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Abstract

We use a spiking neural network model of working memory (WM) capable of performing the
spatial delayed response task (DRT) to investigate two drugs that affect WM: guanfacine (GFC) and
phenylephrine (PHE). In this model, the loss of information over time results from changes in the
spiking neural activity through recurrent connections. We reproduce the standard forgetting curve
and then show that this curve changes in the presence of GFC and PHE, whose application is simu-
lated by manipulating functional, neural, and biophysical properties of the model. In particular,
applying GFC causes increased activity in neurons that are sensitive to the information currently
being remembered, while applying PHE leads to decreased activity in these same neurons. Interest-
ingly, these differential effects emerge from network-level interactions because GFC and PHE affect
all neurons equally. We compare our model to both electrophysiological data from neurons in mon-
key dorsolateral prefrontal cortex and to behavioral evidence from monkeys performing the DRT.

Keywords: Working memory; Delayed response task; Neural Engineering Framework;
Pharmacology; ADHD

1. Introduction

Working memory (WM) is a central component of cognitive systems that is required
for temporary information storage during the execution of complex tasks. WM can be
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impaired by a variety of mental disorder, including attention-deficit-hyperactivity disorder
(ADHD) (Scahill et al., 2014). Because WM is biologically realized in networks of neu-
rons, one goal for researchers studying WM is to understand how populations of spiking
neurons implement information storage and retrieval in the brain, and how these neurobi-
ological processes are disrupted by WM disorders (Avery, Franowicz, Studholme, van
Dyck, & Arnsten, 2000). Although computational models are well suited to this task,
existing WM models rarely provide both biological detail and a functional architecture
capable of generating behavioral predictions. For example, models such as CoJACK
(Dancy, Ritter, Berry, & Klein, 2015) and Gunzelmann, Gross, Gluck, and Dinges (2009)
are concerned with how high-level cognitive abilities like mental arithmetic, perception,
and tactical planning relate to low-level details like caffeine or sleep loss, but must
implement these low-level details through the models’ symbolic plans and production
rules rather than through the underlying neurobiological substrate. ACT-R/¢ (Ritter et al.,
2012) also investigates low-level details (e.g., epinephrine levels) using a mathematical
model of physiology, but it does not yet simulate neurons explicitly. On the other hand,
the Human Brain Project (Markram et al., 2015) simulates cortical microcircuits with
unprecedented biological accuracy, but it lacks a theoretical framework that relates model
activity to high-level cognitive abilities like perception, decision-making, and WM. New
theories and models are needed to unify these approaches and characterize the complex
relationships between the pharmacological, neurobiological, and cognitive aspects of
WM.

In this paper, we present a spiking neural network model of WM and action selection
applied to a mnemonic cognitive test, the spatial delayed response task (DRT). Our model
captures a broad set of low- and high-level features: It includes enough biophysical detail
to simulate the underlying causes of mental disorders and typical interventions (e.g.,
drugs, neural stimulation, etc.), enough neural detail to respect biological constraints and
produce data that can be externally validated, and enough functional detail to provide a
conceptual description of WM systems and their disorder-induced deficits. We first
describe the biological and computational basis of WM using the Neural Engineering
Framework (NEF) (Eliasmith & Anderson, 2003), a general method for building cognitive
models from spiking neurons. We then present our model, describing how it extends pre-
vious WM models and performs the DRT by storing, retrieving, and forgetting informa-
tion. To introduce the relevant pharmacology, we examine two WM drugs, guanfacine
(GFC) and phenylephrine (PHE), from a functional, neural, and biophysical perspective,
hypothesize about why GFC alleviates WM deficits produced by ADHD while PHE exac-
erbates them, then construct drug simulations that reproduce the effects of GFC and PHE
at three different levels of analysis. We find that these drug simulations alter the model’s
electrophysiology and DRT performance in a manner that aligns closely with empirical
data from monkeys. We conclude by discussing how these results consolidate our under-
standing of WM disorders and proposing biophysical and anatomical extensions to the
model.
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2. Background

WM is at least partly realized in the prefrontal cortex (PFC), a brain region whose
prominent size in highly evolved primates suggests its importance in complex cognitive
tasks that require a flexible mental workspace. The PFC represents information that is
temporarily held in mind, used to guide behavior and decision-making, and is thought to
be maintained through recurrent excitatory connections between neurons with similar tun-
ing properties (Goldman-Rakic, 1995). Computationally, this recurrence realizes an
extended temporal integration that preserves the represented item without external stimu-
lation (Singh & Eliasmith, 2006). Therefore, the core requirement in a neural model of
WM is that a population of neurons can maintain its state over time. That is, given a
brief input, the internal connectivity should cause the neural activity pattern that results
from that input to persist after the input has stopped. This persistence will not be perfect
—over time the neural activity will drift away from its initial value.

However, this population of neurons cannot maintain any possible pattern of firing:
We expect there to be correlations in the structure of this neural activity. Indeed, it has
become common to analyze neural activity in WM areas (and elsewhere in the brain) by
performing dimensionality reduction through techniques such as jPCA (Shenoy, Sahani,
& Churchland, 2013). These approaches characterize the underlying patterns of correla-
tion between the spiking neurons, identifying a lower dimensional subspace that the neu-
ral activity represents. That is, rather than treating each neuron independently, we assume
there is some vector x that is being represented by the population of neurons. The dimen-
sionality of this vector is much smaller than the number of neurons, meaning that the
information is redundantly encoded across these neurons. In particular, each neuron i will
have some particular vector ¢; for which that neuron fires most strongly (these are often
known as “preferred direction vectors” or “encoders” and have been widely used as a
useful way of characterizing cortical activity (e.g., Georgopoulos, Kalaska, Caminiti, &
Massey, 1982). We can consider the total overall current going into a neuron to be pro-
portional to e; - x (the similarity between x and the preferred vector ¢;). To produce a
variety of tuning curves and firing rates that matches those in PFC, we randomly choose
a gain o; and bias current B; for each neuron, resulting in a total input current of
ase; - x + B;. This current can be fed into any neuron model, but here we simply use the
standard leaky integrate-and-fire (LIF) model.

Given that the neural spiking activity encodes some vector x, it should be possible to
recover that information by observing the spikes. The simplest method is to “decode” this
spiking information via a weighted sum of the spikes, such that x(f) = X;a;(t)d; X h(t),
where ¢;(1) is the spiking activity of the ith neuron, h(z) is the shape of the post-synaptic
current caused by the spikes, and d; is the weighting factor for each neuron. The decoder
(i.e., d;) values can be found by performing a least-squares optimization that minimizes
the difference between x (the original vector) and X (the vector recovered by observing
the spiking activity). This method of characterizing neural representation is the first prin-
ciple of the NEF.
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Now that we have defined how a population of neurons can represent a value x, we
can construct recurrent connections within this population such that the neural activity
continues to represent x over time. To realize such a WM, we must find recurrent connec-
tion weights that stabilize dynamical neural activity, regardless of the value x being
represented. Using the third principle of the NEF, this can be characterized as another
least-squares minimization problem: Previous work has shown that the optimal weights
from neuron i to neuron j are w;; = oye; - d; (Eliasmith & Anderson, 2003). The result is
a population of spiking neurons that maintains its activity over time and has been the
basis of multiple WM models (Choo & Eliasmith, 2010; Singh & Eliasmith, 2006).

To simulate the WM population, we let the input vector x be two-dimensional, where
the first dimension is the value to be remembered, and the second dimension is the
amount of time it has been remembered for. Empirical and modeling evidence are consis-
tent with the claim that PFC neurons explicitly encode the passage of time (Bekolay,
Laubach, & Eliasmith, 2014; Lewis & Miall, 2006; Singh & Eliasmith, 2006). For exam-
ple, some PFC neurons start firing only after a given amount of time has passed, while
others gradually decrease their firing rate over time (Romo, Brody, Hernandez, & Lemus,
1999). These “positive monotonic” and ‘“negative monotonic” neurons can be thought of
as neurons that are sensitive to both the value being represented and the amount of time
the memory has been held; in other words, these are spatial mnemonic neurons whose e;
values are large for both the first and second dimension. Other neurons may only be sen-
sitive to one or the other dimension (i.e., would have small ¢; values for one of those two
dimensions). This variability in e¢; matches well to the observed variability in WM tuning
curves (Singh & Eliasmith, 2006).

3. Model description

A standard behavioral test of working memory is called the spatial DRT. In this task,
a monkey fixates on a point in the center of the screen, and then it is briefly presented a
visual cue on the left or right (cue period, 1 s). The cue is removed and then comes a
delay period (2, 4, 6, or 8 s), during which the monkey has to represent and maintain the
cue’s location in working memory. After the delay period, the monkey recalls the cue’s
location and responds by pressing a button on the left or right.

We extend the NEF models described above (Choo & Eliasmith, 2010; Singh & Elia-
smith, 2006) to perform this task, using the architecture shown in Fig. 1. The cue’s loca-
tion is represented by a value cue € {—1, +1} and is the first dimension of the input
vector x. This value is fed as a stimulus into the WM population, causing each of its
N = 1,000 neurons to spike with frequency determined by the similarity between its pre-
ferred vector e; and the represented value x. This stimulus is applied for the duration of
the cue period (1 s) then removed; after this, the memory must be maintained by activity
fed back through the WM recurrent connections.

We introduce two sources of instability to simulate forgetting during the delay period.
First, external noise approximating the stochastic variability found in the brain is injected
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Fig. 1. Schematic of the spiking neuron model of the delayed response task. Circles represent neural popula-
tions and boxes represent nodes that output vectors. Parameters: dr = 0.001 s; neuronsyy = 1,000,
neuronsy, = 100, neuronsp,. = 100; cue(t) = {—1.0, +1.0} for ¢ < 1.0, time(r) =04 for > 1.0;
noise,,, = N(0, 0.005), noisesc = 0.3; exponential synaptic time constants t,,, = 0.1 s, a value consistent
with NMDA-type glutamate receptors in PFC.

into WM neurons using a bias current through the Noise_WM node. Second, the con-
stant passage of time, encoded as the second dimension of the input vector x, steadily
increases the firing rate of WM neurons until they saturate. Once a significant portion of
the neurons saturate, decoding the cue value from the population’s activity becomes noisy
and inaccurate. Fig. 2 shows that, without these instabilities, the information stored in
WM is stable for a very long time (minutes to hours), but when they are present, the
information decays over tens of seconds, consistent with decay rates of human WM
(Choo & Eliasmith, 2010).

To produce a response, the model must access the stored value and produce one of two
outputs € {—1, +1}. A decision population attempts to decode the cue information by tak-
ing the neural activity of the WM neurons and computing their weighted sum, giving an
estimate of the original value (x(t) = X;a;(t)d; X h(t)). Because a neural mechanism to
convert this value into a decision will include some degree of variability, we add normally
distributed noise to this estimate. If the result is above zero, we interpret this as the model
giving the +1 response, and if it is below zero, we interpret it as giving the —1 response.

There are four important free parameters in this model: The ramp magnitude controls
the rate of interference due to elapsed time while the working memory noise interferes
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Fig. 2. Top: spike rasters from 100 WM neurons (out of 1,000). Bottom: the represented value is computed
from the spiking activity with £ = X,a;(r)d; x h(t). With added noise and temporal ramp, the neural integra-
tor is more unstable and decays towards zero, causing forgetting of the represented information.

with the cue representation; the decision noise controls the accuracy of the decision pro-
cedure; and the misperception probability gives the likelihood that the model fails to per-
ceive the cue in the first place (cue = 0). We set the two noise parameters to biologically
plausible values, o,,, = 0.005 and c; = 0.3, and then fine-tuned the misperception and
ramp until we reproduced the baseline forgetting curve (see Fig. 5), misperceive = 0.1
and ramp = 0.4. The model is available on GitHub (https://github.com/psipeter/drugs_a
nd_working_memory).

4. Simulating guanfacine and phenylephrine

The stable representation of items stored in WM is sensitive to the synaptic con-
nections of intra-PFC loops and the biochemical environment of PFC neurons.
Impairments in the dopamine and norepinephrine system are closely associated with
WM disorders such as ADHD (Arnsten & Lombroso, 2000; Chandler, Waterhouse,
& Gao, 2014), and the drugs used to treat them target these impaired systems
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biophysically (Avery et al., 2000; Scahill et al., 2014). Specifically, drugs prescribed
for ADHD affect PFC neurons that express Hyperpolarization-activated Cyclic
Nucleotide-gated (HCN) ion channels (Franowicz et al., 2002). HCN channels are
located on neurons’ dendritic spines and are open at rest, shunting synaptic input by
permitting nonspecific cations to flow out of the cell, as shown in Fig. 3. These
channels control the excitability of pyramidal neurons by modulating dendritic sum-
mation and the cells’ resting potentials (Magee, 1999; Poolos, Migliore, & Johnston,
2002); when the neuromodulator norepinephrine binds to the o2A-adrenoreceptor
(02A-AR), it activates a cAMP-mediated intracellular signalling cascade that ulti-
mately closes HCN channels. The result is reduced shunting and increased excitabil-
ity of the neuron.

The drugs guanfacine (GFC) and phenylephrine (PHE) are an agonist and an antagonist
of the a2A-AR, respectively; GFC is prescribed to alleviate WM deficits in patients with
ADHD (Scahill et al., 2014), while PHE reproduces many of the disorder’s symptoms
(Arnsten & Leslie, 1991; Levy, 2008). A study by Wang et al. (2007) showed that GFC
increased (and a compound similar to PHE decreased) the firing rate of PFC neurons with
weak mnemonic tuning in the direction of the cue presented in the DRT, while having no
effect on cells tuned in the opposite direction; see Fig. 4. These results are consistent
with monkeys’ increased (decreased) performance on DRT when injected with GFC and
PHE (Mao, Arnsten, & Li, 1999; Ramos, Stark, Verduzco, van Dyck, & Arnsten, 2000);
see Fig. 5. We hypothesize that GFC raises the firing rate of neurons with cue-aligned
encoders, slowing the decay of information stored in the PFC neural integrator and
increasing performance on the DRT.

Fig. 3. Diagram of guanfacine’s (GFC) biophysical interactions with prefrontal cortex neurons. EPSCs
induced by presynaptic glutamate release are shunted from dendritic spines via open Hyperpolarization-acti-
vated Cyclic Nucleotide-gated channels, leading to minimal postsynaptic potentiation. When norepinephrine
or its agonist GFC binds the 0a2A-AR, HCN channels close, increasing the efficacy of cortical inputs. Image
reproduced from Wang et al. (2007) (with permission).
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Fig. 5. Delayed response task (DRT) accuracy versus delay period length in monkeys injected with saline,
guanfacine (GFC), and phenylephrine (PHE) (Mao et al., 1999). The outlier datapoint, GFC at ¢ = 4, proba-
bly arises from the small samplesize of the dataset: A single (unique) monkey was used for each experimen-
tal condition, though each line represents N = 800—1,200 DRT trials from that animal. Errors in the original
data were negligible, so they are not plotted here.
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5. Results

We performed three drug simulations, each of which approximates the effects of GFC
and PHE on the model at a different scale. We began at the highest level, looking at how
the drugs functionally alter forgetting rates in WM by manipulating the recurrent connec-
tion weights. Next, we investigated how injecting a constant current into all WM neurons
biases their resting states, changing their firing rates and the population’s ability to main-
tain information. Finally, we examined the underlying causes of these firing rate changes
by manipulating the neurons’ biophysical properties to approximate the effects of o2A-
AR (in)activation.

5.1. Functional simulation

To simulate the high-level, functional effects of GFC and PHE on working memory,
we multiplied the weights in the WM recurrent connection by a constant kg, with the
expectation that ky > 1 would increase feedback and promote remembering, whereas
kr <1 would increase decay and promote forgetting. Under normal conditions, as the
model forgets the original stimulus, the value of cite decoded from the WM neurons’
spiking activity decays exponentially. When we increased the strength of the recurrent
connection (ky = 1.03), a higher value of X was fed back as input to the WM population,
increasing the firing rate of cue-aligned neurons and more strongly encoding the cue’s
location. As shown in Fig. 6 (top), the cue representation rose and its exponential decay
fell compared to control. This made it easier for the decision procedure to distinguish the
decoded cue location from noise, which shifted the “forgetting curve” up; see Fig. 6 (bot-
tom). Conversely, weakening the recurrent connection (k; = 0.985) increased the decay
rate and shifted the forgetting curve down. The model’s response qualitatively matches
the forgetting curves of monkeys injected with these drugs (Mao et al., 1999). Reported
results were averaged over N = 1,000 model realizations with randomized cues, neuron
properties, and noise.

5.2. Neural simulation

Although the functional simulation is conceptually simple and produces a decent
empirical match, it is not biologically realistic; GFC and PHE do not transform the physi-
cal synaptic connections between neurons. Our hypothesis is that these drugs alter the fir-
ing rate of PFC neurons in a way that later manifests functionally as improved or
impaired forgetting. To test this, we introduced a global increase (decrease) in somatic
current to all WM neurons: Igrc = 0.5 and Ipygr = —0.2, realized as the mean value of
noise input from the Noise_WM node. Importantly, even though Wang et al. (2007)
showed that, in vivo, an increase in activity was only observed for neurons whose pre-
ferred direction was aligned with the stimulus being remembered, we do not apply this
extra current only to those neurons. This is because there is no direct mechanism by
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Fig. 6. Model data for the functional drug simulation. Top: decoded ciie value from spiking neural activity
in the working memory (WM) population. Bottom: the “forgetting curve,” or percentage of correct classifica-
tions by the decision procedure over N = 1,000 trials as a function of delay period length. Both for monkeys
and the model, accuracy decreases steadily from 2 to 6 s, then drops sharply at 8 s when the value stored in
the WM become indistinguishable from zero to the model’s noisy decision procedure. Consistent with behav-
ioral data from monkeys performing the delayed response task (DRT), applied guanfacine (GFC) increases
task accuracy while phenylephrine (PHE) decreases it. Gray regions represent 95% confidence intervals and
sub-100% accuracy before ¢t = 3 s arises from the model’s misperception of the cue.

which GFC or PHE could affect only those neurons that are actively encoding informa-
tion. Rather, we apply the simulated drug effect to all the neurons in the WM model.
While this seems counter-intuitive, the network effects of the recurrent connections are
sufficient to cause the differential response observed by Mao et al. (1999).

Fig. 7 shows the normalized firing rate of neurons before and after the simulated appli-
cation of GFC and PHE. As with the empirical data, the neural drug simulation for GFC
increased (PHE decreased) the firing rate of simulated preferred-direction neurons while
having little effect on neurons in the nonpreferred direction. This differential activation of
preferred direction neurons, in turn, allowed the integrator to maintain a coherent repre-
sentation of the cue’s location for a longer duration, shifting the forgetting curve up.
These electrophysiological and behavioral results are consistent both with our functional
drug simulation and with empirical data; see Fig. 8.



P. Duggins et al./Topics in Cognitive Science 9 (2017) 127

250 Preferred Direction 250 Nonpreferred Direction
drug drug
= control = control
—— PHE —— PHE

=
a
o

150

=
o
o

100

Normalized Firing Rate

6 6
%me (s) %me (s)

Fig. 7. Firing rate of simulated neurons with encoders in the preferred versus nonpreferred directions in
response to injected current. Spikes were generated from n = 0-10 neurons per trial for N = 1,000 trials and
then smoothed using Gaussian convolution with ¢ = 0.005 every 0.2 s. We plotted model neurons that were
tuned to the preferred direction during control conditions, as per their hypothesized importance in represent-
ing the cue’s location during the delay period. Wang et al. (2007) failed to provide a precise definition of
“weak spatial mnemonic tuning” or their procedure for choosing such neurons, so we selected model neurons
based on the magnitude of their encoders (0.3 < lel < 0.6). They also did not discuss their method of calculat-
ing “normalized firing rate,” so we did not attempt to fine-tune our working memory neurons’ properties to
match the absolute rates reported in Fig. 4—only the differences induced by the drugs.

5.3. Biophysical simulation

In our final experiment, we approximated GFC and PHE at the biophysical level by
altering the inherent properties of model neurons. At rest, HCN channels allow positive
ions to flow into the cell, so closing HCN effectively induces a negative current, lowering
the resting membrane potential. We modeled this effect by lowering the bias current f; of
each LIF neuron in the WM population. Additionally, closing HCN channels modulates
neurons’ dendritic summation such that small, desynchronized dendritic spikes more
strongly influence the somatic membrane potential. This effectively increases neurons’
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Fig. 8. Cue representation and forgetting curve for the neural drug simulation.

response to a given synaptic input, which we modeled by increasing the gain o; of each
neuron. This simulation was validated using a study in mice (Nolan et al., 2004) that
showed that closing HCN channels decreased neurons’ resting membrane potentials and
increased their gains in the subthreshold regime; see Fig. 9.

After initializing the neural model to perform least-squares optimal integration (i.e.,
distributing neurons’ initial gains, biases, encoders, and decoders), we multiplied the
gains of all WM neurons by a constant k, = 1.05 for GFC (k, = 0.99 for PHE), and
the biases of all WM neurons by kg = 0.95 (kg = 1.02). The impact of these multiplica-
tions on the firing rate of example LIF neurons is depicted in Fig. 10; with a constant
input current in the physiologically relevant ranges, increases (decreases) in gains over-
whelm decreases (increases) in biases, meaning that simulated GFC should increase the
overall activity of recurrently connected WM neurons. Fig. 11 confirms that this biophysi-
cal simulation reproduces the empirical drug-induced change in PFC neurons’ activities.
Again, this simulation was applied to all neurons in the WM population, so the network
effects from the recurrent connection are responsible for the differential response of pre-
ferred versus nonpreferred direction neurons. The biophysical intervention also altered
cue encodings in WM and shifted the forgetting curve in a manner consistent with the
behavioral data and the previous drug simulations; see Fig. 12.
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Fig. 9. Subthreshold resting membrane potential as a function of applied current for normal mice (left) ver-
sus mice that have had Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) channel genes artificially
inactivated (right). Closing HCN channels lowers the neuron’s resting potential (lower value of E,, at I = 0)
while increasing the neuron’s response to subsequent input (higher slope of E,, vs. I). Image reproduced from
Nolan et al. (2004) (with permission).
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Fig. 10. Tuning curve of a sample leaky integrate-and-fire neuron in response to the biophysical simulation.

Finally, we checked the robustness of our results by replacing the decision procedure
with a full basal ganglia network. This network (Stewart & Eliasmith, 2011; Stewart,
Choo, & Eliasmith, 2010) has previously been used to simulate several cognitive tasks
that require the model to read information stored in working memory, such as action
selection and procedure following, and its structure and parameters are biologically plau-
sible. We observed that this replacement changed the shape of the forgetting curve
slightly, such that the model had higher accuracy for delay periods of 6 s or less, but a
sharper dropoff in accuracy afterward; see Fig. 13. However, this curve still shifts up and
down with the application of simulated GFC and PHE and aligns reasonably with the
empirical forgetting curve.
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Fig. 11. Firing rate of simulated neurons for the biophysical drug simulation.

6. Discussion and conclusion

In this paper, we presented a spiking neuron model of WM and the DRT, and then
used this model to investigate the underlying causes of WM disorders and their treat-
ments through the simulated application of GFC and PHE. The model extends classi-
cal works on WM dynamics (Brunel & Wang, 2001) by incorporating the NEF, an
approach that allows for (a) the principled encoding and decoding of information in
large-scale spiking neural networks, and (b) the manipulation of these networks at
levels ranging from the biophysical to the functional. We investigated the interactions
between WM and two drugs that reduce and enhance WM deficits in ADHD, show-
ing that these interactions could be explained from a functional, neural, and biophysi-
cal perspective. We demonstrated that three distinct drug simulations, each
computationally realizing one of these perspectives by perturbing a different part of
the model, all produce surprisingly similar, and empirically accurate, effects on elec-
trophysiology and task performance. This result unifies these seemingly disparate
descriptions of the drugs’ interaction with WM systems and was robust to the chosen
decision procedure.
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Fig. 12. Cue representation and forgetting curve for the biophysical drug simulation.

The fact that our model successfully reproduces changes in WM retention times via
these three different levels of simulation gives strong evidence that the mechanisms being
investigated here (i.e., the strength of synaptic connections within a population of recur-
rently connected spiking neurons) form the underlying basis of WM in mammals. Though
further work is needed to confirm and explore this result, we believe it provides a con-
crete grounding for high-level WM theories and lays the foundation for future investiga-
tions into other aspects of WM. For example, Choo and Eliasmith (2010) use a similar
model (without the GFC or PHE interactions) to model serial recall accuracy over lists of
different lengths, providing a neural explanation for the primacy and recency effects.
Because these models are implemented using compatible (and biologically plausible)
spiking neuron models, they can easily be integrated into larger unified models.

Future work will address several simplifying assumptions made in this study. First, we
had to approximate the effects of HCN channel opening and closing on LIF point neu-
rons; this was possible largely because existing work had previously classified the rela-
tionship between GFC application and firing rate (Wang et al., 2007). Though our
approximations were successful in reproducing the empirical data, replacing LIF neurons
with biologically detailed neurons that include explicit ion channels (that can be closed
or opened by drug interactions) would expand the range of biochemical processes we
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Fig. 13. Cue representation and forgetting curve for the biophysical drug simulation with the original deci-
sion population replaced by a full basal ganglia network.

could simulate without detailed foreknowledge. To progress in this direction, we are cur-
rently integrating the NEURON simulation package and the Hodgkin—Huxley-type neuron
models developed by Bahl, Stemmler, Herz, and Roth (2012) and the Human Brain Pro-
ject (Markram et al., 2015) with the NEF-style modeling performed here.

Second, while our model focused on the representational and dynamic aspects of WM,
the processes by which information is placed in, and retrieved from, WM are equally
important for its implementation in unified cognitive systems. Adding additional cognitive
modules to the model would greatly expand the range of cognitive tasks that we could
simulate, as well as present new neural targets for drugs that affect different aspects of
cognition. For example, dopamine (D1) receptors are present both in PFC and hippocam-
pus, and abnormal neurotransmitter/receptor levels have been implicated in WM deficits
related to Parkinson’s and schizophrenia (Goldman-Rakic, 1995). Many of these systems
have already been built using the NEF and applying the above methods for detailed drug
simulation would be straightforward (Stewart & Eliasmith, 2011). In future work, we plan
to implement these extensions on the world’s largest functional brain model, SPAUN
(Eliasmith et al., 2012), in pursuit of a deeper understanding of the neural basis, psycho-
logical dysfunction, and pharmaceutical modulation of working memory.
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