speed 2.0 0.28 0.03 0.092 0.035
3 13 na1t, accuracy 2.0 0.32 0.03 0.092 0.035
3 13 rmbt, speed 1.2 0.2 0.18 0.33 0.082
3 13 rmbt, accuracy 1.2 0.32 0.18 0.33 0.082
3 13 rt2t, speed 1.9 0.24 0.046 0.1 0.014
3 13 rt2t, accuracy 1.9 0.32 0.046 0.1 0.014
3 13 rt3t, speed 1.9 0.3 0.49 0.041 0.072
3 13 rt3t, accuracy 1.9 0.33 0.49 0.041 0.072
3 13 rt5t, speed 1.8 0.3 0.5 0.5 0.075
3 13 rt5t, accuracy 1.8 0.35 0.5 0.5 0.075

(table continues)
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Table A1 (continued)

Experiment Figure Details R T L σ ts

3 13 scat, speed 1.9 0.34 0.095 0.38 0.016
3 13 scat, accuracy 1.9 0.35 0.095 0.38 0.016
3 13 ta5t, speed 1.8 0.28 0.083 0.34 0.039
3 13 ta5t, accuracy 1.8 0.41 0.083 0.34 0.039
3 13 vf1t, speed 1.9 0.28 0.026 0.32 0.053
3 13 vf1t, accuracy 1.9 0.44 0.026 0.32 0.053
3 13 zk1t, speed 1.9 0.28 0.18 0.36 0.07
3 13 zk1t, accuracy 1.9 0.43 0.18 0.36 0.07
4 15–16 1 2.0 0.51 0.8
4 15–16 2 2.4 0.35 0.47
4 15–16 3 1.5 0.14 0.92
4 15–16 4 2.5 1.0 0.44
4 15–16 5 1.5 0.37 0.49
4 15–16 6 2.6 0.23 0.89
4 15–16 7 2.9 0.65 0.4
4 15–16 9 2.3 0.65 0.07
4 15–16 10 1.8 0.58 0.64
4 15–16 11 2.0 0.26 0.92
4 15–16 13 2.1 0.36 0.56
4 15–16 14 2.4 0.8 0.16
4 15–16 20 1.3 0.44 0.54
4 15–16 21 1.2 0.59 0.14
4 15–16 22 2.3 0.75 0.49
4 15–16 23 2.2 0.27 0.49
4 15–16 24 2.5 0.47 0.05
4 15–16 25 1.8 0.51 0.05
4 15–16 26 1.9 0.68 0.13
4 15–16 27 2.7 0.46 0.0
4 15–16 28 2.9 0.65 0.2
4 15–16 29 2.2 0.48 0.57
4 15–16 30 1.4 0.64 0.12
4 15–16 31 1.1 0.01 0.54
4 15–16 32 1.0 0.07 0.45
4 15–16 33 1.5 0.64 0.24
4 15–16 34 1.3 0.49 0.38
4 15–16 35 2.7 0.82 0.75
4 15–16 36 2.4 0.71 0.42
4 15–16 37 1.4 0.72 0.05
4 15–16 38 2.3 0.32 0.76
4 15–16 39 2.5 0.48 0.08
4 15–16 40 2.5 0.8 0.13
4 15–16 41 2.4 0.81 0.38
4 15–16 42 1.4 0.4 0.46
4 15–16 43 1.4 0.66 0.17
4 15–16 44 2.2 0.33 0.95
4 15–16 45 2.5 0.37 0.78
4 15–16 46 1.1 0.31 0.48
4 15–16 47 1.6 0.23 0.71
4 15–16 48 1.7 0.7 0.24
4 15–16 49 1.2 0.45 0.33
4 15–16 50 2.1 0.76 0.25
4 15–16 51 2.8 0.67 0.19
4 15–16 52 1.9 0.3 0.74
4 15–16 53 2.1 0.75 0.33
4 15–16 54 1.3 0.56 0.19
4 15–16 55 2.3 0.61 0.55
4 15–16 56 1.5 0.34 0.82
4 15–16 57 2.8 0.44 0.76
4 15–16 58 2.4 0.24 0.72
4 15–16 59 1.5 0.19 0.93
4 15–16 60 1.7 0.58 0.55
4 15–16 61 1.4 0.32 0.26
4 15–16 62 2.8 0.56 0.57

Valuation as1t 1.3 0.15 0.0 0.6 0.03
Valuation bd6t 1.9 0.17 0.0 0.43 0.035

(table continues)

(Appendix continues)
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Table A1 (continued)

Experiment Figure Details R T L σ ts

Valuation bl1t 1.9 0.16 0.0 0.63 0.018
Valuation hsft 1.4 0.066 0.0 0.19 0.023
Valuation hsgt 1.5 0.049 0.0 0.27 0.014
Valuation kd6t 1.7 0.22 0.0 0.73 0.016
Valuation kd9t 1.3 0.079 0.0 0.1 0.09
Valuation kmat 1.4 0.039 0.0 0.11 0.09
Valuation ku4t 1.8 0.15 0.0 0.51 0.04
Valuation na1t 1.6 0.058 0.0 0.11 0.028
Valuation rmbt 1.8 0.2 0.0 0.62 0.035
Valuation rt2t 1.7 0.073 0.0 0.2 0.033
Valuation rt3t 1.5 0.23 0.0 0.63 0.043
Valuation rt5t 1.4 0.24 0.0 0.78 0.096
Valuation scat 1.7 0.19 0.0 0.44 0.034
Valuation ta5t 1.6 0.12 0.0 0.38 0.034
Valuation vf1t 1.6 0.1 0.0 0.42 0.033
Valuation zk1t 1.4 0.039 0.0 0.34 0.09
Valuation 1 1.8 0.85 0.0
Valuation 2 2.9 0.54 0.0
Valuation 3 2.9 0.54 0.0
Valuation 4 1.9 1.0 0.0
Valuation 5 2.9 0.86 0.0
Valuation 6 2.7 0.46 0.0
Valuation 7 2.9 0.84 0.0
Valuation 9 2.5 0.72 0.0
Valuation 10 1.3 0.7 0.0
Valuation 11 2.9 0.78 0.0
Valuation 13 1.8 0.39 0.0
Valuation 14 2.9 0.97 0.0
Valuation 20 1.6 0.77 0.0
Valuation 21 1.6 0.79 0.0
Valuation 22 1.2 0.65 0.0
Valuation 23 2.6 0.44 0.0
Valuation 24 2.6 0.51 0.0
Valuation 25 2.5 0.74 0.0
Valuation 26 2.2 0.82 0.0
Valuation 27 2.2 0.37 0.0
Valuation 28 1.9 0.5 0.0
Valuation 29 2.4 0.73 0.0
Valuation 30 1.4 0.66 0.0
Valuation 31 2.0 0.1 0.0
Valuation 32 2.7 0.2 0.0
Valuation 33 1.0 0.5 0.0
Valuation 34 1.4 0.67 0.0
Valuation 35 1.8 0.98 0.0
Valuation 36 2.7 0.98 0.0
Valuation 37 1.4 0.75 0.0
Valuation 38 2.7 0.57 0.0
Valuation 39 2.8 0.54 0.0
Valuation 40 2.7 0.91 0.0
Valuation 41 2.1 0.92 0.0
Valuation 42 2.8 0.94 0.0
Valuation 43 1.7 0.84 0.0
Valuation 44 2.9 0.87 0.0
Valuation 45 1.1 0.29 0.0
Valuation 46 2.5 0.87 0.0
Valuation 47 2.5 0.5 0.0
Valuation 48 1.0 0.5 0.0
Valuation 49 1.8 0.79 0.0
Valuation 50 1.7 0.77 0.0
Valuation 51 2.7 0.73 0.0
Valuation 52 2.9 0.74 0.0
Valuation 53 1.9 0.86 0.0
Valuation 54 2.2 0.9 0.0
Valuation 55 2.9 0.98 0.0
Valuation 56 2.9 1.0 0.0

(table continues)

(Appendix continues)
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Table A1 (continued)

Experiment Figure Details R T L σ ts

Valuation 57 3.0 0.81 0.0
Valuation 58 1.8 0.3 0.0
Valuation 59 2.8 0.72 0.0
Valuation 60 1.7 0.82 0.0
Valuation 61 2.5 0.68 0.0
Valuation 62 3.0 0.85 0.0

Note. In Experiments 1–4, these parameters are fitted to the empirical data using the procedure described in the
Parameter Fitting Procedure section. The details column describes additional conditions of the experiment, including
the simulation seed used to initialize neuron parameters, speed- or accuracy-emphasis, the number of choice
alternatives, or the ID of each participant. Fitted parameter values for the DD and extrema model are available on
GitHub. DD = drift diffusion.
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