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Abstract

We present a novel learning rule for learning transformations
of sophisticated neural representations in a biologically plau-
sible manner. We show that the rule, which uses only infor-
mation available locally to a synapse in a spiking network,
can learn to transmit and bind semantic pointers. Semantic
pointers have previously been used to build Spaun, which is
currently the world’s largest functional brain model (Eliasmith
et al., 2012). Two operations commonly performed by Spaun
are semantic pointer binding and transmission. It has not yet
been shown how the binding and transmission operations can
be learned. The learning rule combines a previously proposed
supervised learning rule and a novel spiking form of the BCM
unsupervised learning rule. We show that spiking BCM in-
creases sparsity of connection weights at the cost of increased
signal transmission error. We also demonstrate that the com-
bined learning rule can learn transformations as well as the
supervised rule and the offline optimization used previously.
We also demonstrate that the combined learning rule is more
robust to changes in parameters and leads to better outcomes
in higher dimensional spaces, which is critical for explaining
cognitive performance on diverse tasks.
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In this paper, we demonstrate learning of cognitively rele-
vant transformations of neural representations online and in
a biologically plausible manner. We improve upon a tech-
nique previously presented in MacNeil and Eliasmith (2011)
by combining their error-minimization learning rule with an
unsupervised learning rule, making it more biologically plau-
sible and robust.

There are three weaknesses with most previous attempts at
combining supervised and unsupervised learning in artificial
neural networks (e.g., Backpropagation [Rumelhart, Hinton,
& Williams, 1986], Self-Organizing Maps [Kohonen, 1982],
Deep Belief Networks [Hinton, Osindero, & Teh, 2006]).
These approaches 1) have explicit offline training phases
that are distinct from functional use of the network, 2) re-
quire many layers with some layers connected with super-
vised learning and others with unsupervised learning, and 3)
use non-spiking neuron models. The approach proposed here

BCM Bienenstock, Cooper, Munro learning rule; Eq (7)
hPES Homeostatic Prescribed Error Sensitivity; Eq (9)
NEF Neural Engineering Framework; see Theory

PES Prescribed Error Sensitivity; Eq (6)

SPA Semantic Pointer Architecture; see Theory

STDP Spike-timing dependent plasticity (Bi & Poo, 2001)

overcomes these limitations. Our approach 1) remains func-
tional during online learning, 2) requires only two layers con-
nected with simultaneous supervised and unsupervised learn-
ing, and 3) employs spiking neuron models to reproduce cen-
tral features of biological learning, such as spike-timing de-
pendent plasticity (STDP).

Online learning with spiking neuron models faces signifi-
cant challenges due to the temporal dynamics of spiking neu-
rons. Spike rates cannot be used directly, and must be esti-
mated with causal filters, producing a noisy estimate. When
the signal being estimated changes, there is some time lag
before the spiking activity reflects the new signal, resulting in
situations during online learning in which the inputs and de-
sired outputs are out of sync. Our approach is robust to these
sources of noise, while only depending on quantities that are
locally available to a synapse.

Other techniques doing similar types of learning in spik-
ing neural networks (e.g., SpikeProp [Bohte, Kok, & Poutre,
2002], ReSuMe [Ponulak, 2006]) can learn only simple op-
erations, such as learning to spike at a specific time. Oth-
ers (e.g., SORN [Lazar, Pipa, & Triesch, 2009], reservoir
computing approaches [Paugam-Moisy, Martinez, & Bengio,
2008]) can solve complex tasks like classification, but it is not
clear how these approaches can be applied to a general cogni-
tive system. The functions learned by our approach are com-
plex and have already been combined into a general cognitive
system called the Semantic Pointer Architecture (SPA). Pre-
viously, the SPA has been used to create Spaun, a brain model
made up of 2.5 million neurons that can do eight diverse tasks
(Eliasmith et al., 2012). Spaun accomplishes these tasks by
transmitting and manipulating semantic pointers, which are
compressed neural representations that carry surface seman-
tic content, and can be decompressed to generate deep se-
mantic content (Eliasmith, in press). Semantic pointers are
composed to represent syntactic structure using a “binding”
transformation, which compresses the information in two se-
mantic pointers into a single semantic pointer. Such repre-
sentations can be “collected” using superposition, and col-
lections can participate in further bindings to generate deep
structures. Spaun performs these transformations by using
the Neural Engineering Framework (NEF; Eliasmith & An-
derson, 2003) to directly compute static connection weights
between populations. We show that our approach can learn
to transmit, bind, and classify semantic pointers.



Theory
Cognitive functions with spiking neurons

In order to characterize cognitive functions at the level of
spiking neurons, we employ the methods of the Semantic
Pointer Architecture (SPA), which was recently used to create
the world’s largest functional brain model (Spaun; Eliasmith
et al., 2012), able to perform perceptual, motor, and cogni-
tive functions. Cognitive functions in Spaun include work-
ing memory, reinforcement learning, syntactic generalization,
and rule induction.

The SPA is implemented using the principles of the Neu-
ral Engineering Framework (NEF; Eliasmith & Anderson,
2003), which defines methods to 1) represent vectors of num-
bers through the activity of populations of spiking neurons, 2)
transform those representations through the synaptic connec-
tions between those populations, and 3) incorporate dynam-
ics through connecting populations recurrently. In the case
of learning, we exploit NEF representations in order to learn
transformations analogous to those that can be found through
the NEF’s methods.

Representing semantic pointers in spiking neurons Rep-
resentation in the NEF is similar to population coding, as pro-
posed by Georgopoulos, Schwartz, and Kettner (1986), but
extended to n-dimensional vector spaces. Each population of
neurons represents a point in an n-dimensional vector space
over time. Each neuron in that population is sensitive to a
direction in the n-dimensional space, which we call the neu-
ron’s encoder. The activity of a neuron can be expressed as

a:G[(xe~x+me], (1)

where G[-] is the nonlinear neural activation function, o is
a scaling factor (gain) associated with the neuron, e is the
neuron’s encoder, X is the vector to be encoded, and Jp;, is
the background current of the cell.

The vector (i.e., semantic pointer) that a population repre-
sents can be estimated from the recent activity of the popu-
lation. The decoded estimate, X, is the sum of the activity of
each neuron, weighted by an n-dimensional decoder.

X(r) = ) diai(r), @

where d; is the decoder and g; is the activity of neuron i.
Neural activity is interpreted as a filtered spike train; i.e.,

ai(t) = Z/’l([ — ts) = Z’e_(t_ts>/'l7i’sc‘7 3)

where h(-) is the exponential filter applied to each spike, and
s is the set of all spikes occurring before the current time ¢.

The decoders are found through a least-squares minimiza-
tion of the difference between the decoded estimate and the
actual encoded vector.

d=Y"'T TIj= / aajdx Y= / ajxdx  (4)

Transforming semantic pointers through connection
weights The encoders and decoders used to represent se-
mantic pointers also enable arbitrary transformations (i.e.,
mathematical functions) of encoded semantic pointers. If
population A encodes pointer X, and we want to connect it to
population B, encoding pointer Y, a feedforward connection
with the following connection weights transmits that seman-
tic pointer, such that Y ~ X.

(D,'j = (xjejd,-, (5)

where i indexes the presynaptic population A, and j indexes
the postsynaptic population B. Other linear transformations
are implemented by multiplying d; by a linear operator. Non-
linear transformations are implemented by solving for a new
set of decoding weights. This is done by minimizing the dif-
ference between the decoded estimate of f(x) and the actual
f(x), rather than just x, in Equation (4).

Supervised learning: PES rule

MacNeil and Eliasmith (2011) proposed a learning rule that
minimizes the error minimized in Equation (4) online.

Ad,’ = KEa,-
A(,O,'j = KO e; -Ea;, (6)

where Kk is a scalar learning rate, E is a vector representing
the error we wish to minimize, and other terms are as before.

When put in terms of connections weights (®;;), the rule
resembles backpropagation. The quantity o je; - E is analo-
gous to the local error term J in backpropagation (Rumelhart
et al., 1986); they are both a means of translating a global
error signal to a local error signal that can be used to change
an individual synaptic connection weight. The key difference
between this rule and backpropagation is that the global-to-
local mapping is done by imposing the portion of the error
vector space each neuron is sensitive to via its encoder. This
limits flexibility, but removes the dependency on global infor-
mation, making the rule biologically plausible. We will refer
to Equation (6) as the Prescribed Error Sensitivity (PES) rule.

Unsupervised learning: Spiking BCM rule

A Hebbian learning rule widely studied in the context of

the vision system is the BCM rule (Bienenstock, Cooper, &

Munro, 1982). This rule has been used to explain orientation

selectivity and ocular dominance (Bienenstock et al., 1982).

Theoretically, it has been asserted that BCM is equivalent to

triplet-based STDP learning rules (Pfister & Gerstner, 2006).
The general form is

Amij:a,-aj(aj—e), (7)

where 0 is the modification threshold. When the postsynap-
tic activity, a;, is greater than the modification threshold, the
synapse will be potentiated; when the postsynaptic activity
is less than the modification threshold, the synapse will be
depressed.



The modification threshold reflects the expectation of a
cell’s activity. It is typically calculated as the temporal av-
erage of the cell’s activity over a long time window (on the
order of hours). The intuition behind BCM is that cells driven
above their expectation must be playing an important role in
a circuit, so their afferent synapses become potentiated. Cells
driven less than normal have synapses depressed. If either of
these effects persists long enough, the modification threshold
changes to reflect the new expectation of the cell’s activity.

However, BCM as originally formulated is based on non-
spiking rate neurons. We implement BCM in biologically
plausible spiking networks by interpreting neural activity as
spikes that are filtered by a postsynaptic current curve.

A(J)ij = KOLja,-aj(aj —9)
() =¢ "B~ 1)+ (1—¢""ajr),  ®

where a, the activity of a neuron, is interpreted as a filtered
spike train, as in Equation (3), and 7 is the time constant of
the modification threshold’s exponential filter.

With our spiking BCM implementation, we aim to test the
claim that BCM is equivalent to triplet STDP rules. Func-
tionally, we hypothesize that unsupervised learning will have
a small detrimental effect on the function being computed by
a weight matrix, but will result in weight sparsification.

Simultaneous supervised and unsupervised
learning: hPES rule

The PES rule gives us the ability to minimize some provided
error signal, allowing a network to learn to compute a trans-
formation online. However, biological synapses can change
when no error signal is present. More practically, transforma-
tion learning may be easier in more sparse systems. For these
reasons, we propose a new learning rule that combines the
error-minimization abilities of the PES rule with the biolog-
ical plausibility and sparsification of the spiking BCM rule.
The rule is a weighted sum of the terms in each rule.

Ao)ij:Kocja,-(Sej-E+(l—S)aj(aj—e)% )

where 0 < § < 1 is the relative weighting of the supervised
term over the unsupervised term. Note that this rule is a gen-
eralization of the previously discussed rules; if we set S =1,
this rule is equivalent to PES, and if we set S = 0, this rule is
equivalent to spiking BCM.

We hypothesize that the unsupervised component helps
maintain homeostasis while following the error gradient de-
fined by the supervised component. Because of this, we call
the rule the homeostatic Prescribed Error Sensitivity (hPES)
rule. We hypothesize that this rule will be able to learn the
same class of transformations that the PES rule can learn, and
that this class includes operations critical to cognitive repre-
sentation, such as semantic pointer binding.

Note that a similar combination can be done with other su-
pervised learning rules that modify connection weights. A
more general form of Equation (9) would replace the local er-
ror quantity e; - E with 8, which could be determined through

any method. However, for clarity, we will use hPES to refer
to the specific form in Equation (9).

Methods

We performed three experiments in order to test our hypothe-
ses about the hPES rule. Experiments were implemented
in the Nengo simulation environment, in which we imple-
mented the PES, spiking BCM, and hPES learning rules.
All experiments use leaky integrate-and-fire neurons with de-
fault parameters. The scripts used to implement and an-
alyze these experiments are MIT licensed and available at
http://github.com/tbekolay/cogsci2013.

Experiment 1: Unsupervised learning We constructed a
network composed of two populations connected in a feed-
forward manner such that one population provides input to
the other. The network can be run in a “control” regime, in
which the weights between the two populations are solved for
with the NEF’s least-squares optimization and do not change,
or in a “learning” regime, in which the weights are the same
as the control network, but change over time according to the
hPES rule (9) with S = 0 (i.e., according to the spiking BCM
rule [8]). This experiment tests the hypothesis that the unsu-
pervised component of the hPES rule increases sparsity of the
connection weight matrix.

Experiment 2: Supervised learning We constructed a net-
work composed of two populations connected in a feedfor-
ward manner, and one population that provides an error signal
to the downstream population. The network can be run in a
“control” regime, in which the weights between the two pop-
ulations are computed to transmit a three-dimensional seman-
tic pointer, or to bind two three-dimensional semantic point-
ers into one three-dimensional pointer. The network can be
run in a “learning” regime, in which the weights between the
two populations are initially random and are modified over
time by the hPES rule. This experiment tests the hypothesis
that the hPES rule can learn to transmit and bind semantic
pointers as well as the control network and the supervised
learning rule (i.e., hPES with S = 1).

Experiment 3: Digit classification In order to investi-
gate how simultaneous supervised and unsupervised learn-
ing scales in higher dimensional situations, we constructed
a network similar to that in Experiment 2, but whose in-
put is handwritten digits.” In order to be computationally
tractable, the 28-by-28 pixel images were compressed to a 50-
dimensional semantic pointer using a sparse deep belief net-
work that consists of four feedforward Restricted Boltzmann
Machines trained with a form of contrastive divergence (full
details in Tang & Eliasmith, 2010). Those 50-dimensional
pointers were projected to an output population of 10 dimen-
sions, where each dimension represents the confidence that
the input representation should be classified into one of the 10
possible digits. The classified digit is the one corresponding

*Digits from MNIST: http://yann.lecun.com/exdb/mnist/



to the dimension with the highest activity over 30 ms when
a 50-dimensional input is presented. 60,000 labeled train-
ing examples were shown to the network while the hPES rule
was active. The network was then tested with 10,000 training
examples in which the label was not provided. The results
are compared to an analogous control network, in which the
50-dimensional pointers are classified with a cleanup mem-
ory whose connection weights are static, as in Eliasmith et al.
(2012). This experiment examines how well the hPES rule
scales to high-dimensional spaces.

Learning parameters While there are many hundreds of
parameters involved in each network simulation, the vast ma-
jority are randomly selected within a biologically plausible
range without significantly affecting performance. Some pa-
rameters, especially those affecting the learning rule, can
have a significant performance effect. These significant pa-
rameters and the values used in specific simulations are listed
in Tables 1 and 2. These parameters were optimized with
a tree of Parzens estimators approach, using the hyperopt
package (Bergstra, Yamins, & Cox, 2013).

Table 1: Parameters used for transmitting semantic pointers

Parameter  Description Value
N/D Neurons per dimension 25

K Learning rate 3.51%x1073
S Supervision ratio 0.798
kforS=1 Learning rate (PES) 2.03x 1073

Table 2: Parameters used for binding and classifying SPs

Parameter ~ Description Value

N/D Neurons per dimension 25

K Learning rate 2.38x 1073

S Supervision ratio 0.725

kforS=1 Learning rate (PES) 1.46 x 1073
Results

hPES replicates STDP results

Previously, Pfister and Gerstner (2006) have theorized that
BCM and STDP are equivalent. Our experiments support this
theory. Varying the amount of time between presynaptic and
postsynaptic spikes results in an STDP curve extremely simi-
lar to the classical Bi and Poo (2001) STDP curve (Figure 1).

However, these STDP curves do not capture the frequency
dependence of STDP. In order to capture those effects, mod-
ellers have created STDP rules that take into account triplets
and quadruplets of spikes, rather than just pre-post spike pair-
ings (Pfister & Gerstner, 2006). These rules are able to repli-
cate the frequency dependence of the STDP protocol. Fig-
ure 2 shows that, despite being a much simpler rule, the hPES
rule with S = 0 also exhibits frequency dependence.
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Figure 1: STDP curve replicated by two neurons connected
with the hPES rule, § = 0. Solid and dashed lines are best fits
of the curve ae /* for the experimental and simulated data,
respectively. Experimental data from Bi and Poo (2001).

hPES encourages sparsity while increasing signal
transmission error

When the hPES rule is applied to a network that has been opti-
mized to implement semantic pointer transmission, the hPES
rule with no supervision (S = 0) increases signal transmission
error at a rate proportional to the learning rate. Figure 3 (top)
shows the gradual decrease in accuracy over 200 seconds of
simulation with an artificially large learning rate. Figure 3
(bottom) shows that the sparsity of the weight matrix, as mea-
sured by the Gini index, increases over time. Therefore, the
hPES rule with § = 0 increases network sparsity at the cost of
an increase in signal transmission error.

hPES can learn cognitive functions

The error in the learned networks relative to the mean of 10
control networks can be seen decreasing over time in Fig-
ure 4. The parameters used for Figure 4 are listed in Tables 1
and 2. The transformations are learned quickly (approxi-
mately 25 seconds for transmission, 45 seconds for binding).
Therefore, the central binding and transmission operations of
the SPA are learnable with the hPES rule.

Critically, while hPES without error sensitivity introduces
error while increasing sparsity (see Figure 3), with error sen-
sitivity, this error can be overcome. Interestingly, binding, the
intuitively more complex operation, is more reliably learned
than transmission. This is due to how effectively the NEF
can optimize weights to perform linear transformations like
transmission in the control networks.

As a proof of concept that the hPES rule scales to high-
dimensional spaces, Table 3 shows that the learned handwrit-
ten digit classification network classifies digits more accu-
rately than Spaun’s cleanup memory (Eliasmith et al., 2012).



Frequency dependence of STDP
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Figure 2: STDP frequency dependence replicated by two neu-
rons connected with the hPES rule, S = 0. This also demon-
strates the effect of different 6 values on the frequency depen-
dence curve. Experimental data from Kirkwood et al. (1996).

This supports the suggestion that the hPES rule scales to
high-dimensional spaces. While the hPES rule with § < 1
achieved higher classification accuracy than hPES with S =1,
not enough trials were attempted to statistically confirm a
benefit to combined unsupervised and supervised learning for
classifying handwritten digits.

Table 3: Classification accuracy of handwritten digits

Classification technique Accuracy
Cleanup memory (Spaun) 94%
hPES learning, S =1 96.31%
hPES learning 98.47%

hPES is less sensitive to parameters

The parameters of the hPES rule were optimized with § fixed
at 1 for 50 simulations of binding and transmission. A sep-
arate parameter optimization that allowed S to change was
done for 50 simulations of binding and transmission.

Surprisingly, despite optimizing over an additional dimen-
sion, when S was allowed to change, error rates were lower
during the optimization process for the binding network but
not the transmission network. In both cases, the interquartile
range of the hPES rule’s performance when S was allowed
to change is lower. Figure 5 summarizes the performance
of all 200 networks generated for parameter optimization.
While in all four cases parameters were found that achieve
error rates close to the control networks, hPES was more ro-
bust to changes in parameters when S was allowed to change.
This suggests that unsupervised learning may be beneficial in
high-dimensional nonlinear situations.

Unsupervised learning in control network
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Figure 3: Data gathered from 50 trials of Experiment 1; filled
region represents a bootstrapped 95% confidence interval.
(Top) Accuracy of signal transmission. Accuracy is propor-
tional to negative mean squared error, scaled such that accu-
racy of 1.0 denotes a signal identical to that transmitted by
the NEF optimal weights with no learning, and accuracy of
0.0 represents no signal transmission (i.e., the error is equal
to the signal). (Bottom) Sparsity of the connection weight
matrix over time, as measured by the Gini index. This demon-
strates the expected tradeoff between sparsity and accuracy.

Discussion

In this paper, we have presented a novel learning rule for
learning cognitively relevant transformations of neural repre-
sentations in a biologically plausible manner. We have shown
that the unsupervised component of the rule increases sparsity
of connection weights at the cost of increased signal transmis-
sion error. We have also shown that the combined learning
rule, hPES, can learn transformations as well as the super-
vised rule and the offline optimization done in the Neural En-
gineering Framework. We have demonstrated that the com-
bined learning rule is more robust to changes in parameters
when learning nonlinear transformations.

However, it is still the case that the parameters of the learn-
ing rule were optimized for each transformation learned. This
is a challenge shared by all learning rules, but in the context
of biologically plausible simulations, there is the additional
question of the biological correlate of these parameters. It
could be the case that these parameters are a result of the
structure of the neuron, and therefore act as a fixed prop-
erty of the neuron. However, it could also be the case that
these parameters are related to the activity of the network,
and are modified by each neuron’s activity, or by the activity
of some external performance monitoring signal. Examining
these possibilities is the subject of future work.
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Figure 4: Error of learning networks over time compared to
the mean error of 10 control networks. Each type of network
is generated and simulated 15 times. For the binding net-
work, every 4 seconds, the learning rule is disabled and error
is accumulated over 5 seconds. For the transmission network,
every 0.5 seconds, the learning rule is disabled, and error is
accumulated over 2 seconds. Filled regions are bootstrapped
95% confidence intervals. Time is simulated time, not com-
putation time.
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