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We present a spiking neuron model of the motor cortices and cerebellum of

the motor control system. The model consists of anatomically organized

spiking neurons encompassing premotor, primary motor, and cerebellar

cortices. The model proposes novel neural computations within these

areas to control a nonlinear three-link arm model that can adapt to unknown

changes in arm dynamics and kinematic structure. We demonstrate the

mathematical stability of both forms of adaptation, suggesting that this is

a robust approach for common biological problems of changing body size

(e.g. during growth), and unexpected dynamic perturbations (e.g. when

moving through different media, such as water or mud). To demonstrate

the plausibility of the proposed neural mechanisms, we show that the

model accounts for data across 19 studies of the motor control system.

These data include a mix of behavioural and neural spiking activity, across

subjects performing adaptive and static tasks. Given this proposed character-

ization of the biological processes involved in motor control of the arm,

we provide several experimentally testable predictions that distinguish our

model from previous work.
1. Introduction
Biological motor control systems are extremely robust, adaptive and versatile.

Advances in control theory continue to improve the performance of engineered

control systems [1,2], but biological systems remain far more capable. For this

reason, and to better understand motor diseases, unravelling the control algor-

ithms used by the brain is an important challenge. In this paper, we provide a

novel, mathematically stable and neurally plausible approach to realizing the

fundamental biological process of robust adaptation for limb control. While

we specify some of the model’s basic operations using control theory, we also

propose specific biological processes, in terms of anatomically localized

neural computations and a spike-based learning rule, to realize an adaptive,

robust motor controller for an arm.

In order to relate control algorithms to measured neural spiking activity, it is

crucial to construct neural models able to reproduce both observable behaviour

and spiking activity comparable to empirical data. Contemporary work on the

motor system typically focuses either on behavioural phenomena (such as

stereotypical trajectories [3], velocity profiles [4] and motor learning ability

[5–7]) or on neural phenomena (such as spiking neuron activity profiles [8]

and neural population-level data analysis [9]) (see electronic supplementary

material, section S1). In this paper, we employ recent advances in neural mod-

elling methods [10,11] to present a novel, adaptive, nonlinear motor control

algorithm fully realized in a spiking neuron model. We refer to this model as

the recurrent error-driven adaptive control hierarchy (REACH) model.

We demonstrate the REACH model’s abilities by controlling a three-link,

nonlinear arm through complex paths, including handwritten words and num-

bers. We also demonstrate its ability to adapt to environmental changes (e.g. an
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unknown force field) and changes to the physical properties

of the arm (e.g. from growth). We suggest a mapping

between neural structures in our model and anatomical

brain areas based on biologically plausible computational

processes realized within the model. Using this mapping,

we provide a variety of comparisons with behavioural

performance during static and adaptive tasks, as well as

detailed spiking neural response analyses compared with

classic and recent results in experimental neuroscience. To

the best of our knowledge, the REACH model is unique

among motor system models of limb control in the variety

of both behavioural and neural data it is able to account for.
 oc.R.Soc.B
283:20162134
2. Material and methods
We begin by providing an overview of the architecture and

algorithms of the REACH model, and direct the reader to elec-

tronic supplementary material, section S3.4 for an in-depth

discussion of the implementation details. Figure 1 identifies the

major neural and physical components of the REACH model.

The arm, shown at the bottom of figure 1, is a three-link planar

arm physically modelled after the human arm, using parameters

described in [12]. The arm simulation was built using MAPLESIM,

and is available online (https://github.com/studywolf/REACH-

paper/). The equations of motion for the arm can be expressed in

joint coordinates q ¼ [q0, q1, q2]T as [1]

MðqÞq̈þ Cðq, _qÞ _q ¼ u, ð2:1Þ

where M(q) is the inertia matrix, u is the joint torque applied to

the arm and Cðq, _qÞ _q captures the centrifugal and Coriolis

effects. The purpose of the motor system is to determine a control

signal u that will move the arm to a desired target or through a

desired trajectory.

The premotor cortex (PMC) is known to play an important

role in the preparation and planning of movements, as well as

the control of timing during execution [13–15]. The neural

activity recorded from PMC during tasks where a path is

traced out using different limbs suggests that it is largely respon-

sible for abstract trajectory generation [16,17]. For the purposes of

modelling, based on this functional characterization, we refer to

the trajectory generation network of our model as the PMC. The

PMC in the REACH model implements a neural circuit based on

dynamical movement primitives (DMPs) [18,19] (described in

electronic supplementary material, section S3.4.1), which pro-

vides desired trajectories that can be complex (e.g. letters and

numbers, see electronic supplementary material, figure S5).

Intuitively, DMPs can be thought of as building blocks of

movement that can be strung together or executed in parallel

to efficiently generate complicated movements, similar to

motor primitives [20]. In REACH, the PMC generates trajectories

specifying how to move the hand in a two-dimensional (x, y)

space, where movements are more easily planned and general-

ized than in a lower-level representation like joint space (see

electronic supplementary material, figure S5c for an example of

generalization in REACH). However, purely DMP-based

approaches do not solve the central problems of adaptation

and redundant control, which is a focus of the REACH model.

We now demonstrate how to determine u in equation (2.1) to

give us a desired motion to a target position. The control signal

calculated to move in the two-dimensional space will take the

form of a standard proportional–derivative (PD) control signal

[21], which is composed of two parts: a term that accounts for

the position error, and a term for the velocity error. The force

to correct the position error, which we denote ux, is calculated

in hand-space as

ux ¼ Kpðx� � xÞ, ð2:2Þ
where x is the position of the hand, provided through a visual

or proprioceptive feedback, x* is the desired position and Kp

is a gain term. Once calculated, this force command must be

translated into joint torques to apply to the arm.

M1 has been shown to have cells sensitive to the activation of

specific muscles, and cells sensitive to the general direction of

movement, regardless of which muscles activate to achieve that

movement [22]. Additionally, Graziano [14] has shown that M1

is not a simple fixed mapping to muscles, but rather a complex

function of the state of the system. To model M1, we suggest a

functional assignment of transforming forces from an abstracted

hand-space representation to joint torques that can be sent out to

the arm (see electronic supplementary material §3.4.2). While

much important detail is lost in this characterization of the role

of M1 (especially by drawing a clear distinction to PMC), we

believe that it is useful for advancing models of motor control,

and show in §3 that even this simplified description captures

numerous features of M1’s neural activity.

In control-theoretic terms, the mapping from hand-space to

joint torques is described, using a Jacobian matrix that relates

the movement of the joint angles, q, to movement of the hand

position, x. That is,

_x ¼ JðqÞ _q, ð2:3Þ

where _x and _q are velocity of the hand and joints, respectively.

The fact that J is a function of q highlights that this can be a

very complex mapping.

The Jacobian also defines an approximate relationship

between forces in hand-space and joint-space [23]

u ¼ JTux, ð2:4Þ

where u is the set of torques sent to the arm, ux are the forces we

want to apply to the hand, and functional dependencies have

been suppressed for clarity.

To this point, we have described how the PMC provides our

system with desired forces to apply to the hand, and how M1

transforms these forces into joint torques that approximate the

desired movement. To accurately control the arm, the controller

must also account for the inertia generated by its own movement

(i.e. the M term in equation (2.1)). To do this, we reformulate the

transformation performed by M1 as

u ¼ JTMxux, ð2:5Þ

where Mx estimates the inertia matrix in hand-space, allowing

the effects of inertia to be cancelled out [24].

The function performed by M1 also needs to be robust to

changes in the physical properties of the arm (e.g. changes

owing to growth). In the REACH model, we employ a novel

reformulation of recent nonlinear adaptive control methods [1]

to allow our neural model to learn the Jacobian on-the-fly (see

electronic supplementary material §3.3). We replace J with Ĵ to

indicate an adaptive Jacobian. This gives

u ¼ Ĵ
T

Mxux: ð2:6Þ

Notably, the control signal in equation (2.6) does not include the

standard PD controller’s velocity error term, ignores the centrifu-

gal and Coriolis effects described in equation (2.1), and provides

no means of adapting to unexpected forces. The lateral and inter-

mediate cerebellum have been suggested to be responsible for

developing and storing internal models of the system dynamics,

and generating adaptive error correction signals, respectively

[25–29]. The REACH model accounts for these terms by

(i) using internal models to estimate the inertia matrix of the

body to give the velocity error term, �KvM _q and (ii) introducing

the adaptive error correction to implement dynamics adaptation,

denoted uadapt. These new terms have a natural mapping to the

terms missing from equation (2.6) (see electronic supplementary

material, section S3.4.3 for details). With these contributions to

https://github.com/studywolf/REACH-paper/
https://github.com/studywolf/REACH-paper/
https://github.com/studywolf/REACH-paper/
http://rspb.royalsocietypublishing.org/


body 5

4

1
3

2M1 SCx

CB

PMC

Figure 1. An overview of the REACH model, shown controlling a three-link
arm. Numbers identify major communication pathways. Dashed lines indicate
closed-loop feedback signals generated from the senses. The premotor cortex
(PMC) generates a trajectory for the system to follow with a sequence of
(x, y) coordinates. The primary motor cortex (M1) receives these target
positions (1) from the PMC and compares them with the current system
state, received from the sensory cortices (SCx), through (2). M1 combines
this signal with locally calculated Jacobians to transform the desired hand
movement commands into a low-level signal that is sent to the arm and
cerebellum (CB) along (3). The CB projects an adaptive signal to the body
along (4) that compensates for velocity and movement errors. Visual and pro-
prioceptive feedback projects from the body along (5) to the CB and SCx.
(Online version in colour.)
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the outgoing control signal from the cerebellum, the output of

the REACH model becomes

u ¼ Ĵ
T
Mxux � KvM _qþ uadapt, ð2:7Þ

where uadapt is a function of q and _q. The uadapt term is

implemented using a novel reformulation of nonlinear adaptive

methods [30,31] for neural systems (see electronic supplementary

material, section S3.3).

Finally, the formulation of the model in equation (2.7) allows

only a single controller to drive goal-directed movements.

Animals, however, are able to optimize movements with respect

to several goals simultaneously [32]. For instance, monkeys can

reach to a target while staying as close to a default resting

position as possible, minimizing energy usage. Task priority

[33,34] and operational space control methods [35] provide a

natural framework for such additional constraints. To account

for the contributions of secondary controllers, we add an

additional force term, unull, which is filtered such that only move-

ments not affecting movement in the primary operational space

(i.e. hand-space) are allowed.

As a result of this last extension (see electronic supplemen-

tary material, figure S4), the full command sent to the arm is

u ¼ Ĵ
T

Mxux � KvM _qþ uadapt þ unull: ð2:8Þ

As a model of the motor control system, the absence of the

basal ganglia (BG), generally considered an important part of

motor control, is conspicuous. The BG have been shown to be

critical for reinforcement learning [36,37] and the volitional

control of movement [38,39]. We justify not including the BG

by noting that neither of these aspects of motor control are
central to the tasks we are exploring here. For instance, the

error adaptation for dynamics relevant to the REACH model is

believed to occur almost exclusively in the cerebellum [40].

Studies have shown that patients with BG lesions, but not

those with cerebellar lesions, are capable of adapting to such

reach errors [41]. The BG are also important for determining

which actions are most appropriate for a given situation, but

the tasks we present include explicit direction at the beginning

of each simulation as to which action to perform, making flexible

action selection outside the scope of the model. However,

REACH naturally integrates with spiking BG models, like those

we have proposed in the past [42].

To implement the dynamics specified above for the PMC, M1

and CB network models in spiking neurons we use the neural

engineering framework (NEF; [43]; see electronic supplementary

material §3.1). The NEF can be thought of as a ‘neural compiler’,

which guarantees a globally optimal approximation of the

underlying dynamical equations by computing connection

weights for a spiking network. Importantly, the resulting net-

work behaviour is an approximation of the ideal mathematical

formulation because of neural heterogeneity, stochasticity and

connectivity, all of which affect performance. These sources of

error provide important implementational constraints on any

proposed model. The REACH model contains approximately

30 000 spiking neurons that map to anatomical areas as described

above, and detailed in the electronic supplementary material

§3.4. This number of neurons has been chosen to ensure that

the subsystem computations required are performed with at

least 95% normalized accuracy over a sufficient range of the

state space for the subsystem. The methods for making this deter-

mination are detailed in [43]. This neural implementation allows

testing of the behavioural performance of the REACH model

while recording single neuron spiking behaviour throughout

various tasks in any of the modelled anatomical areas.
3. Results
The first task we perform is the standard clinical behavioural

test of eight centre–out reaches. While it would be possible to

encode a human-like trajectory for these reaches into the

DMP network, we instead only give the target location and

use equation (2.2) to generate the desired hand forces.

Figure 2 shows the arm trajectories and velocity profiles

from the REACH model compared with human data col-

lected by Shadmehr & Mussa-Ivaldi [44]. In [47], the total

squared jerk (TSJ) is suggested as a metric for comparing

reaching movements, where jerk is the rate of change of accel-

eration. The TSJ of 100 model-generated reaches compares

well with the normal movements reported in [47]: the

95% confidence interval of the REACH model data spans

[0.89–1.05], whereas the confidence interval of the human

data spans [0.7–1.1]. Similarly, the velocity profiles in

figure 2b show strong matches with the data presented

in [44]: a correlation of 0.96 across the mean and a 0.703

correlation across the variance.

In addition to performing static reaching tasks and complex

path generation (see handwriting in electronic supplementary

material, figure S5), the REACH model incorporates robust,

online adaptation based on observation of its own errors

during execution of the trajectories. The two distinct types of

online adaptation discussed above, cerebellar and cortical, are

implemented using a spike-timing-based learning rule [11].

These two kinds of learning correspond to the dynamics and

kinematics adaptation, respectively, discussed in [1,31] (see

electronic supplementary material, section S3.3 for details).

http://rspb.royalsocietypublishing.org/
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Figure 3a shows simulation results of the model employ-

ing cerebellar adaptation while moving in an unknown force

field. The results are compared with human data collected

from [44] performing the same task under the same force

field. In both the model and human trajectories, the effects

of the force field are evident in the initial, unadapted reaches.

After adaptation to the force field, both the human subject

and REACH model are able to accurately move to the targets

in a straight line.

Figure 3b shows results for cortical adaptation. Specifically,

the arm segment lengths are initially set to 3.0 feet for calculat-

ing the Jacobian, instead of their actual values of 2.0, 1.2 and 0.7

feet. As the model repeatedly attempts to trace an ellipse, it

learns to adapt to this change in the system kinematics and

eventually accurately reproduces the trajectory.

The comparisons we have made to this point, while

reflecting underlying neural performance and deficits, have

focused on behavioural data. A major benefit of imple-

menting models at the level of individual spiking neurons

is that it allows for detailed comparison with a large body

of experimental evidence from neuroscientific studies. Here,

we present three such comparisons.

The first, in figure 4a, shows that the REACH model

reproduces correlations exhibited during centre–out reaching

movements between neural activity and various movement
parameters. The neural activity profiles show correlations

with acceleration, arm position, distance to target, hand pos-

ition, movement force, movement magnitude, and movement

velocity, consistent with correlations reported across the 19

studies listed in electronic supplementary material, table S1.

Additionally, the system shows correlations with movement

direction, displayed in detail in figure 4.

These correlations are clearly understandable based on

the model structure, providing insights into the biological

processes giving rise to this empirical information. For

instance, the actual and target hand positions are represented

in the primary motor cortex, as shown in figure 1, because

they are required for the computation of the task-space con-

trol signal and Jacobian matrix. Hence, neurons in this area

correlate with acceleration, arm position, distance to target,

hand position, movement direction, movement magnitude

and movement velocity, as shown in figure 4a. Similarly,

the cerebellum represents position and velocity information,

as well as an efferent copy of the motor signal, which is

necessary for dynamics compensation and adaptive error

correction. The representation of these signals means that

neurons will correlate with arm position and movement

direction, magnitude and velocity.

More specifically, work from the Georgopolous labora-

tory [48] provides a classic example of the correlations

http://rspb.royalsocietypublishing.org/
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observed between neurons in M1 and movement parameters.

That work suggests that neurons respond to a ‘preferred

direction’ of arm movement in the plane. Figure 4 shows a

comparison between a neuron in the original experimental
data and simulated data taken from a REACH neuron with

a similar preferred direction, demonstrating that the model

is using neurons with biologically plausible response curves

while generating plausible behaviour.

http://rspb.royalsocietypublishing.org/
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model is likely owing to there being more noise in the neural data than in the model (see electronic supplementary material, figure S6). (Online version in colour.)
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Finally, recent work has challenged the classic view that

neural activity represents basic movement parameters,

suggesting instead that neural responses include dynamics

as part of the representation [8]. To demonstrate this claim,

a variation on principal component analysis called ‘jPCA’

was presented in [8] and applied to single-cell neural record-

ings from monkeys made during a similar reach task.

Figure 4b shows a comparison of a jPCA analysis performed
on the spiking data from our model and the data from [8].

Figure 4b demonstrates that the same kinds of rotational

dynamics captured by this analysis are found both in the

model neural activity and empirical data (see electronic sup-

plementary material, section S3.5.3). Finding systems-level

constraints on neural activity is especially important for

neural models, such as the REACH, where sheer volume

makes finding and matching neuroscientific constraints

http://rspb.royalsocietypublishing.org/
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at the level of single neurons across the whole model

implausible.
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4. Discussion
Thus far, we have presented a spiking neural model of motor

control, and compared it with a variety of behavioural and

neural data. We believe that the REACH model represents a

significant departure from past work in several respects (dis-

cussed in electronic supplementary material, section S1), and

significantly improves on the motor system used in our

Spaun model [49] by incorporating kinematic and dynamic

adaptation, and introducing DMP-based trajectory gener-

ation. Despite improvements over past models, there are

clear limitations of this work. Most obvious, it does not

approach the scale or behavioural sophistication of the pri-

mate motor system. The motor cortex in the model is four

orders of magnitude smaller than human motor cortex [50],

and the cerebellum is five orders of magnitude smaller [51].

As to the complexity of the REACH model, there are well-

known anatomical structures in both CB and motor cortex

that are not captured by the model, including the cerebellar

Purkinje cell circuit and the six-layer cortical structure

found throughout mammalian cortex. In addition, the

model maintains artificial separation of areas, such as the

PMC and M1. Past work suggests that models of the kind

presented here can be mapped onto these structures while

preserving function [52,53], but incorporating additional

neuroanatomy remains important future work.

The arm being controlled by this model is also signifi-

cantly less complex than its biological counterpart.

Including the dynamics of the musculoskeletal system,

as well as details of spinal cord circuitry, would enhance

the biological realism of the model overall. It would also

provide for comparisons of myoelectrical activity in the bio-

logical and model arm, acting as an additional source of

empirical constraint.

Despite these limitations, the REACH model embodies a

testable set of neural hypotheses about the motor control

system. To highlight the consequences of these hypotheses,

we present four predictions of the REACH model, three of

them in the context of contrasting predictions from past

work. These first three predictions were formed by compar-

ing the details of the REACH and previous models to

identify situations where distinct neural activity is expected

given different modelling assumptions.

We begin with two predictions that distinguish REACH

from what we call ‘compositional control’ models [54,55]. By

‘compositional control’, we mean an implementation of opti-

mal feedback control theory [4] based on Kullback–Leibler

(KL) control [56], or a mixture-of-experts model [57]. The first

prediction relates to the expected activity of the PMC during

the generalization of complex trajectories, for example drawing

a ‘2’ right-side up and upside down. The REACH model uses

the DMP framework for trajectory generation, where the

same circuit generates both the right-side up and upside

down ‘2’, so we expect very similar patterns of activation

across cells in the PMC during the production of both the

normal and transformed movements. By contrast, the compo-

sitional controller generates a right-side up and upside down

‘2’ using different circuits, because the kinematics of the two

trajectories share little similarity; as a result, we expect little
similarity in the spiking activity patterns in the PMC between

the two movements.

The second prediction distinguishes the REACH and KL

control models from the hierarchical modular selection and

identification for control (HMOSAIC) mixture-of-experts

model [58]. During the execution of learned movements, PCA

analysis on the PMC in both the REACH and compositional

control models (as described in electronic supplementary

material, section S2) is expected to reveal a strong negative cor-

relation between variance explained by the primary principal

component and the number of degrees of freedom being con-

trolled. That is, we expect more variance explained in a task

with 1 degree of freedom than with 2 degrees of freedom,

which in turn will be higher than in a task with 3 degrees of free-

dom. In the HMOSAIC model, the number of degrees of

freedom under control should not correlate with the structure

of the neural activity of the PMC, because that activity relates

to choosing a particular low-level controller rather than expli-

citly providing a trajectory to follow. For highly trained

movements, higher levels of HMOSAIC will specify one or

two controllers, regardless of the number of degrees of freedom

involved. However, the amount of training will not affect the

degrees of freedom generated by PMC for either the REACH

or compositional control models.

The third prediction distinguishes between HMOSAIC

and the REACH model. When the dynamics of the under-

lying system change (e.g. when the arm becomes heavier

from grasping an object), the REACH model predicts little

to no qualitative changes in the neural activity of the PMC

in comparison with moving under normal dynamics. In the

HMOSAIC model, however, a change in system dynamics

requires appropriately changing the low-level controllers

used. We expect this change to be reflected in the neural

activity of the higher levels of the system, including the PMC.

We note that these predictions are based on our under-

standing of how competing models map onto the underlying

neuroanatomy, which has often not been explicitly specified.

Regardless, performing such experiments will narrow the set

of plausible alternatives for how the impressive skill and

adaptability of the mammalian motor system is generated by

the underlying neural controllers.

Finally, as explained in electronic supplementary material,

section S3.5.3, we also predict that the same rotational

dynamics found in the neural activity of M1 and the PMC

with jPCA analysis will be found in any area of the brain repre-

senting the position and velocity of the body during directed

movement. In particular, we predict that these rotations will

be present in the sensory motor cortex and the cerebellum. If

true, this suggests that jPCA is identifying general properties

of dynamical systems rather than providing specific insights

about cortical representation in the motor cortex.

We also note that, while the specific arm being controlled

here has been parametrized to match a human limb, there is

little else specific to human arm movements that has informed

the specification of the model. Consequently, we would argue

that the same model architecture and implementation should

capture limb control movement across a wide variety of mam-

malian motor systems. To effect such comparison, it is critical

to determine a reasonable limb model, but the adaptive mech-

anisms proposed, and the mapping to neuroanatomy should

remain largely unchanged.

Even more generally, we believe that the adaptive algor-

ithms we have identified can be applied much more

http://rspb.royalsocietypublishing.org/
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broadly than to limb control. For instance, much of the motor

system faces the same adaptive challenges. Indeed, much of

the brain faces the challenge of robustly adapting its

dynamics to the uncertain and changing dynamics of the

environment it faces. Suggestively, the same neural algorithm

that we have employed here for motor control can also be

used, with minor modification, to tackle the challenge of pre-

dicting the dynamics of sensory input (technically, the

perceptual ‘filtering’ problem is the dual of the control pro-

blem [59]). Consequently, it will be interesting to explore

whether the same biological processes identified here prove

broadly applicable to more forms of adaptive behaviour.

In conclusion, detailed models that bridge the gap

between neural activity and behaviour provide quantitative

and testable hypotheses that will improve our understanding

of the complex relationship between brain and behaviour.

While approaches to building this bridge are new and often

controversial [60], understanding this relationship is critical
for developing and testing new therapeutic interventions,

advancing the state-of-the-art in machine learning, and dee-

pening our understanding of the fundamental biological

mechanisms driving behaviour.
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