
Model Predictive Control in the Legendre Domain

Graeme Damberger1 and Chris Eliasmith2

Abstract— We present a reformulation of the model predic-
tive control problem using a Legendre basis. To do so, we use a
Legendre representation both for prediction and optimization.
For prediction, we use a neural network to approximate the
dynamics by mapping a compressed Legendre representation
of the control trajectory and initial conditions to the corre-
sponding compressed state trajectory. We then reformulate the
optimization problem in the Legendre domain and demonstrate
methods for including optimization constraints. We present sim-
ulation results demonstrating that our implementation provides
a speedup of 31-40 times for comparable or lower tracking
errors with or without constraints on a benchmark task.

I. INTRODUCTION

Model predictive control (MPC) is a control algorithm
that recurrently solves the optimal control problem for state
and control trajectories over a prediction window given a set
of constraints. The algorithm assumes an accurate model of
the plant is available and uses it to predict trajectories. The
optimal predicted trajectory is chosen based on a predefined
cost function and applied to the plant. The strength of MPC
results from this process being rapidly repeated, so the most
recent control signal considers a fixed horizon of future
points while obeying a set of constraints. Consequently,
MPC optimizes over future time, as do other optimal control
methods, but MPC uses a receding horizon over a fixed
prediction window rather than an infinite horizon.

MPC has been applied extensively in complex non-linear
applications with strict constraints, from autonomous vehi-
cles [1] to power electronics [2]. However, like all control
algorithms, MPC is not without its challenges. For one,
the quality of the MPC is highly dependent on predicting
future dynamics with respect to an initial condition and a
control trajectory. Modelling errors in such predictions can
result in significant performance degradation through the
prediction window [3]. As well, MPC is computationally
intensive, so the optimization process can severely limit the
achievable quality of the prediction. The computational costs
can be alleviated through linearization to find a closed-form
solution. However, given highly non-linear dynamics found
in many applications, performance will severely degrade as
linear estimates may not be relevant throughout the whole
prediction window.

The base MPC algorithm optimizes the control signal u
at each sample point by solving the following optimization

© 2025 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in
other works.

problem over the prediction window:

argmin
u

Np−1∑
k=0

V (xk, uk) (1)

Subject to: xk+1 = f(xk, uk)

xk=0 = x0

S(xk, uk) ≤ 0,

where V is a cost function typically in the form:

V (xk, uk) = (xk − xr,k)
TQ(xk − xr,k) + uT

kRuk, (2)

with weight matrices Q and R. Additionally, k indexes the
sample time, x0 is the initial condition of the state at the
given sample time, S(xk, uk) is the set of constraints acting
on the control and state trajectories, and xr,k is the reference
trajectory. The dynamics of the system are assumed to be
non-linear and as such are denoted by xk+1 = f(xk, uk).
Here model predictive control is formulated in the context
of a discrete time implementation of sample points k. Upon
solving (2), the optimal control trajectory u is applied to
the system until the next sample point in time. As the
sampling step size decreases, the formulation approaches a
continuous closed loop where the initial conditions x0 are
frequently updated and consequently a new optimal control
trajectory u is applied often. This formulation highlights the
challenges discussed previously, where: 1) an accurate model
of the dynamics xk+1 = f(xk, uk) is necessary; and 2)
the sampling time is limited by the compute time of the
optimization.

Towards efficiency in MPC, [4] introduced pseudo-spectral
methods in MPC, discretizing the problem according to
weighted quadrature points [5] in the time domain before
applying a polynomial expansion. [6] enhanced the accuracy
of these methods while retaining computational efficiency
by discretizing over Chebyshev-Gauss-Lobatto points. To
account for uncertainties, [7] utilized pseudo-spectral meth-
ods in stochastic optimal control problems. Furthermore,
towards robustness and reliability, [8] proposed an approach
to generate safety envelopes of the generated trajectory.
Despite their efficiency, pseudo-spectral techniques remain
entirely model-dependent and can suffer in scaling, as higher-
order approximations can lead to dense differentiation ma-
trices with high computational complexity. However, despite
these limitations, pseudo-spectral methods provide a compu-
tationally efficient alternative to traditional MPC and remain
relevant in modern applications [9], [10].

In a similar fashion to pseudo-spectral techniques, [11]
projected the prediction window over a set of Laguerre

polynomials, such that the optimization of Equation: 2 is
conducted over the basis coefficients. The usage of the
Laguerre polynomials provides a computationally efficient
MPC implementation with stability guarantees with exponen-
tially decaying behaviour. The numerical stability of these
methods was demonstrated in [12], however, in practice,
these methods are limited to their reliance on an accurate
model and linear dynamics. However, Laguerre functions
remain a modern and relevant approach in MPC, as demon-
strated in their usage in robotics and power robotics [13],
[14].

Our work demonstrates a data driven method that provides
a reformulation of the MPC problem in the Legendre basis
to dramatically improve optimization time performance, even
for nonlinear dynamics. We utilize the Legendre basis for
its optimal compression properties of time series data [15].
We efficiently approximate the dynamics through a neural
network that maps control trajectories and initial conditions
to the corresponding state trajectories using the coefficients
of the Legendre basis. With this technique, we demonstrate
a speedup in computation time of between 23 and 47 times,
while retaining comparable tracking performance.

In the remainder of the paper, we begin by formulating
the unconstrained MPC problem in the Legendre domain
and then incorporate constraints in Section II. In Section III
we use our method on the cart pole problem, demonstrating
the improvements in runtime, and the preservation of those
improvements when introducing constraints.

II. METHODOLOGY

In this section, we first present the process of system
identification using the Legendre basis by predicting trajec-
tories with a neural network. We then reformulate the MPC
problem in the Legendre domain, which uses the trajectory
prediction. Finally, we discuss the benefits and challenges
associated with working in the Legendre domain for MPC.

A. Dynamics Modelling

In this section, we introduce our method of dynamics
modelling using a Legendre representation. For this appli-
cation we apply the specific shifted and scaled Legendre
polynomials proposed in [16], as they have been shown to be
optimal for streaming time series representations [15]. These
polynomials are orthogonal over the interval [0, 1] and take
on values over [−1, 1] as seen in Fig. 1. For the remainder of
the paper, we refer to this as the Legendre basis. We use the
Legendre basis to approximate the dynamics of the system
by mapping between the Legendre coefficients of the state
and control signals with a neural network. This mapping
is learned, and hence the method is a form of data-driven
modelling. As well, the initial conditions are provided to the
neural network as input as shown in (3). Consequently, the
neural network predicts the entire compressed state trajectory
in a single inference step.

MX1:Np
= F̂NN,L(x0,MU0:Np−1

), (3)

Fig. 1. Shifted and scaled Legendre polynomials up to and including order
5

where FNN,L is a neural network function mapping the
initial state x0 and the coefficients Mu of the Legendre
representation of the control signal u to Mx, the coefficients
of the Legendre representation of the state x trajectory
across the prediction window Np. The size of the network’s
inputs and outputs is determined by the state dimension
and the order of the Legendre representation. Critically, our
implementation has far fewer trainable parameters than a
trajectory mapping in the time domain, which has an input
and output size equal to the prediction window length.

In this work we use a neural network consisting of a single
hidden layer with rectified linear neurons, to obtain fast
inference times. For a given hidden layer, the total number
of trainable parameters is a function of the number of neuron
biases and connection weights, which is equal to

Nw = (Di +Do) ∗Nn

Nb = Nn +Do

Nt = Nw +Nb, (4)

where Nw, Nb, and Nt are the number of weights, biases,
and total parameters, Nn is the number of neurons in the
hidden layer, and Di and Do are the number of dimensions in
the input and output, respectively. For the Legendre domain
network, we let Di be the order of the representation L
plus the number of states, and Do is only L. Since we are
representing a trajectory over a window with the Legendre
coefficients, to do the equivalent computation in the time
domain, we would have to map each point in the time
domain. Therefore, in the time domain, Di would be equal
to the length of the prediction window Np plus the number
of states, and Do is simply Np. We assume that Np > L to
justify the usage of a Legendre representation as a form of
compression.

To train the neural network, we first constructed our train-
ing datasets through simulation of the plant. We randomly
sampled initial conditions and control trajectory coefficients
in the Legendre domain from their respective feasible sets.
We then simulated the plant’s response to the sampled input
and compressed the corresponding state trajectory from the

time domain into the Legendre domain as the output data.
We trained our model with PyTorch [17] using the Adam
Optimizer which employs a gradient descent technique over
the training data.

B. MPC in the Legendre Domain

We can now use a neural network to predict the sys-
tem dynamics using the Legendre basis, which suggests
formulating the remaining elements of the MPC problem
(2) in the Legendre domain as well. We do this with the
goal of decreasing runtime by optimizing directly within the
compressed Legendre space. By conducting all steps of the
optimization process in the Legendre domain, our method is
an efficient alternative to time domain implementations.

We start by considering a trajectory X across a time fixed
window. We can represent this trajectory by a linear combi-
nation of the Legendre basis polynomials and corresponding
coefficients in the following form:

x(t) =

∞∑
n=0

Pn(t)Mn,x, (5)

where Pn(t) is the nth Legendre polynomial and Mn,x is
the nth scalar coefficient corresponding to the representation
of x(t). Since it is impractical to use an infinite order
representation to capture x(t), we can use a reduced order
representation, that may compress the original x(t):

x̂(t) =

L∑
n=0

Pn(t)Mn,x (6)

where x̂(t) is represented to the Lth order. The error, ε(t),
resulting from this representation is:

x(t)− x̂(t) = ε(t) =

∞∑
n=L+1

Pn(t)Mn,x. (7)

Since ε(t) only contains higher frequency (i.e., polynomial)
components, we assume it to be negligible by choosing L
such that x̂(t) is a good representation of x(t).

Let us now consider the cost function defined in (2). Since
x, xr, u are trajectories over the window [0, Np], we can
represent them in the Legendre basis:

V (Mu) =

Np−1∑
k=0

(L∑
n=0

Pn(k)Mn,x −
L∑

n=0

Pn(k)Mn,xr

)T

∗ Q

(
L∑

n=0

Pn(k)Mn,x −
L∑

n=0

Pn(k)Mn,xr

)

+

(
L∑

n=0

Pn(k)Mn,u

)T

∗ R

(
L∑

n=0

Pn(k)Mn,u

)]
(8)

In vector notation, we can rewrite (8) as:

V (Mu) = (Mx −Mxr
)T Q̂(Mx −Mxr

) +MT
u R̂Mu, (9)

where we remove all M terms from the time dependant
summation, and define Q̂ and R̂ as the following augmented
weighting matrices, which can be computed offline:

Q̂ =

Np−1∑
k=0

P (k)TQP (k) (10)

R̂ =

Np−1∑
k=0

P (k)TRP (k). (11)

Note that this cost function has no dependence on time,
and can provide a continuous time representation which may
provide benefits for evaluating the cost function compared to
a discrete representation in the time domain.

C. Constraints

There are a variety of constraints we may wish to im-
pose on our controller, including control bounds, control or
state energy bounds, system state constraints, and terminal
constraints. A potential limitation of our method is that by
projecting the problem to the Legendre domain, it becomes
unclear how we can enforce constraints specified in the time
domain.

For control bounds, constraints are often expressed as an
inequality. For instance, bounding the control signal u(t)
below a maximum value Ū :

u(k) ≤ Ū , ∀k ∈ [0, Np − 1].

Writing this in the Legendre domain results in the following:
L∑

n=0

Pn(k)Mn,u ≤
L∑

n=o

P (k)Mn,Ū ,∀k ∈ [0, Np − 1].

However, this result is computationally equivalent to decod-
ing the Legendre representation into the time domain and
checking constraints for all points k in [0, Np − 1]. While
effective, decoding at every time step will be computationally
costly, sacrificing the efficiency gains from moving to the
Legendre domain.

A naive approach is to simply bound the coefficients
represented by M directly. However, this would lead to
bounds with different meanings in the two domains. For
instance, with a constant control bound Ū , only the first
Legendre polynomial is needed to represent a constant, so
direct bounds on the coefficients Mu give the following:

Mn,u ≤ Mn,Ū ,∀n ∈ [0, L],

where:

Mn,Ū =

{
Ū if n = 0,

0 otherwise.

This forces all higher order terms to be equal to 0, meaning
only constant control signals can be selected, which is not
consistent with the time domain constraint.

We use an alternative approach that compromises between
reliability and runtime by evaluating constraints in the time
domain, but only at specific sample points across the predic-
tion window. Consequently, we decode the Legendre repre-
sentation into the time domain at N sample points which we

can then directly evaluate against time domain constraints.
Our choice of the number of samples is driven by a trade-
off between the efficiency of optimization and satisfaction
of constraints. A larger N increases the optimization time
while providing more confidence that the constraints are
satisfied. However, we can carefully select sample points to
leverage the known properties of the Legendre polynomials,
such as examining the peaks of the polynomial components
for the trajectory extrema rather than the entire prediction
window. In practice, we find very few samples are required
to effectively enforce constraints (see Section III).

Turning now to energy bounds, the solution is more
straightforward. We consider an energy bound Ēu on the
control signal U over the window [0, Np− 1].

Np−1∑
k=0

u(k)2 ≤ Ēu.

Recall that:

u(k) =

∞∑
n=0

Pn(k)Mn,u

=

L∑
n=0

Pn(k)Mn,u +

∞∑
n=L

Pn(k)Mn,u

= û(k) + ε(k).

We can now rewrite the constraint as:
∑Np−1

k=0 û(k)2 ≤
Ēu −

∑Np−1
k=0 ε(k)2, where cross terms are equal to zero

because the basis is orthogonal. Rewriting this in vector form
gives: MT

u P̂Mu ≤ Ēu −
∑Np−1

k=0 ε(k)2, where P̂ can be
computed offline.With an appropriate choice of order, which
is also required for a good representation of control and state
trajectories, the energy of the error signal is small, meaning
that the bound will be well-respected.

Finally, we consider terminal constraints, as these are
specifically helpful for ensuring stability through Lyapunov
techniques [18]. By noticing that the Legendre polynomial’s
terminal points are all valued at one and have a positive
derivative, we can simplify the constraint to apply directly
to the sum of the trajectory coefficients:

L∑
n=0

Mn,x ≤ M̄x.

However, this sum may overestimate the true terminal value,
as signals represented by the Legendre polynomials often
contain end effects from this feature of the basis. Therefore,
we note that to ensure good performance, the value of M̄x

must be carefully selected by increasing the terminal bounds
or applying the terminal constraint slightly before the end
point.

III. RESULTS

In this section, we first demonstrate the ability to ef-
fectively predict dynamics using the Legendre basis with
a neural network while using fewer parameters than doing
the same in the time domain. We then use our proposed

Fig. 2. RMSE of the neural network model with a constant hidden layer
size for Legendre and time domain mappings. RMSE is always calculated
in the time domain.

MPC formulation alongside a ground truth time domain
implementation with and without constraints.

A. Dynamics Modelling in the Legendre Domain

We use a cart pole benchmark to conduct our simulations
with the Legendre MPC. A cart pole has four states corre-
sponding to the angular and lateral position and their velocity
components. Typically the goal of the controller is to reach
a desired angular position through a lateral forcing control
signal u. We define the state space model as:

ẋ1 = x2

ẋ2 =
u+mpl sin(x3)x

2
4 −mpg cos(x3)sin(x3)

mc +mpsin2(x3)

ẋ3 = x4

ẋ4 =
g sin(x3)− cos(x3)(

u+mpl sin(x3)x
2
4

mc+Mpsin2(x3)
)

l(43 − mpcos2(x3)
mc+mpsin2(x3)

)
,

where x1 is the lateral position of the cart and x3 is the angle
of the pole, which is the output state to be controlled.

We apply our modelling technique introduced in Section
II-A to approximate the dynamics of the cart. Specifically,
we map u,X0 to x3 trajectories over the prediction window.
In Fig. 2 we vary the prediction window length from 50 to
1000 time steps, while the hidden layer of the neural network
is fixed at a size of 128 neurons. We evaluate the root mean
square error (RMSE) between the ground truth and predicted
state trajectory decoded into the time domain at each window
length. For each trial, the model was trained over 20 epochs
with a learning rate of 10−4. The improved performance of
the Legendre basis network is evident across window sizes,
and not particularly sensitive to the choice of the order of
the representation, although high-order representations can
cause aliasing at short window lengths.

In Fig. 3, we repeat the experiment but fix the total
number of parameters to approximately 10,000 and vary
the middle layer size. Our results are similar in that using
neural networks in the Legendre domain is an effective way
of mapping from control trajectories to state trajectories

Fig. 3. RMSE of the neural network model with a constant number
of parameters for Legendre and time domain mappings. RMSE is always
calculated in the time domain.

in one inference step. Specifically, these graphs show that
the Legendre representation is consistently better for fixed
network resources.

We also observe improvements in training and inference
time. For example, for our system with 4 states and a
prediction window of 100 time steps being represented with
a 5th order Legendre representation, we can use (4) to find
the total number of trainable parameters. With a middle
layer fixed at 128, the Legendre domain neural network
contains 1925 parameters, while the corresponding time
domain neural network contains 26,340 parameters. Such a
parameter reduction provides a speed up in both training and
inference time.

B. MPC Simulation Results

Our simulations are performed in Python with the Se-
quential Least Squares Quadratic Programming (SLSQP)
algorithm from SCIPY [19], which uses a gradient descent
technique to solve the optimization with specified constraints.
We use a single shooting technique in which we sample and
evaluate the entirety of a single trajectory before updating the
optimization control trajectory. We use a simulation time of
1s with a sampling time of 1 ms, corresponding to 1000 time
steps. We use a prediction window Np of 0.1s with a 10th

order Legendre representation. Finally, we use a step size of
0.002 for the numerical approximation of the gradient in the
optimization. The remaining parameters vary by simulation.

The final model used in the following closed loop control
task was constructed with a hidden layer of 500 neurons. We
trained the model on 106 training samples uniformly sampled
across the control and state space in the Legendre domain.
The model was trained through 20 epochs with a learning
rate of 10−4.

We first show a simple simulation with no constraints
and a cost function that sets Q at 10 and R at 2 ∗ 10−5.
We set the reference as both a step function (see Fig.
4a) and a shifted sine wave (see Fig. 4b). Furthermore,
we simulate a time domain implementation as formulated
in (2) that uses standard numerical modelling methods for

Fig. 4. Legendre domain MPC applied to the cart pole problem with a)
step function, and b) shifted sine wave reference signals

TABLE I
SIMULATION RESULTS OF TIME AND LEGENDRE MPC FOR REFERENCE

TRAJECTORIES OF A SINE WAVE AND A STEP FUNCTION

Sine Wave Step Function
Time Legendre Time Legendre

Time [s] 894.50 21.96 425.62 11.67
RMSE 0.03532 0.0338 0.0428 0.0436

Speedup 40.73 36.47

predicting dynamics and with identical parameters to provide
baseline results for comparison. We summarize the results of
these simulations, including runtime and error between the
reference and state trajectory in Table I. We observe similar
tracking performance between the standard time domain and
our Legendre domain implementations of MPC. However,
our Legendre domain MPC achieves a speedup between
31-40x that of the time domain. While the time domain
implementation can achieve significantly higher tracking
performance by tuning step size and state error weighting,
this consequently also deteriorates the runtime performance.

Additionally, we observe in Fig. 4 that a steady state
error persists even with state feedback. This error is the
result of a modelling discrepancy between the neural network
from Equation (3) and the ground truth dynamics defined in
Equation (2). As a result, our model is predicting an optimal
trajectory with respect to the formulation in Equation (9).

Fig. 5. Legendre domain MPC applied to the cart pole problem with
terminal and control constraints for a) step function, and b) shifted sine
wave reference signals

TABLE II
SIMULATION RESULTS OF TIME AND LEGENDRE MPC UNDER VARIOUS

CONSTRAINTS

Sine Wave Step Function
Time Legendre Time Legendre

Time [s] 996.60 32.05 1312.35 33.42
RMSE 0.0078 0.0263 0.0271 0.0331

Speedup 31.10 39.27

However, the actual plant follows a trajectory which can
incur a steady state error relative to the reference trajectory.
This suggests that enforcing constraints may be helpful for
improving control performance.

We remove the control signal weighting on R and enforce
both control signal and terminal constraints for a step func-
tion and sine wave in Fig. 5a and b. We choose terminal
constraints of ±0.1 and control signal bounds of ±500
as to match the control bounds from the training data. In
simulation the control trajectory obeys the control bounds
for both reference trajectories. We summarize the results of
each simulation in Table II and show that the speedup of our
method persists with an improvement of performance.
C. Discussion

Our reformulation of the MPC problem with a Legendre
basis provides significant speedups compared to standard

solutions in the time domain. We tested the method with
other bases (e.g., Leguerre) and found that they were not as
performant as the Legendre basis (results not shown).

However, the formulation in the Legendre domain requires
the selection of hyperparameters that are not as familiar to
researchers. For instance, careful choice of the order of the
representation used is important, as it must balance between
efficiency and accuracy of representing the space of possible
trajectories. The best choice will be task dependent. This is
similar to choosing a discretization time step.

As well, specifying constraints in the Legendre formu-
lation is less familiar, although we have provided several
examples here. Notably, we did not demonstrate hidden state
constraints, as they provide additional challenges due to our
neural network formulation of Equation (3). Specifically,
because our model only maps the control trajectory and
initial conditions to the controlled output state, we do not
predict hidden state values. While we can infer the state
derivative directly from the state trajectory, if constraints
were to be applied to the hidden state, we must include
the corresponding state trajectory as an output of our neural
network. This would increase the complexity of the neural
network as our model would need to map the control input
and initial condition to both the output and hidden state. We
leave such considerations for future work, alongside further
experiments to verify the results presented hold in more
complex control scenarios.

IV. CONCLUSIONS
In this paper, we derive a Legendre domain implementa-

tion of MPC with a data driven dynamic model implemented
by a neural network. We use the neural network to predict
system dynamics over an entire window in a single step and
demonstrate improvement over similar trajectory mapping in
the time domain. We then reformulate the MPC problem in
the Legendre domain to enable optimization over a com-
pressed representation space. We show a runtime speedup
of 31-40x with our technique compared to an equivalent
time domain implementation with comparable tracking per-
formance and demonstrate that this advantage remains with
the introduction of various constraints.

REFERENCES

[1] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A
survey of motion planning and control techniques for self-driving
urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 1, pp. 33–55, 2016.

[2] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model
predictive control—a simple and powerful method to control power
converters,” IEEE Transactions on Industrial Electronics, vol. 56,
no. 6, pp. 1826–1838, 2009.

[3] L. D. Tufa and C. Z. Ka, “Effect of model plant mismatch on
mpc performance and mismatch threshold determination,” Procedia
Engineering, vol. 148, pp. 1008–1014, 2016. Proceeding of 4th Inter-
national Conference on Process Engineering and Advanced Materials
(ICPEAM 2016).

[4] G. Elnagar, M. Kazemi, and M. Razzaghi, “The pseudospectral
legendre method for discretizing optimal control problems,” IEEE
Transactions on Automatic Control, vol. 40, no. 10, pp. 1793–1796,
1995.

[5] G. H. Golub and J. H. Welsch, “Calculation of gauss quadrature rules,”
in Milestones in Matrix Computation, 1967.

[6] F. Fahroo and I. Ross, “Direct trajectory optimization by a chebyshev
pseudospectral method,” in Proceedings of the 2000 American Control
Conference. ACC (IEEE Cat. No.00CH36334), vol. 6, pp. 3860–3864
vol.6, 2000.

[7] F. G. Harmon, “Hybrid solution of nonlinear stochastic optimal control
problems using legendre pseudospectral and generalized polynomial
chaos algorithms,” in 2017 American Control Conference (ACC),
pp. 2642–2647, 2017.

[8] J. P. Allamaa, P. Patrinos, H. Van Der Auweraer, and T. D. Son, “Safety
envelope for orthogonal collocation methods in embedded optimal
control,” in 2023 European Control Conference (ECC), pp. 1–7, 2023.

[9] M. N. Reddy, M. Miyatake, and J. V. P. P. Dias, “Dynamic program-
ming application for pseudospectral optimal train control problem,”
in 2024 IEEE 18th International Conference on Advanced Motion
Control (AMC), pp. 1–6, 2024.

[10] G. V. Haman and A. V. Rao, “An error estimation and mesh refinement
method applied to optimal libration point orbit transfers,” in 2024
American Control Conference (ACC), pp. 2325–2330, 2024.

[11] L. Wang, “Discrete time model predictive control design using laguerre
functions,” in Proceedings of the 2001 American Control Conference.
(Cat. No.01CH37148), pp. 2430–2435 vol.3, 2001.

[12] L. Wang, “Discrete model predictive control using laguerre functions:
numerical sensitivity analysis,” in Proceedings of the 2003 American
Control Conference, 2003., vol. 2, pp. 1488–1493, 2003.

[13] J. Saeed, L. Wang, and N. Fernando, “Model predictive control of
phase shift full-bridge dc–dc converter using laguerre functions,” IEEE
Transactions on Control Systems Technology, vol. 30, no. 2, pp. 819–
826, 2022.

[14] S. Khoshkam, M. A. Khosravi, and R. FesharakiFard, “Model pre-
dictive control for a 3-dof suspended cable robot based on laguerre
functions,” in 2022 30th International Conference on Electrical Engi-
neering (ICEE), pp. 827–832, 2022.

[15] A. Voelker, Dynamical Systems in Spiking Neuromorphic Hardware.
PhD thesis, University of Waterloo, 2019.

[16] A. R. Voelker, I. Kajić, and C. Eliasmith, “Legendre memory units:
Continuous-time representation in recurrent neural networks,” in Ad-

vances in Neural Information Processing Systems, pp. 15544–15553,
2019.

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” 2019.

[18] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Stabilization of
nonlinear systems with state and control constraints using lyapunov-
based predictive control,” Systems & Control Letters, vol. 55, no. 8,
pp. 650–659, 2006. New Trends in Nonlinear Control.

[19] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Wright,
et al., “SciPy 1.0: Fundamental algorithms for scientific computing in
python,” 2020.

