
Learning in large-scale
spiking neural networks

by

Trevor Bekolay

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2011

c© Trevor Bekolay 2011

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Learning is central to the exploration of intelligence. Psychology and machine learning
provide high-level explanations of how rational agents learn. Neuroscience provides low-
level descriptions of how the brain changes as a result of learning. This thesis attempts
to bridge the gap between these two levels of description by solving problems using ma-
chine learning ideas, implemented in biologically plausible spiking neural networks with
experimentally supported learning rules.

We present three novel neural models that contribute to the understanding of how the
brain might solve the three main problems posed by machine learning: supervised learning,
in which the rational agent has a fine-grained feedback signal, reinforcement learning, in
which the agent gets sparse feedback, and unsupervised learning, in which the agents has
no explicit environmental feedback.

In supervised learning, we argue that previous models of supervised learning in spiking
neural networks solve a problem that is less general than the supervised learning problem
posed by machine learning. We use an existing learning rule to solve the general supervised
learning problem with a spiking neural network. We show that the learning rule can be
mapped onto the well-known backpropagation rule used in artificial neural networks.

In reinforcement learning, we augment an existing model of the basal ganglia to im-
plement a simple actor-critic model that has a direct mapping to brain areas. The model
is used to recreate behavioural and neural results from an experimental study of rats per-
forming a simple reinforcement learning task.

In unsupervised learning, we show that the BCM rule, a common learning rule used in
unsupervised learning with rate-based neurons, can be adapted to a spiking neural network.
We recreate the effects of STDP, a learning rule with strict time dependencies, using BCM,
which does not explicitly remember the times of previous spikes. The simulations suggest
that BCM is a more general rule than STDP.

Finally, we propose a novel learning rule that can be used in all three of these simu-
lations. The existence of such a rule suggests that the three types of learning examined
separately in machine learning may not be implemented with separate processes in the
brain.

iii

Acknowledgements

I would like to thank Xuan Choo, Travis DeWolf, Bruce Bobier, Daniel Rasmussen,
Terry Stewart, and Charlie Tang for their help getting acquainted with the University of
Waterloo, the Center for Theoretical Neuroscience, and the NEF. Extra thanks to Terry
and Xuan for continuing help with NEF models and Nengo programming, and for providing
some of the figures in this thesis.

Some comments on early drafts were provided by Lucy Spardy and Travis DeWolf, to
whom I am grateful. Gratitude also goes to my readers, Matthijs van der Meer and Jeff
Orchard, for their comments and fruitful discussion.

Most of all, I am truly indebted to my supervisor Chris Eliasmith, whose insights are
responsible for any good ideas that may have sneaked into this thesis.

iv

Dedication

For my parents, Cathy and David, who would be proud of me if my only publication was
on their refrigerator.

v

Table of Contents

List of Figures xi

1 Introduction 1

1.1 Thesis organization . 2

1.2 Thesis goals . 3

2 Synaptic plasticity 4

2.1 Hebbian learning . 6

2.1.1 Long-term potentiation (LTP) . 8

2.1.2 Long-term depression (LTD) . 11

2.1.3 Spike-timing dependent plasticity (STDP) 12

2.2 Non-Hebbian plasticity . 16

2.3 Dopamine modulated plasticity . 17

2.4 Explaining behaviour with synaptic strengths 18

3 Large-scale neural modelling 20

3.1 Single-neuron models . 20

3.1.1 Leaky integrate-and-fire model . 21

3.2 The Neural Engineering Framework . 24

3.2.1 Representation . 24

3.2.2 Transformation . 32

vi

3.3 Plasticity in the NEF . 37

3.3.1 Error minimization rule . 37

4 Supervised learning 40

4.1 Supervised learning in traditional artificial neural networks 41

4.1.1 Backpropagation . 41

4.2 Supervised learning in spiking neural networks 44

4.2.1 Temporal-coding based models . 46

4.2.2 Biologically plausible backpropagation 48

4.3 Supervised learning with the NEF . 49

4.3.1 Theoretical argument . 49

4.3.2 Biological plausibility . 52

4.3.3 Simulation results . 54

4.3.4 Conclusion . 61

5 Reinforcement learning 62

5.1 Reinforcement learning in traditional artificial neural networks 63

5.1.1 The agent-environment interface . 63

5.1.2 Markov decision processes . 64

5.1.3 Value functions . 65

5.1.4 Temporal-difference learning . 67

5.1.5 Using artificial neural networks . 68

5.1.6 Comparison to supervised learning 69

5.2 Reinforcement learning in spiking neural networks 70

5.2.1 Dopamine may encode TD-like reward prediction error 70

5.2.2 Previous neural models . 73

5.3 Reinforcement learning in the NEF . 79

5.3.1 Action selection . 79

vii

5.3.2 Critiquing the actor . 81

5.3.3 Simulation results . 81

5.3.4 Challenges for the current model 84

5.3.5 Conclusions . 88

6 Unsupervised learning 89

6.1 Unsupervised learning in traditional artificial neural networks 90

6.2 Unsupervised learning in spiking neural networks 90

6.2.1 Artola, Bröcher, Singer (ABS) rule 91

6.2.2 Bienenstock, Cooper, Munro (BCM) rule 92

6.2.3 Spike-timing dependent plasticity rules 96

6.2.4 Relationship between BCM and STDP rules 98

6.2.5 General unsupervised learning . 99

6.3 Unsupervised learning in the NEF . 99

6.3.1 Simulation results . 100

6.3.2 A unifying learning rule . 105

7 Discussion and conclusions 107

7.1 Large-scale unsupervised learning . 107

7.2 Model-based reinforcement learning . 108

7.3 Supervised error signals . 108

7.3.1 Solving the supervised spike-time learning problem 109

7.4 Computational complexity . 109

7.4.1 Decoder-level learning . 110

References 130

viii

List of Figures

2.1 Illustration of the main parts of a neuron. 4

2.2 Illustration of the main parts of a synapse. 5

2.3 First experimental evidence of LTP. 9

2.4 Illustration depicting homosynaptic and associative LTP. 10

2.5 Illustration depicting heterosynaptic and homosynaptic LTD. 11

2.6 Evidence that temporal order of pre- and postsynaptic stimulation affects
LTP/LTD induction. 13

2.7 The classical STDP curve. 14

2.8 Five different STDP curves, showing the diversity of STDP in different
synapses. Recreated from [1]. 15

2.9 Frequency dependence of the STDP protocol. 17

3.1 Illustration of the bilipid membrane of a neuron. Labelled items refer to
elements of the circuit diagram, figure 3.2. Recreated from [58]. 22

3.2 Circuit diagram that corresponds to the leaky integrate-and-fire (LIF) neu-
ron. Recreated from [58]. 22

3.3 Membrane voltage of a LIF neuron with constant input J , from [42]. 23

3.4 Example tuning curves. (Left) Experimentally determined tuning curves,
from [137]. (Right) Similar tuning curves for LIF neurons, from [42]. 28

3.5 Illustration showing how the tuning curves of a population of LIF neurons
can be linearly combined to estimate an input signal, x. From [42]. 30

3.6 Decoding a time-varying scalar signal using a filtered spike train. 32

ix

3.7 Network structure for computing a non-linear transformation of values en-
coded in two separate populations. 35

3.8 Illustration showing how the tuning curves of a population of LIF neu-
rons can be linearly combined to estimate a nonlinear function, in this case
sin(2πx). From [42]. 36

4.1 The supervised learning problem. 41

4.2 Multi-layer perceptron architecture. 42

4.3 Sigmoid curves. 43

4.4 Architecture of a model of the cerebellum that posits that the cerebellum is
an adaptive filter. From [52]. 45

4.5 The supervised spike-time learning problem. 45

4.6 Summary of the ReSuMe algorithm. 47

4.7 Network structure for NEF learning networks. 51

4.8 Simulation results of NEF learning networks. 59

4.9 Relationship between network dimensionality and time to learn. 60

5.1 The basic agent-environment interface. Recreated from [198]. 63

5.2 The reinforcement learning problem. 66

5.3 Evidence that dopaminergic neurons encode temporal-difference reward pre-
diction error. 72

5.4 The three primary dopaminergic pathways in the brain. Note the strong
connections to striatum and frontal cortex. Recreated from [28]. 73

5.5 Results from Izhikevich’s reinforcement learning network, showing increased
activity to the rewarded stimulus. 75

5.6 Summary of how Izhikevich’s learning rule works. 76

5.7 Circuit diagram summarizing Potjans et al.’s spiking actor-critic model [162]. 77

5.8 Activity of the spiking-critic network, showing how the state value function
is updated. 78

5.9 Stewart et al.’s basal ganglia model. 80

5.10 Modified basal ganglia model that does dynamic action selection. 82

x

5.11 The 2-armed bandit task. 83

5.12 Behavioural results for the real and simulated 2-arm bandit task. 84

5.13 Spiking results for the real and simulated 2-arm bandit task. 85

5.14 Spike trains from figure 5.13 filtered with Gaussian curves. 86

6.1 The unsupervised learning problem. 90

6.2 The simple version of the ABS rule. 91

6.3 More complicated versions of the ABS rule. 92

6.4 Postsynaptic activity filters used in two BCM rules. 94

6.5 Experimental evidence supporting the existence of a modifiable threshold,
as posited by BCM theory. 95

6.6 Simulated STDP curves using the two-neuron network with a BCM learning
rule. Surrounding areas represent bootstrapped 95% confidence intervals. . 102

6.7 With high frequencies, the network is insensitive to precise timing effects. . 103

6.8 Frequency dependence of the two-neuron BCM network. 104

xi

Chapter 1

Introduction

Learning is central to the exploration of intelligence. Many biological and artificial systems
begin with a small set of abilities, and as time goes on, develop new abilities and refine
existing abilities through learning and other forms of adaptation.

Psychology and machine learning provide high-level explanations of how systems learn.
Neuroscience provides low-level descriptions of how the brain changes as a result of learning.
The overarching goal of this thesis is to bridge the gap between high-level explanations of
system-level learning, and low-level descriptions of the biological consequences of learning.

At the intersection of the two levels of description is the field of theoretical neuroscience.
From this field have come dozens of spiking neuron models: flexible computational devices
mimicking the biological neurons that make up brains. As computational power has in-
creased, the ability to connect very large numbers of spiking neurons together in computer
models has opened the way for models that can explain behaviour while still permitting
analysis at the level of spikes.

The spiking level is essential for theoretical models to maintain biological plausibility.
By modelling neural systems in a biologically plausible manner, theoreticians hope to make
predictions that can be explored through neuroscientific and behavioural experiments.

This thesis begins by exploring how neurobiological systems change as a result of learn-
ing. It then gives background on large-scale spiking neural networks, which is the primary
tool used to investigate specific learning problems faced by systems attempting to act
rationally. We use this tool under neurobiological constraints to model supervised, re-
inforcement, and unsupervised learning, the three main learning problems identified by
machine learning.

1

1.1 Thesis organization

Chapter 2, synaptic plasticity, provides some experimental neuroscientific background
on learning. Learning in the brain is theorized to be implemented by changes in the
strength of connection between neurons. The connection between two neurons is called
a synapse, and the ability for its strength to change over time is called plasticity. This
chapter defines these terms further through a brief introduction to neuroscience, and then
reviews the primary experimental protocols that can induce synaptic plasticity.

Chapter 3, large-scale neural modelling, provides the theoretical neuroscientific
background that is applied to the problem of learning. Spiking neuron models are pre-
sented, focusing on the phenomenological leaky integrate-and-fire model. A method of
combining large numbers of single neuron models called the Neural Engineering Frame-
work (NEF) is reviewed, as it is necessary to understand the models presented in subsequent
chapters.

Chapter 4, supervised learning, poses the supervised learning problem, in which
a system learns by explicitly being taught the solution. As will be the model for the next
two chapters, the supervised learning problem is explicitly stated, and previous models at-
tempting to solve the problem are discussed. Models from machine learning and theoretical
neuroscience are presented. We then propose our own solution to the general supervised
learning problem through a model created with the NEF.

Chapter 5, reinforcement learning, follows chapter 4’s template, but examines the
reinforcement learning problem, in which a system learns through sparse feedback, but
not explicit teaching. Previous models that solve the reinforcement learning problem are
summarized. In this chapter, we also briefly present relevant psychological and neurosci-
entific literature. We propose a model that solves a portion of the reinforcement learning
problem, and discuss possible solutions to portions of the problem left unsolved in this
thesis.

Chapter 6, unsupervised learning, investigates the final machine learning problem,
in which a system learns without any external feedback or teaching. While previous models
are discussed, the bulk of this chapter is dedicated to mathematical descriptions of the
low-level plasticity experiments discussed in chapter 2. Implementations of some of these
descriptions give insight into how the brain learns in the absence of feedback.

Finally, chapter 7, discussion and conclusions, concludes the thesis and revisits
the goals that immediately follow this section. Future research directions based on this
work are reviewed.

2

1.2 Thesis goals

The motivation of this thesis is to bridge the gap between high-level descriptions of learning
and low-level neural realizations of learning. A complete story for how low-level connection
strength changes bring about all of human behaviour is overly ambitious, so we make the
following the goals of this thesis.

• To provide a comprehensive review of synaptic plasticity literature, identifying learn-
ing rules that evidence suggests are implemented in the brain.

• To show that supervised learning has not been adequately solved by previous biolog-
ically plausible models.

• To solve the supervised learning problem with a biologically plausible model.

• To recreate behavioural and neural results from a reinforcement learning task with a
single biologically plausible model.

• To show that an unsupervised learning rule without strict time-dependence built in
(the BCM rule) can exhibit the temporal effects of a time-dependent rule (the STDP
rule).

3

Chapter 2

Synaptic plasticity

In order to understand the constraints involved in brain modelling, we begin this chapter
with an introduction to the relevant neurobiology. This introduction is a simplification of
the true complexity of neurobiology, but serves as a good introduction to the phenomeno-
logical level of the models presented in this thesis.

Dendrites

Cell Body (Soma)

Axon

Axon
Terminal

Figure 2.1: Illustration of the main parts of a neuron.

The brain is primarily made up of neurons. In general, a neuron can be thought of as a
very simple computational device; it takes in input from other neurons through dendrites,

4

performs a non-linear transformation on the weighted sum of the dendritic input, and
outputs electrical signals through its axon. Those electrical signals are in the form of
action potentials, or spikes, which are short bursts of current flowing through the axon.
Axons branch off, and connect with the dendrites of many other neurons (see figure 2.1).
The connection point between the axon terminal of one neuron and the dendrite of another
neuron is called a synapse (see figure 2.2). We refer to the neuron whose output is being
transmitted through its axon as the presynaptic neuron, and the neuron receiving input
through its dendrite as the postsynaptic neuron.

Neurotransmitter

Neurotransmitter

re-uptake pump

Neurotransmitter

receptors

Voltage-gated

calcium

channel

Axon terminal

(presynaptic)

Synaptic cleft

Dendritic spine

(postsynaptic)

Figure 2.2: Illustration of the main parts of a synapse.

The vast majority of synapses in the brain are chemical synapses, meaning that in-
formation is transmitted by tiny vesicles of molecules called neurotransmitters that are
emitted from the presynaptic neuron, travel across the synaptic cleft, and bind to recep-
tors in the postsynaptic neuron designed to accept a specific type of neurotransmitter.
When the presynaptic neuron spikes, vesicles of neurotransmitter are released, and when
the postsynaptic neuron’s receptors receive neurotransmitter, a certain amount of current
is imparted in the postsynaptic cell.

Synapses are highly heterogeneous. Presynaptically and postsynaptically, the number
and type of neurotransmitters and receptors vary by neuron type, and by specific cells

5

within each neuron type. Because of this, a spike in a presynaptic neuron can impart
almost no current in the postsynaptic neuron, or it can impart an amount of current
sufficient to make the postsynaptic cell spike immediately. The amount of current imparted
to the postsynaptic cell when a presynaptic cell spikes is known as the strength of that
synapse. Another interpretation of synaptic strength is the amount of influence that the
presynaptic neuron has on the postsynaptic neuron. Yet another interpretation is that
synaptic strength represents the efficiency through which the synapse carries information
from the presynaptic neuron to the postsynaptic neuron.

Learning in the brain is thought to lie primarily in synaptic strength changes over time.
The ability for the brain to change synaptic strengths over time is known as synaptic plas-
ticity. Experimental neuroscientists interested in learning investigate the exact conditions
under which synaptic strength changes occur. There are a number of leading theories,
some of which have been expressed mathematically in the form of learning rules.

The remainder of this chapter examines the history of the exploration of synaptic
strength changes in the brain, paying particular attention to theories that are still widely
accepted. Theoretical models based on these experimental explorations follow in subse-
quent chapters.

2.1 Hebbian learning

One of the earliest hypotheses on when synaptic strength changes might occur came from
Donald Hebb, who stated in his The Organization of Behavior [84],

“When an axon of cell A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells firing
B, is increased.”

The simplest mathematical way of phrasing this notion is

∆ωij = κaiaj, (2.1)

where

• ωij is the synaptic strength of the synapse between the axon of presynaptic neuron i
and the dendrite of postsynaptic neuron j,

6

• ∆ωij is the change in synaptic strength ωij,

• κ is the learning rate,

• i indexes a particular presynaptic neuron (which is usually part of a population),

• j indexes a particular postsynaptic neuron,

• ai is the amount of activity in the presynaptic neuron i, and

• aj is the amount of activity in the postsynaptic neuron j.

“Activity” can be interpreted many different ways. The most common measure of
activity is the firing rate of a neuron. However, membrane voltage, spike times, the amount
of current flowing into the cell, filtered spike trains, and other measures can be interpreted
as activity. Unless otherwise specified, activity is taken to be the firing rate of a neuron.

This rule forms the basis of most of what is studied in biologically plausible plasticity
research to this day; most learning rules in some way use the presynaptic and postsynap-
tic activity along with other local variables, making them Hebbian (though non-Hebbian
learning rules also exist; see section 2.2).

An important observation about this rule is that it is unstable. Stability, when dis-
cussing learning rules, means that the learning rule will result in a constant distribution of
synaptic strengths for synapses attached to a cell. If the synapses are only potentiated –
strengthened – then all of the synapses will reach some maximum strength (or in mathe-
matical models, go to infinity). If the synapses are only depressed – weakened – then all of
the synapses will reach some minimum strength or get pruned (or in some mathematical
models, go to negative infinity). The original Hebbian learning rule, equation (2.1), can
only result in potentiation, so it is unstable.

One way to address the instability of learning rule (2.1) is to use the derivatives of the
pre- and postsynaptic activities (see [84, 197, 111, 108]). This is referred to as differential
Hebbian learning, and can be expressed as

∆ωij = κȧiȧj. (2.2)

This rule, while clearly different from rule (2.1), still holds to Hebb’s original idea. Essen-
tially, the rule makes the additional assumption that there is some kind of normal activity
between these two neurons – some average state that is uninteresting from a learning
perspective. Any deviations from that average state are reinforced in a Hebbian way, po-
tentiating synapses between neurons that become more excited, and depressing synapses

7

between neurons that become less excited. However, Kosko’s mathematical analysis of
the rule showed that, despite this rule allowing for negative weight changes (unlike typical
Hebbian learning), weights will generally increase over time, so this form of differential
Hebbian learning is also unstable [111].

A final permutation of this idea is a type of differential Hebbian learning that considers
the product of presynaptic activity and the derivative of postsynaptic activity [109].

∆ωij = κaiȧj (2.3)

This expression of Hebb’s original postulate maintains the original idea, but has been
shown to be stable, and has analogies to spike-timing dependent plasticity (see [132, 170,
173, 174] and section 2.1.3) and temporal-difference learning (see [109] and section 5.1.4).

An important observation that recurs throughout this thesis is that in Hebbian learn-
ing (both differential and non-differential), the only variables affecting the modulation of
synaptic strength are those that are locally available to the synapse. While this seems
straightforward from a biological perspective, it presents many difficulties for learning at
higher levels. This constraint will be referred to as the locality constraint.

2.1.1 Long-term potentiation (LTP)

Despite strong arguments for Hebbian learning and successful applications to artificial
neural networks, experimental evidence for this relationship did not come until 1966 when
long-term potentiation (LTP) was discovered in the rabbit hippocampus by Terje Lømo
and published by Bliss and Lømo in 1973 [125, 2, 26]. In their experiment, they strongly
stimulated the perforant pathway of the hippocampus for several seconds and examined
how a population of downstream neurons responded before and after the strong stimu-
lation. Downstream neuron response was measured by the amplitude of the excitatory
postsynaptic potential (EPSP) of the population, which correlates with the amount of cur-
rent that is imparted into postsynaptic neurons by presynaptic neurons. An increase in
EPSP means that each presynaptic spike is imparting more current to the postsynaptic
neuron, or in other words, has more influence on whether the postsynaptic neuron fires.

In their experiments, they found that short bursts of very strong stimulation (referred
to as tetanic stimulation) resulted in an increase in EPSP that persisted for long periods
of time. The increase was measured over the period of several hours, though it is possible
the changes persisted longer than that. Figure 2.3 from [26] summarizes their results.

8

0 1 2 3 4 5 6

Time (hours)
0

100

200

300

%
ch

an
ge

in
am

pl
it

ud
e

of
po

pu
la

ti
on

E
P

SP

Figure 2.3: First evidence of LTP, from [26]. Black dots represent the EPSP of neurons
in the stimulated pathway, white dots represent the EPSP in the unstimulated pathway.
Tetanic stimulation was delivered at each arrow.

This initial result has been replicated many times in many different animals and in
different areas of those animals’ brains (for reviews see [27] and [131]). Improvements in
neural recording devices have illuminated many features of LTP. One of the most important
observations, seen shortly after the Bliss and Lømo’s initial paper describing LTP, is that
the amount of potentiation increases if more presynaptic cells are taking part in stimulating
the postsynaptic cell, suggesting that these inputs cooperate [117, 120, 139]. This is known
as associative LTP (see figure 2.4).

Many predicted that associative LTP could be explained by additional postsynaptic
activity as a result of increased input. This was confirmed, and it was shown that the high-
frequency tetanic stimulation that was used in early LTP experiments was not necessary,
and instead LTP could be induced by pairing presynaptic spikes with postsynaptic spikes
[76, 77, 101].

These findings contrasted earlier experiments that claimed that postsynaptic activity
was not necessary for the induction of LTP [117]; further experiments revealed that it was
not the postsynaptic spikes that were necessary, but some consequence of the postsynaptic
spike, specifically an influx of calcium [78, 101]. Another known consequence of an action
potential in some neuron types is propagation of the action potential back into the dendritic
tree, a phenomenon known as a back-propagating action potential [61, 83, 164, 193, 202].

9

+

+

A) Homosynaptic LTP B) Associative LTP

Figure 2.4: Cartoon depiction of the two classical methods of inducing LTP, recreated
from [121]. Vertical lines do not depict spikes, but pulses applied to the presynaptic
cell. + marks show which synapse is potentiated. (A) Homosynaptic (synapse-specific)
LTP is induced by high-frequency tetanic stimulus (usually 100Hz for 1 second) of the
presynaptic cell. (B) Associative LTP is induced by pairing a tetanic stimulus in one or
more presynaptic cells with a low-frequency (usually 5Hz) stimulus in the presynaptic cell
whose synapse is to be potentiated. Note that typically the synapses stimulated with the
tetanic stimulation will also be potentiated.

A back-propagating action potential allows calcium to enter the cell and the dendrites
through NMDA receptors and other sources [145], a process which is now widely believed
to be necessary for LTP [45, 113, 129, 217], though recent experiments have suggested that
local synaptic depolarization and dendritic spikes may be much more influential on LTP
than back-propagating action potentials [33, 82].

Despite decades of LTP research and thousands of publications, there are still many
open questions in the field. The varying and sometimes contradictory findings suggest that
there are a number of mechanisms that result in the long-term potentiation of excitatory
synapses [131], making it difficult to build general models that can be applied to the various
parts of the brain where LTP has been shown to take place.

Regardless, many of the mechanisms that are termed LTP provide experimental cre-
dence behind the main idea of Hebb’s postulate, that a neuron that fires at the same time
as a neuron it projects to will have its connection to that neuron strengthened. However, it
faces the same problem as the original Hebbian learning rule (2.1): it can only potentiate.
Natural decay of synapses over several days can theoretically enable networks to arrive at

10

any synaptic configuration through LTP alone [41]; however, the existence of a depression
mechanism would make learning much faster and easier [121].

2.1.2 Long-term depression (LTD)

Long-term depression (LTD) is the depression mechanism that works opposite LTP. While
LTP causes increases in synaptic strength that persist over days and months, LTD causes
decreases in synaptic strength that persist on the same time scale. Strangely, the mecha-
nisms that give rise to certain forms of LTD appear to be very similar to those of LTP.

The first evidence of LTD was discovered almost a decade after LTP, and published
by Lynch et al. in 1977 [57, 126]. They found that after giving a tetanic stimulation
to some neurons – which induced LTP – other afferents to the same neurons had weaker
EPSPs, suggesting that their synaptic strength had decreased. This type of LTD, termed
heterosynaptic LTD (see figure 2.5), is interesting because it does not require presynaptic
activity in the synapse that is being depressed; it, therefore, is not predicted by the classic
Hebbian formulations (see section 2.1), and is sometimes referred to as ‘anti-Hebbian’ [136].

--

--

A) Heterosynaptic LTD B) Homosynaptic LTD

Figure 2.5: Cartoon depiction of the two classical methods of inducing LTD, recreated
from [121]. Vertical lines do not depict spikes, but pulses applied to the presynaptic
cell. - marks show which synapse is depressed. (A) Heterosynaptic LTD is induced with
tetanic stimulation in some presynaptic cells; those that are not stimulated may become
depressed. Note that the stimulated cells often have their synapses potentiated. (B)
Homosynaptic LTD is induced with long period of low-frequency stimulation (typically 1
Hz for 10 minutes) of the presynaptic cell.

11

Evidence for depression that follows the Hebbian formulation – that is, depends on
presynaptic activity – was first seen by Dunwiddie and Lynch in 1978 [57], but it was not
well understood until two convincing experiments in 1992 [56, 144]. It was found that LTD
could be induced by periods of low-frequency (0.5 to 5Hz) stimulation of a presynaptic cell.
This type of LTD is known as homosynaptic LTD (i.e. synapse-specific LTD; see figure
2.5). Despite the fact that it does the opposite of LTP, the induction mechanism is the
same: paired presynaptic and postsynaptic firing, only with lower frequency.

Hypothesizing that the mechanisms underlying both types of plasticity may also be the
same, experiments were performed that blocked calcium influx through NMDA receptors
[56, 144], and it was shown that LTD was blocked, meaning that calcium influx is necessary
for the induction of LTD. Not only is LTD thought to be a calcium dependent process, it
has also been shown that back-propagating action potentials and dendritic spiking have a
strong influence on the induction of LTD, like LTP [44].

Other forms of LTD exist in many different areas of the brain (the cerebellum, for
example [90, 121]; see [136] for a review) but we focus on the well characterized calcium-
dependent forms of LTP and LTD in this thesis. While we do not model these processes at
a biophysical level (i.e., with ion flux equations), the mechanisms that produce these types
of synaptic plasticity are useful to keep in mind when creating models that reproduce, at
a phenomenological level, synaptic plasticity in the biological brain.

2.1.3 Spike-timing dependent plasticity (STDP)

Recall that Hebb’s original postulate predicts potentiation when a cell “repeatedly or per-
sistently takes part in firing” another cell. This implies that there should be high correlation
between the spike times of pre- and postsynaptic neurons, and raises the question of how
highly correlated the spike times need to be. More generally, the experimental question to
explore is how much influence the time difference between a pre- and postsynaptic spike
has on the amount of synaptic potentiation or depression.

The first experiment examining the temporal requirements of synaptic strength changes
was done by Levy and Steward in 1983 in the hippocampus [119]. Despite technological
limitations, they were able to show that LTP was induced most strongly when pre- and
postsynaptic stimulation occur at the same time, LTP was induced weakly when presynap-
tic stimulation precedes postsynaptic, and LTD can be induced if postsynaptic stimulation
precedes presynaptic stimulation (see figure 2.6). This finding was surprising, and not
predicted by Hebb’s original postulate.

12

Conditioning Contingencies Relative Response Amplitude

t

Pre
Post

Pre > Post
20ms

Pre > Post
8ms

Pre > Post
1ms

Post > Pre
20ms

Post > Pre
8ms

Post > Pre
1ms

Pre = Post

Pre
Post

Pre
Post

Pre
Post

Pre
Post

Pre
Post

Pre
Post

100% 125% 150%

Figure 2.6: Evidence that the temporal order of pre- and postsynaptic stimulation affects
the induction of LTP/LTD, recreated from [119]. (Left) The stimulation protocol. Each
vertical line represents a pulse of current. (Right) The ratio of the amplitude of the EPSP
before the stimulation protocol and 20 minutes after the stimulation protocol. Note that
depression happens when postsynaptic neurons are stimulated before presynaptic neurons,
potentiation when presynaptic neurons are stimulated before postsynaptic neurons, and
strong potentiation occurs when they are simultaneously stimulated.

Markram et al. were the first to describe the temporal relationship that is now referred
to as spike-timing dependent plasticty (STDP) [132, 183]: when a presynaptic action
potential is followed by a postsynaptic action potential there is potentiation in the synapse
(pre-post pairing), and when a postsynaptic action potential is followed by a presynaptic
action potential there is depression in the synapse (post-pre pairing). Markram found this
effect in neocortex when the action potentials were offset by 10 ms in either direction.
Bell et al. showed the same effect in the cerebellum, and showed that a shorter offset
between the spikes produced stronger potentiation and depression [17]. Bi and Poo further
explored the relationship between the length of the offset and the amount of synaptic
strength change, producing figure 2.7, the now stereotypical “STDP curve” [21], which

13

demonstrates that the critical window for large strength changes is around 20 ms, and the
sign of the strength change depends on which spike is first.

Pre

Post

wiji

j

t i

pre

t j

post

wij

wij

t j

post
t i

pre-

Pre-post Post-pre
-40 0 40

0

-0.5

1

Figure 2.7: The STDP curve, discovered and first plotted in [21]. Each dot represents the
relative change in synaptic strength after 60 pre-post or post-pre spike pairings. Recreated
from [183].

Many experiments followed Bi and Poo’s, and found that a similar STDP curve could
be found in the synapses of several other systems (e.g. frog retino-tectal synapses [222]).
However, other experiments discovered STDP curves with wildly different shapes, including
some that only saw depression regardless of temporal order (see [1, 22, 38, 185] for reviews,
and figure 2.8). This highlights the heterogeneity of synapses, and lends credence to the
idea that timing matters; different STDP curves may come as a result of the biophysical
properties of the cells or synapses, which may be a reflection of the functions performed
by those cells. To complicate matters further, recent experiments have shown that the
synapse’s spatial location on a dendritic tree can have a profound effect on the STDP
curve, to the point that “typical” STDP is seen in synapses close (proximal) to the soma
of the cell, and a flipped STDP curve is seen in synapses far (distal) from the soma of the
cell in layer-5 neurons in the neocortex of rats [118].

It should be unsurprising that STDP, like LTP and LTD, is critically dependent on

14

tpre– tpost (ms)

0 50–50
tpre– tpost (ms)

0 50–50

Neocortex-layer 5
Xenopus tectum
hippocampus

Neocortex-layer 2/3
hippocampus

ELL of electric fish

GABA-ergic neurons
in hippocampal culture

Neocortex-layer 4
spiny stellates

Figure 2.8: Five different STDP curves, showing the diversity of STDP in different
synapses. Recreated from [1].

calcium levels in the synapse [21, 123, 147, 148, 184]; the stimulus protocols that produce
LTP, discussed previously, could be explained with STDP, as potentiation is strongest
when presynaptic and postsynaptic spiking occurs at the same time. Blocking calcium
influx through NMDA receptors blocks this kind of LTP [78], and the introduction of
a calcium chelator around the synapse blocks both LTP and LTD when using STDP
protocols [67, 184, 185]. As discussed in section 2.1.1, backpropagating action potentials
affect the calcium levels in the dendritic tree, and as such can contribute to LTP and LTD
[87], though more recent evidence suggests that it is local dendritic spikes and other local
dendritic activity that is critical for inducing synaptic strength changes when using STDP
protocols [71, 122].

This begs the question of whether STDP is a separate plasticity mechanism in the
brain, or just an experimental protocol that can be used to induce LTP and LTD. There
is currently no definitive experiment that can answer that question. The similarity in
the biophysical mechanisms suggests that they are two methods of explaining the same

15

phenomenon; further, the cooperativity requirement of LTP, which is not predicted by the
classical STDP curve, is still present when using STDP protocols: many presynaptic cells
must be coactive before LTP is induced [186].

One feature in favour of further study into STDP as a plasticity mechanism is that it
is more biologically plausible than traditional LTP/LTD mechanisms, in the sense that it
does not require the unrealistic stimulus protocols that earlier LTP/LTD studies utilized
[94, 140]. However, one feature of STDP that is sometimes overlooked in the discussion
of biological plausibility is that STDP exhibits frequency dependence. Typical STDP
protocols induce spiking at around 10Hz, which can induce either LTP or LTD; however,
Sjöström et al. found that spike trains lower than 10Hz could not induce potentiation,
and spike trains higher than 40Hz could not induce depression [122, 186] (see figure 2.9).
Further, Wang et al. showed in 2005 that looking at triplets of spikes (i.e. pre-post-pre and
post-pre-post relationships instead of just pre-post and post-pre) and quadruplets produced
synaptic strength changes that were not be predicted by pair-based STDP models [216].
Incorporating these findings into a triplet-based rule, however, not only recreated Wang et
al.’s findings (for triplets and quadruplets), but also the frequency dependence shown by
Sjöström et al. (see [158] and section 6.2.3).

The general consensus in the experimental community is that STDP is a convenient
experimental protocol that robustly induces LTP and LTD and is not a separate plasticity
mechanism [183]. We explore this question theoretically in section 6.2.4.

2.2 Non-Hebbian plasticity

While Hebbian plasticity began as the original postulate expressed by the simple learning
rules (2.1), (2.2) and (2.3), in contemporary literature, it generally refers to any change in
synaptic strength that is synapse-specific and depends on correlated presynaptic and post-
synaptic activity. By that definition, heterosynaptic LTD is non-Hebbian (see section 2.1.2
and figure 2.5), though there are synapse-specific models that can exhibit heterosynaptic
LTD (see section 6.2.1). There are also experimental protocols that can induce LTP in
non-Hebbian ways: high-frequency presynaptic stimulation without postsynaptic spiking
causes LTP in the mossy fiber - hippocampus area CA3 synapse [210] and cortico-striatal
synapses [62]; high-frequency postsynaptic stimulation of hippocampus area CA1 without
presynaptic spiking causes LTP cell-wide (i.e. in all afferent synapses) [100].

Another non-Hebbian form of plasticity is synaptic scaling, in which the strength of
a synapse changes relative to other synapses on the postsynaptic cell such that the post-
synaptic cell’s firing rate remains at some target value. While hypothesized to exist in

16

−20 0 20

tprei − tpostj (milliseconds)

50

100

150

ω
ij

af
te

r
/
ω
ij

be
fo

re
(%

)
0.1Hz
20Hz
40/50Hz

Figure 2.9: Frequency dependence of the STDP protocol, from [186]. The three STDP
curves are all from layer-5 pyramidal neurons in visual cortex. The axes are the same as
previous STDP curves.

theoretical models due to its inherent stability, synaptic scaling was experimentally con-
firmed in 1998 in cultured networks of neocortical [209], hippocampal [124] and spinal-cord
neurons [150]. Early theories of the biophysical mechanisms for synaptic scaling suggested
a change in the number of glutamate (both AMPA and NMDA) receptors in inverse pro-
portion to postsynaptic activity [150, 218]. More recent reports have implicated a wide
variety of factors, such as activity-dependent release of brain-derived neurotrophic factor
(BDNF) and somatic calcium levels (see [208] for a review).

2.3 Dopamine modulated plasticity

The previously discussed synaptic plasticity mechanisms are typically studied in controlled
conditions, in which the spiking behaviour of the presynaptic and postsynaptic cells are

17

the only variable. The synapses being investigated are usually excitatory synapses that
use glutamate as their primary neurotransmitter, though inhibitory synapses that use
GABA as their primary neurotransmitter can also be modified by similar protocols [40, 79].
However, the neurotransmitter dopamine has been found to modulate synaptic plasticity
dramatically. Dopamine has been shown to be important for reinforcement learning, which
is discussed in chapter 5. In this section we review dopamine’s effect on synaptic plasticity.

The effect of dopamine is not consistent across brain areas. Each dopamine receptor
type (there are five, D1 through D5) can contribute to synaptic plasticity in different ways.
The striatum has been widely studied, as it receives strong projections from the midbrain
dopamine system. Calabresi et al. found that mice lacking D2 receptors in the striatum
experienced LTP when the same stimulus produced LTD in mice with D2 receptors [37].
In a later study, they found that blocking D1 and D5 in the mouse striatum prevented the
induction of both LTP and LTD ([35, 36], results replicated by [102, 199]). Pawlak and
Kerr confirmed that D1 and D5 are required for LTP/LTD in rat striatum, and showed
that D2 receptor activation delays LTD and speeds induction of LTP [156]. In the CA1
region of the hippocampus of mice, D1 and D5 receptors appear to be necessary for the
maintenance of LTP but not necessarily the induction, while D2 agonists had no effect
[95, 154]. In the dentate gyrus of the hippocampus, a D1/D5 receptor antagonist had no
effect on either the induction or maintenance of LTP [200]. In the prefrontal cortex of rats,
D1 receptor activation modulates LTP proportionally, while D2 receptor activation has no
effect on LTP [73] (for a review of dopamine-dependent synaptic plasticity, see [95]).

Despite the varying effects of dopamine, its role in synaptic plasticity has led to an
extension of traditional Hebbian plasticity rules: three-factor plasticity rules [149, 168, 219].
These are learning rules that use presynaptic activity, postsynaptic activity, and phasic
dopamine levels (Dp) to determine the amount and direction of synaptic strength change.

∆ωij = κaiajDp (2.4)

The multiplicative dopamine level term has the effect of gating a Hebbian learning rule,
allowing plasticity to occur only when there is a phasic change in dopamine levels, which
is consistent with some of the experiments described in this section.

2.4 Explaining behaviour with synaptic strengths

While the biological literature examined above identifies some situations in which synaptic
strength changes occur in the brain, it does not directly address the important questions

18

about how animals learn and remember. Theoretical discourse on the role of synaptic
plasticity in learning and memory usually focuses on whether memories can be encoded
and retrieved using synaptic plasticity. Stevens posed this “million dollar question” to
neuroscientists in 1998 and found consensus neither for nor against [190]. Martin et al.
examined this more formally in 2000 [133]. Their review was motivated by a succinct
formulation of the synaptic plasticity and memory hypothesis.

“Activity-dependent synaptic plasticity is induced at appropriate synapses dur-
ing memory formation, and is both necessary and sufficient for the information
storage underlying the type of memory mediated by the brain area in which
that plasticity is observed.”

Their conclusion was that synaptic plasticity is necessary for memory, but little evidence
exists to argue for sufficiency. We aim in this thesis to give support for the sufficiency of
synaptic plasticity to learning and memory by creating biologically plausible spiking neural
network models that learn to perform certain functions through synaptic weight changes.
This work, it should be noted, says little about necessity, as these models are not the only
ones that could be used to learn these behaviours.

19

Chapter 3

Large-scale neural modelling

At the beginning of chapter 2, we provided a sketch of how biological neurons operate.
This chapter fills in the details of that sketch and examines computational models that
emulate the biological neuron. As well, the Neural Engineering Framework [59] will be
proposed as a method of determining how to connect those single-neuron models together
in a way that can explain high-level behaviour while maintaining biological plausibility.

3.1 Single-neuron models

Single-neuron modelling, like the modelling of synaptic plasticity, can be split into two
broad categories: detailed biophysical models that aim to emulate nature with fine gran-
ularity, and simple phenomenological models that aim to emulate the results of such fine-
grained processes using minimal computational resources.

On one end of the scale, the most detailed biophysical models are based on the Hodgkin-
Huxley model [86]. These types of models define differential equations for a number of
biophysical parameters, such as the current flow through each type of ion channel. They
model biological neurons very accurately, but at the cost of computational efficiency; simu-
lating one Hodgin-Huxley neuron for 1 ms involves over 1000 computations. Given that we
wish to scale up to large-scale networks of thousands of neurons, these biophysical models
are too computationally intensive.

On the other end of the scale is the leaky integrate-and-fire model, which captures
many important features of biological neurons [97] in a simple mathematical model that

20

takes less than 10 computations for 1 ms of simulation. We use this model exclusively for
the simulations discussed in the remainder of this thesis.

Between these two representative models there is a continuum of single-neuron mod-
els, each of which offers a different balance between biological realism and computational
efficiency. Izhikevich provides a review of these models [91].

3.1.1 Leaky integrate-and-fire model

In chapter 2 we introduced the neuron as an input/output device, noting that it receives
input from its dendrites, performs some non-linear function on that input, and outputs
action potentials through its axon. It should be noted that there are many different neuron
types that all respond differently to input. A well understood and common neuron type
is a neocortical pyramidal cell, seen widely in mammalian prefrontal cortex. The leaky
integrate-and-fire (LIF) model has been shown to model well the neocortical pyramidal
cell [167].

Input, as discussed before, comes from dendrites. The input is measured as current;
when neurotransmitter is released from a presynaptic cell and binds to a postsynaptic cell,
some amount of current is imparted. The weighted sum of this dendritic input plus some
background bias current, at some point in time, t, is denoted as J(t).

Output is delivered in the form of action potentials. Action potentials are dramatic
changes in the membrane potential (i.e. the voltage) of the cell. The behaviour of interest
in a single-neuron model, especially a phenomenological model like the leaky integrate-
and-fire (LIF) neuron, is at what times action potentials occur; to find this, we explicitly
model the voltage changes over time with the equation

dV

dt
= − 1

RC
(V (t)− J(t)R) ,

where R is the resistance of the membrane, C is the membrane capacitance, and V (t) is
the voltage at time t.

This equation may be recognized as the linear differential equation for RC circuits;
indeed, a neuron can be idealized as an RC circuit, with the bilipid membrane of the cell
acting as a capacitor accumulating electric charge from the dendrites, and the ion channels
acting as resistors (see figure 3.1). Because the bilipid membrane is not a perfect insulator,
current “leaks” out of the cell at a speed defined by the membrane resistance and voltage,
hence the “leaky” moniker. See figure 3.2 for a circuit diagram depicting how the LIF
neuron works.

21

Phospholipid layer

containing proteins C

Transmembrane protein

Voltage controlled gate

Ion channel

R

Figure 3.1: Illustration of the bilipid membrane of a neuron. Labelled items refer to
elements of the circuit diagram, figure 3.2. Recreated from [58].

Outside Membrane

Inside Membrane

V R

J

J J C

V-V

R

M

C

th

ref

(t)n

T

d

Figure 3.2: Circuit diagram that corresponds to the leaky integrate-and-fire (LIF) neuron.
Recreated from [58].

Unlike a typical RC circuit there are two non-linearities in the LIF model. First, once
V (t) reaches a certain threshold, V th, the model “spikes.” The time of the spike, tn, is

22

recorded, and modelled as a Dirac delta function, δ(t− tn). The membrane voltage is then
reset to 0. Note that this means that the time of a spike matters, but the super-threshold
behaviour does not; in reality, action potentials can vary in duration, amplitude and shape,
but it is generally accepted in the neural coding field that little information is encoded in
these action potential features [204].

The second non-linearity, which is not present in all LIF models, is a refractory period.
When a biological neuron spikes, there is a small amount of time, usually around 1 ms
[171], during which no amount of injected current will raise the membrane voltage. We call
the length of the refractory period τref and force V (t) = 0 during the refractory period,
after which the neuron resumes accumulating charge (see figure 3.3).

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Simulated LIF Neuron Spike

V
ol

ta
ge

 (
V

)

Time (ms)

V
th

 Pasted Spike

↓
τref

Figure 3.3: Membrane voltage of a LIF neuron with constant input J , from [42].

LIF neurons can be connected näıvely, or to match the statistics of biological neural
networks (e.g. 10% all-to-all connectivity). However, connecting millions of these models
together tells us little about what the brain is doing – what information is being encoded,
and how is that information processed by the various neural circuits in the brain? We con-
sider these questions fundamental, and use Eliasmith and Anderson’s Neural Engineering
Framework as a means of tackling them [59].

23

3.2 The Neural Engineering Framework

The Neural Engineering Framework (NEF) is a set of principles that can be used to build
large-scale networks of single-neuron models. It enforces biological constraints, such as the
considerable amount of noise in the brain, and the heterogeneity of neurons and synapses.
Within those constraints, it defines an encoding / decoding scheme that can be used to
represent n-dimensional vectors in neural populations, and an analytical method of creating
connection weight matrices (i.e. synaptic strength matrices) such that encoded vectors can
be transformed by arbitrary nonlinear functions.

The three principles of the NEF are as follows.

1. “Neural representations are defined by the combination of nonlinear encoding and
weighted linear decoding.”

2. “Transformations of neural representations are functions of variables that are rep-
resented by neural populations. Transformations are determined by using an alter-
nately weighted linear decoding.”

3. “Neural dynamics are characterized by considering neural representations as control
theoretic state variables. Thus, the dynamics of neurobiological systems can be
analyzed using control theory.”

Principle 1, representation, and principle 2, transformation, are especially relevant to
the discussion of learning in large-scale networks. Principle 3 will not be discussed in this
thesis; details on it can be found in [59].

3.2.1 Representation

Representation in biological neural networks is a rich area of research in its own right. The
NEF’s notion of representation has the most in common with the idea of population coding,
first proposed by Georgopoulos et al. based on experiments in monkey cortex [69].

The NEF makes the assumption that information is encoded in the brain through the
spiking patterns of a population of neurons. In other words, representation is a process.
This process allows the NEF to be employed at multiple levels: the vector level, where
we are concerned with a set of numerical values, and the spiking level, where we are
concerned with the firing patterns of a population of neurons.

24

Representation is important to the study of learning in large-scale spiking networks
by giving us a method of relating the spiking behaviour of neurons to more traditional
statistical and mathematical analysis methods. To understand representation, the NEF
defines a method of encoding information at the vector level using spikes, and a method
of decoding spikes into information at the vector level.

Encoding

From our discussion of single-neuron models, we know that neurons receive input in the
form of current, J . Neurons output spikes based on some non-linear function, which we will
denote G[·]. The activity of a neuron, then, is completely determined by the non-linearity
and the input current.

a(J) = G[J] (3.1)

In our case, the G[·] nonlinearity is defined by the LIF neuron model. For a sensory
neuron, the NEF assumes that the input current J is proportional to whatever external
signal that the neuron is sensitive to; for example, in the visual system, some neuron
may be sensitive to brightness. The brighter the visual field, the more current is injected
into the neuron. Other brightness-sensitive neurons will respond differently to the level of
brightness; the NEF models these differences with the equation

J(x) = αx+ J bias, (3.2)

where x is the external signal, e.g. brightness, α is a positive scaling factor representing
how sensitive the neuron is to x, and J bias is some amount of current that is injected in
the cell regardless of any external stimulus; J bias explains the background firing rate of
neurons receiving no stimuli.

Both α and J bias vary from neuron to neuron. In an ideal world, we would be able to
measure α and J bias for each neuron when modelling a particular system of neurons. This
is not feasible, so instead we generate random α and J bias values within a range that is
plausible for the system being modelled.

With the input current, we can then use any neuron model to determine the membrane
voltage, and record when spikes happen. In our brightness example, it’s clear that a
population of neurons will not spike very much in the dark, spike a little bit with moderate
light, and spike a lot when it’s very bright. As it turns out, there are also neurons that are
sensitive to the opposite stimulus (darkness); this turns out to produce a representation
of brightness that is easier to decode. We can then say that some neurons encode the

25

brightness of the visual field, and some neurons encode the darkness of the visual field. We
represent this differential preference with a new variable called an encoder, e, which is 1
for brightness and −1 for darkness. The current can then be determined by the equation

J(x) = αex+ J bias. (3.3)

Again, we randomly choose the encoder to be either 1 or −1, unless we have some
reason to believe that the system being modelled preferentially encodes for one direction
over another. Note that it is not necessary to choose e values between 1 and −1, because
α defines the scale of the sensitivity, while e is simply direction.

This suffices for the simple 1-dimensional example of brightness, but brains operate
in an extremely high-dimensional world. As a slightly more complicated example, let
us consider a population of neurons that represents the animal’s eye position, which can
be encoded in two dimensions, the horizontal and vertical position of the eye. Both the
external signal and the encoder are now vectors; we determine the amount of current to
inject into the cell by the dot product (·) of the external signal and the encoder; i.e.,

J(x) = α(e · x) + J bias. (3.4)

We still want e to represent a direction only, so for each neuron, we select a random
2-dimensional unit vector for e, unless we have some reason to believe that the neurons
would be more likely to be sensitive to some directions than others.

As an aside, there is evidence that neurons in populations sensitive to high-dimensional
spaces can be sensitive to only one dimension (e.g. horizontal eye position). The existence
of these types of neurons (for example the now-famous “Jennifer Aniston neuron” [163])
have led to many debates about whether representation is local or distributed across many
neurons; a recent paper by Stewart et al. argues that an encoding vector approach is more
useful for understanding representation than local vs. distributed arguments [191].

Moving away from concrete examples, in general, we can use equation (3.4) to determine
how much current we should inject into a neuron model for a vector of any length. Further,
we can also represent a function by approximating that function with some finite-length
vector, wherein each element of the vector is f(x) for x discretized over some finite range.

Note that because we always choose e to be a unit vector, the dot product e · x is the
scalar projection of x in the e direction, or mathematically

e · x = |x| cos θ

26

where θ is the angle between e and x. This can be interpreted as meaning that the amount
of current injected in the cell is proportional to the similarity between a neuron’s encoding
vector and the stimulus (cos θ).

A final amendment to (3.4) is to incorporate time-dependence. The input signal vector,
x, varies over time, and the amount of current injected will also vary. Our final equation
is then

J(t) = α(e · x(t)) + J bias (3.5)

To summarize, the encoding procedure – the process that takes an n-dimensional vector
and encodes it in the spiking activity of a population of neuron models – involves the
usually-random selection of three properties for each model neuron:

1. α, a positive scalar representing the scaling factor,

2. J bias, a scalar amount of background current, and

3. e, a unit vector the same length as x, representing the part of the input space the
neuron is sensitive to.

Equation (3.5) then uses these three properties to determine the amount of current to
inject into each cell, which causes neuron activity that depends on the neuron model used
(i.e. equation (3.1)).

Decoding

Decoding is the opposing process to encoding: we map the spiking profile of a population
of neurons to the space of n-dimensional vectors. We start this section with an analogous
decoding process, converting from a binary number to a decimal number, and show how
the same idea can be applied to neural populations.

Computers represent data in binary format, i.e. in base-2, with 0s and 1s as the
only digits. An integer like 39 is encoded as 100111 in binary. To convert from the binary
representation back to base-10 integers, we consider each digit as a power of two, increasing
from right to left; i.e.

100111 =1× 20 + 1× 21 + 1× 22 + 0× 23 + 0× 24 + 1× 25

=1 + 2 + 4 + 32

=39

27

In general, if we have a series of binary digits, bn...0, representing a number encoded in
binary, we can convert it to decimal with the formula

x10 =
n∑
i=0

2ibi,

where x10 is the number in decimal. This equation is known, generally, as a weighted sum.
Note that this a linear operation.

The process of decoding the spiking profile of a population of neurons can also be
expressed as a weighted sum.

x̂ =
n∑
i=0

diai, (3.6)

where x̂ is the decoded estimate of the encoded vector x, di is a decoding vector, and ai is
the activity of neuron i.

To see how this simple equation can decode a value from the spiking activity of neurons,
let us start again from the simple scalar case without considering time, and build up from
there.

We can visualize the activity of a neuron, ai, by plotting its tuning curve. A tuning
curve is a plot of the firing rate of a neuron as a function of input current. See figure 3.4.

0 0.5 1 1.5 2
0

100

200

300

Injected Current (nA)

F
re

qu
en

cy
 (

H
z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300
LIF Neuron Response Curves

x value

F
iri

ng
 R

at
e

(H
z

−
 S

pi
ke

s/
se

c)

Figure 3.4: Example tuning curves. (Left) Experimentally determined tuning curves, from
[137]. (Right) Similar tuning curves for LIF neurons, from [42].

Experimental tuning curves are found by injecting different levels of current into a cell
and measuring the resulting firing rate of the neuron. We can do the same with our single-

28

neuron models to plot tuning curves; however, the LIF neuron is simple enough that we
solve for the firing rate of a LIF neuron given some amount of current.

a(J) =

1

τref−τRC ln
(
1−Jth

J

) , if J > J th

0 otherwise,
(3.7)

where J th is the current threshold above which the neuron will spike. The derivation of
this formula can be found in [59].

It is usually more convenient to solve for the activity based on some arbitrary scalar
stimulus x rather than the current; this requires a simple substitution of equation (3.2),
giving as a final equation

a(x) =

1

τref−τRC ln
(
1− Jth

αx+Jbias

) , if αx+ J bias > J th

0 otherwise.
(3.8)

It should be noted that the NEF neither requires nor favours the use of any particular
single-neuron model; we are using the LIF neuron in this section because there is a simple
formula for generating its tuning curve, but we could find the tuning curve for any neuron
either by solving for a(x) or by direct simulation using a sufficient discretization of a range
of possible x values.

With the tuning curves of several neurons, we can visualize how, for any encoded value
x, we can decode an estimate of x, x̂, with the weighted sum in equation (3.6). Figure 3.5
shows this; it is important to note that the solid black line, representing x̂, is calculated
using the same decoding weights, d, for all values of x.

Solving for these decoding weights is done through a least-squares minimization of the
decoding error, x− x̂, resulting in the following equations.

X = [−x,−x+ dx, ...,−dx, 0, dx, ..., x− dx, x]

A =

a0(X)
a1(X)

...
an(X)

d = Γ−1Υ, where Γ = AAT and Υ = AXT (3.9)

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 2 Neurons

x value

F
iri

ng
 R

at
e

(H
z

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Weighted Response Curves and Reconstructed Output − 2 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 5 Neurons

x value

F
iri

ng
 R

at
e

(H
z

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Weighted Response Curves and Reconstructed Output − 5 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 15 Neurons

x value

F
iri

ng
 R

at
e

(H
z

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Weighted Response Curves and Reconstructed Output − 15 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

Figure 3.5: Illustration showing how the tuning curves of a population of LIF neurons can
be linearly combined to estimate an input signal, x. From [42].

Note that the definition of X requires making explicit the range of values that the
neural population is expected to encode. We then discretize that range into 2x

dx
+ 1 values;

smaller dx values result in more accurate decoders, while larger dx values make the decoder
calculation faster. We call A the activity matrix, and it is essentially a matrix containing
the tuning curves of all of the neurons in the population. In this case, where we are

30

considering only a scalar x, d is a vector of length n; each neuron’s activity is weighted by
a scalar decoder to calculate the decoded estimate. The full derivation of these equations
can be found in [59].

Considering the vector case instead of the scalar case does not change equation (3.9),
except that X changes from a vector of possible x values to a matrix of possible x vectors.
This changes the dimensionality of some of the computations, with the end result being
that d changes from a vector of decoding weights to a matrix of decoding vectors. This
makes sense because our decoded value also needs to be a vector; note in equation (3.6)
that x̂ and di are vectors of the same length.

Finally, we must also take into account time. Our notion of the activity of a neuron
model changes. a(x) is measured by the firing rate of the neuron; a(t) is measured by
a filtered spike train. Recall from section 3.1.1 that a spike is often modelled as a Dirac
δ-function. Therefore,

a(t) =
∑
s

δ(t− ts) ∗ h(t) =
∑
s

h(t− ts)

where s is the time of each spike, and ∗ is the convolution operator. Basically, we inject
current into the neuron models using equation (3.5), and when a spike occurs (according
to whatever single-neuron model we’re using) we paste in a filter, h(t).

We can then find the decoded estimate as a function of time; i.e.,

x̂(t) =
n∑
i=0

diai(t)

=
n∑
i=0

di
∑
si

h(t− tsi). (3.10)

The looming question is what to use for the filter h(t). We can find an optimal filter by
once again minimizing the squared error between the actual value and the decoded estimate
over time (see [51, 59]). However, these optimal filters are acausal; that is, they contain
components in negative time, which would mean that a downstream neuron’s activity at
time t depends on a spike that will not occur until some time in the future. This could be
solved by simply eliminating the negative-time portion of the optimal filter. However, we
have already discussed in chapter 2 what happens to a downstream neuron’s activity when
a spike occurs: delivered neurotransmitter causes a transient rise in the current of the cell,
which exponentially decays. A curve describing the rise and fall in intracellular current is

31

called the post synaptic current curve (PSC), and we use it as our filter h(t) (see figure
3.6).

h(t) = PSC(t) =
1

τPSC
e−t/τ

PSC

(3.11)

h(t)=PSC(t)

Spikes for neuron
with e = 1

0

Decoded estimate

Input signal

Spikes for neuron
with e = -1

Figure 3.6: Example of decoding a time-varying scalar signal using a filtered spike train.
For each spike, the filter h(t) is pasted in, weighted by the decoding weight (1 or -1 in this
case). Recreated from [58].

To summarize, the decoding procedure – the process that takes the spiking activity of
a population of neuron models and decodes an n-dimensional vector – involves solving for
decoding weights with equation (3.9), filtering spikes with the post-synaptic current curve,
equation (3.11), and then summing the filtered spike trains of the population weighted by
the decoding vectors, as in equation (3.10).

3.2.2 Transformation

In section 3.2.1 we discussed representation from the perspective of a sensory neuron; that
is, if we had some input vector x, which represents some environment variable, how would
we encode it in neurons, and decode the value for higher-level analysis. This is a good
starting point, but the vast majority of neurons in the brain do not receive their input
from the environment, they receive it from the projections of other neurons, as originally
discussed in chapter 2.

32

Fortunately, this does not affect the decoding procedure at all, it is simply a different
– albeit more common – method of determining the input current being delivered to a
neuron. The encoding procedure is still necessary for any model, for receiving the initial
input.

From chapter 2, we know that neurons are not connected together with equal weight.
We will represent the strength of the connection with ωij (following the conventions intro-
duced in section 2.1); with this, we can determine the input current to neuron j in the
postsynaptic population with

Jj =
n∑
i=0

ωijai + J biasj , (3.12)

where n is the number of neurons in the presynaptic population.

The remainder of this section details how to calculate ω matrices that will perform
linear and non-linear transformations of encoded vectors.

Linear transformations

Suppose we have a population of neurons encoding some input vector x, and we want
a second population to encode the same value; this is the simple transformation y = x,
a communication channel. We can solve for the amount of current that we want to be
injected into a neuron j in the output population by substituting our decoded estimate x̂
into equation (3.4).

Jj =αj(ej · x̂) + J biasj

=αj(ej ·
n∑
i=0

diai) + J biasj

=
n∑
i=0

αjej · diai + J biasj (3.13)

Setting (3.12) equal to (3.13), we can easily determine the connection weight matrix.

n∑
i=0

ωijai + J biasj =
n∑
i=0

αjej · diai + J biasj

ωij =αjej · di (3.14)

33

This procedure can be extended to any linear combination. If we want to scale an
input vector, we construct a matrix Cji with the first dimension having the same length
as the output vector, and the second dimension the same length as the input vector. This
is multiplied by the output population’s encoding vector and the decoded estimate of the
input population, giving us

Jj =αj(ejCjix̂) + J biasj

=αj(ejCji

n∑
i=0

diai) + J biasj

ωij =αjejCjidi.

Summing together vectors essentially happens automatically, assuming that the vectors
are represented in separate populations. If vector x is being represented by one population,
and vector y by another population, each connects to the output population through a
separate connection weight matrix, and each imparts a certain amount of current that will
be summed.

Jj =Jx
j + Jy

j + J biasj

=
∑
i

ωx
ija

x
i +

∑
i

ωy
ija

y
i + J biasj

ωx
ij =αjejC

x
jid

x
i and ωy

ij = αjejC
y
jid

y
i (3.15)

This can be extended to any number of input populations, allowing us to calculate any
linear function (C1x + C2y + C3z + ...).

Non-linear transformations

Non-linear transformations cannot be implemented in the same way. They require that

• the vector of arguments to the function, x, is encoded by the population computing
the function, and

• a new set of decoding weights, df(x), is computed.

This means that if you wish to do a non-linear computation involving the vectors
encoded by two separate populations, you will first need to project each of those populations
into an intermediate population through communication channels (see figure 3.7).

34

…

…
1

x

y

y
2

Neurons from

population y
Neurons from

population x

1

Connection weights computing
a communication channel

Figure 3.7: The network structure that is required for a non-linear transformation of values
encoded in two separate populations. Note that the connection between two populations
is all-to-all; that is, every neuron in the input population is connected to every neuron in
the output population (though that connection can have weight 0). Adapted from [42].

As an example, say that you want to compute the element-wise product of two 3-
dimensional vectors, y1 and y2.

f(y1,y2) = [y11y21, y12y22, y13y23]

We require an intermediate population that will represent x = [y1||y2], where || is
vector concatenation, so x is a 6-dimensional vector. If we compute decoders as usual,
using equation (3.9), then we end up with a matrix of 6-dimensional decoders that can be
used for linear transformations. Instead, we modify the calculation of the decoding weights
such that instead of optimizing in order to calculate x, we optimize to calculate f(x).

df(x) = Γ−1Υ, where Γ = AAT and Υ = Af(X)T (3.16)

A visualization of how this linear decoding process can result in a nonlinear function
can be seen in figure 3.8. With these decoders, we can use the result of this nonlinear
function in the same way as a linear function and determine the connection weight matrix.

Jj =J
f(x)
j + ...+ J biasj

=
∑
i

ω
f(x)
ij axi + ...+ J biasj

ω
f(x)
ij =αjejCjid

f(x)
i

35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 2 Neurons

x value

F
iri

ng
 R

at
e

(H
z

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Weighted Response Curves and Reconstructed Output − 2 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 5 Neurons

x value

F
iri

ng
 R

at
e

(H
z

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Weighted Response Curves and Reconstructed Output − 5 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200
LIF Neuron Response Curves − 15 Neurons

x value

F
iri

ng
 R

at
e

(H
z

−
 S

pi
ke

s/
se

c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Weighted Response Curves and Reconstructed Output − 15 Neurons

x value

E
st

im
at

ed
 x

 v
al

ue

Figure 3.8: Illustration showing how the tuning curves of a population of LIF neurons can
be linearly combined to estimate a nonlinear function, in this case sin(2πx). From [42].

36

3.3 Plasticity in the NEF

Chapter 2 discussed the experimentally observed phenomenon of synaptic plasticity, the
idea that synaptic strengths (i.e. connection weights) change over time. The principles of
the NEF from [59] say nothing about the modification of connection weights after their ini-
tial calculation through the method described in section 3.2.2; principle 2, transformation,
analytically solves the same problem that learning algorithms attempt to solve.

Despite that, there are some practical benefits of modifying connection weights during
the course of a simulation. Learning can help fine-tune models generated with the NEF –
despite being determined ‘optimally,’ they can still be improved upon due to approxima-
tions made in the computation of decoding vectors [128]. Comparing learned networks to
analytically determined ones can also highlight the strengths and weaknesses of the NEF
approach.

However, from a more theoretical standpoint, investigating plasticity in the NEF is
important as a verification of some of the assumptions of the theory. In determining
these connection weight matrices that perform certain transformations, there is an implicit
assumption that some learning process could arrive at a connection weight matrix that
performs that function. One important contribution of this thesis is to show that there
is a learning method that will arrive at connection weight matrices that can perform the
functions that NEF models assume can be performed in the brain.

Implementing plasticity in simulations created according to the NEF is done through
activity-dependent changes in ω matrices over the course of a simulation. This matches
exactly how learning rules are written in plasticity literature (e.g. equation (2.1)); we can
easily apply these learning rules to networks created in the NEF and analyze them both
at the level of spiking patterns, and decoded n-dimensional vectors.

3.3.1 Error minimization rule

MacNeil and Eliasmith [128] derived an error-modulated learning rule that they used to
fine-tune a neural integrator. That derivation is replicated here as it will be used in the
simulations discussed in this thesis, and will be built upon in later chapters.

Once again, we do a least-squares minimization on the representation error.

SE = −1

2
(x− x̂)2

37

Substituting in equation (3.6) gives

SE = −1

2

(
x−

n∑
i=0

diai

)2

.

In order to minimize this error, we differentiate with respect to the decoding weights.

dSE

ddi
=

(∑
j

djaj − x

)
ai,

where the subscript j indexes over all neurons in the population, while i indexes the neuron
currently being optimized.

Note that the bracketed term represents the difference between the decoded estimate,
x̂, and the actual value, x. We will call this quantity E.

E = x̂− x

Our equation is now
dSE

ddi
= Eai, (3.17)

which indicates that in order to minimize total error, we need to modify each decoding
vector di by the signed error, scaled by the activity coming from the presynaptic cell.
One interpretation of (3.17) is that, since we are using essentially the negative of the
representation error, we are punishing (decreasing the weight of) each decoder by a value
proportional to its activity; if we are doing a poor job of representing x, then the decoding
weight of a neuron that is highly active will move closer to zero, essentially decreasing the
influence of the neuron that is contributing poorly to the encoding.

If we include a learning rate parameter, κ, this can be expressed succinctly as

∆di = κEai. (3.18)

While this is interesting from a computational efficiency standpoint (see section 7.4.1),
it is not biologically plausible because we are not changing synaptic connection weights.
Recall from equation (3.14) that ωij = αjej · di . We can multiply both sides by the
encoding vector ej and the neuron gain αj to express the rule in terms of ωij.

∆di · ejαj =καjej · Eai
∆ωij =καjej · Eai (3.19)

38

Despite the rule being derived without considering biological plausibility, it is plausible
in the sense that it meets the locality constraint; all of the terms in this rule can be argued
for being available locally to the synapse, and it is synapse-specific.

39

Chapter 4

Supervised learning

This thesis will discuss three machine learning problems: supervised learning, reinforce-
ment learning, and unsupervised learning. While there are varied methods of solving these
problems in machine learning, we will only discuss methods in artificial neural networks,
as they are the most directly applicable to our spiking neural networks.

In machine learning, supervised learning is the problem of learning how to perform an
unknown function in a neural network given a set of input and output examples. Having
access to input-output pairs is an important distinction between supervised learning and
other types of learning.

Mathematically, the supervised learning problem is inferring a function, G(x), given a
set of input vectors, X, and their corresponding outputs, Y. Usually, most of the input-
output pairs are used for training, and some input-output pairs are designated for use in
testing to see how well the network has learned to approximate G(x). This is done to show
that the network has generalized the function, rather than simply learning the mapping
X→ Y (see figure 4.1).

The general strategy for solving the supervised learning problem is to feed the input
into the neural network and record its output. Since we have access to the target (desired)
output, we take the difference between the network’s current output and the desired output,
and call that the error. The error can then be used to update the connection weights in
the neural network, such that the next time that the network is supplied with the same
input, it arrives at a result closer to or exactly the desired output.

Implementing this general strategy poses a few problems.

40

Training
Given input X and output Y,

Minimize (Ytrain −G(Xtrain))2

Testing

Evaluate (Ytest −G(Xtest))
2

Figure 4.1: The supervised learning problem.

1. Calculating the error signal. The difference between the network’s current and ideal
output may be non-trivial to compute.

2. Determining how the error signal should translate to changes in connection weight
strengths.

4.1 Supervised learning in traditional artificial neural

networks

In machine learning, the first problem is trivial, because the output of the network can be
made to match the type of the ideal output. That is, if the output of the function is a
scalar value in a certain range, the activation function of the output layer can also create
a scalar value in that range. It is thus easy to calculate the general error signal.

However, how that error signal translates into connection weight strength changes is
non-trivial. This problem was first addressed by Bryson and Ho in 1969 [34] with what is
now called the backpropagation algorithm, though the method did not reach widespread
use until its rediscovery in the 1980s [172].

4.1.1 Backpropagation

Backpropagation is usually used in a type of artificial neural network known as a multi-layer
perceptron. This type of network is made up of at least three layers: one input layer, one
output later, and one or more hidden layers (see figure 4.2). Each non-input node (neuron)
has a nonlinear activation function (also called the transfer function), which is meant to

41

emulate the tuning curve of a biological neuron. Typically, the activation function is a
sigmoid curve (see equation (4.1) and figure 4.3 – note that this sigmoid curve has some
qualitative similarities with the LIF tuning curve, figure 3.4).

Input layer Hidden layer Output layer

Figure 4.2: The architecture of a multi-layer perceptron. There can be many hidden
layers if desired, but for the purposes of supervised learning, the Universal Approximation
Theorem states that any non-linear function can be computed with only one hidden layer,
so this 3-layer architecture is the most common.

a(x) = tanh(x) or a(x) =
1

1 + e−x
(4.1)

In order for backpropagation to work, the nonlinear activation function must be dif-
ferentiable. The main idea of the algorithm is to calculate the global error signal, and
use that to calculate the error for each neuron in the output layer. That error is used to
calculate the “local” error for each neuron in the previous hidden layer, which is used to
calculate the error in the previous hidden layer if one exists. These local error calculations
depend on the derivative of the activation function of each neuron. In other words, back-
propagation determines which nodes most contribute to the error, and modifies connection
weights such that those nodes receive less input from afferent neurons in the future. A

42

−3 −2 −1 0 1 2 3
−1.0

−0.5

0.0

0.5

1.0
y = tanh(x)

−6 −4 −2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

y = 1
1+e−x

Figure 4.3: The two sigmoid curves from equation (4.1). Note that tanh(x) gives values
from -1 to 1, and the other values from 0 to 1.

simplified version of the complete learning rule is

∆ωij = −κδjai, (4.2)

where δj is the local error at neuron j.

The Universal Approximation Theorem states that the multilayer perceptron architec-
ture, as depicted in figure 4.2, can approximate any nonlinear function with only one hidden
layer [46, 88]. Additionally, it has been shown to be able to simulate a Turing Machine,
meaning that is able to do any arbitrary computation [182]. Unfortunately, even if it is
true that a neural network exists to compute a given function, no amount of input-output
pairs will guarantee that backpropagation will converge to this network. It is sensitive to
many factors, such as the number of nodes in the hidden layer, the choice of input-output
pairs, the learning rate, and the initial network weights. As a gradient descent algorithm,
it can fall into local minima. Further, even if the network converges, it can be very slow
to do so [221].

From the perspective of applying backpropagation ideas to our spiking neural networks,
we run into a number of additional issues. The most obvious is that the activation function
expresses the output of a neuron as a scalar value, usually between 0 and 1 or -1 and 1.
In a spiking neural network, the activation function produces spikes, which are necessarily
discontinuous and therefore non-differentiable.

43

The most important issue for backpropagation is that is not possible to frame the
algorithm in a biologically plausible manner. As discussed in chapter 2, backpropagating
action potentials exist, making the idea of propagating error signals backwards attractive;
however, in the traditional backpropagation algorithm, local errors are calculated using
connection weights between neurons one or more layers downstream. It is difficult to see
how this information could be communicated to a synapse, even with feedback connections.

There are many other methods of doing supervised learning in neural networks, includ-
ing extensions of traditional backpropagation, such as QuickProp and RProp [221]. One
can also treat the neural network as a nonlinear function with each connection weight a free
parameter, and use nonlinear optimization techniques like simulated annealing and genetic
algorithms to find G(x). However, we discuss backpropagation in this section because it is
the most well known learning algorithm in artificial neural networks, and it is often used in
conjunction with the Universal Approximation Theorem to say that a neural network can
learn to approximate an arbitrary nonlinear function. As we have already argued, however,
backpropagation is not a valid algorithm for the type of large-scale neural networks that
we are interested in this thesis, and so the question of whether supervised learning can be
accomplished in this framework remains unanswered.

4.2 Supervised learning in spiking neural networks

Experimental neuroscience literature has little to say about supervised learning and how
it might be implemented in the brain. One of the few areas in the literature that mention
supervised learning is cerebellar research. There is evidence that the climbing fibers repre-
sent a fine-grained error signal, the same kind that one would expect to see if a supervised
learning scheme was implemented neurally. In fact, the neural architecture is such that
it seems uniquely poised to offer neural evidence of supervised learning (see figure 4.4).
However, leading models of the cerebellum have taken this error signal to mean that it is
an adaptive filter [52, 68]. While these models are computationally powerful, it is not clear
that they offer a solution to the supervised learning problem.

The theoretical neuroscience community as a whole has offered many solutions to a
type of supervised learning that we will refer to as supervised spike-time learning (see
figure 4.5).

The problem is similar. In both cases, we want the neural network to approximate a
function G(·); in machine learning, this function accepts a vector (G(x)), and in theoretical
neuroscience this function accepts an input spike train (G(S(ti))).

44

+ –V

C

B P

Forward

Recurrent

m

Retinal slip

Vhead Veye

CFsignale

Figure 4.4: Architecture of a model of the cerebellum that posits that the cerebellum is
an adaptive filter. From [52].

Construct a network with arbitrary connection weights, ω. Given

• S(tdj), the desired spike train of output neuron j, and

• S(ti), the spike train of an input neuron i,

modify ω such that
D (S(ti), S(tj))

is minimized, where D(S1, S2) is a measure of the dissimilarity be-
tween two spike trains [47, 214].

Figure 4.5: The supervised spike-time learning problem.

Accepting only spike-times as input and outputting only spike-times is typical for spik-
ing neural networks that employ temporal coding schemes. In these coding schemes, infor-
mation in the network is encoded in spike-times and inter-spike intervals [204]. Evidence
that the brain uses precisely timed spikes has been found in many sensory systems [213],
and it has been argued that networks using solely temporal information can simulate a
Turing Machine [127].

While we have not found biologically plausible solutions to the general supervised learn-
ing problem, temporal-coding based solutions to the supervised spike-time learning problem
exist. In the next section, we summarize a representative sample of algorithms that provide
a solution to the supervised spike-time learning problem.

45

4.2.1 Temporal-coding based models

The most straightforward approach to implementing supervised learning in spiking neural
networks is to follow the same approach as Bryson and Ho: use a gradient descent approach
on the error in the network. This is more complicated than traditional backpropagation
because a spiking neuron’s activation function is not differentiable, but Bohte et al. derived
a backpropagation-like algorithm for spiking networks with some additional assumptions
[31, 32]. Their algorithm, called SpikeProp, operates much like traditional backpropagation
in that it calculates the global error – the time difference between the spike train created by
the network and the desired spike train – and assigns local error for each node, which is used
to modify connection weights proportionally to the node’s activity. Like backpropagation,
however, the local error for each node depends on the connection weights of downstream
neurons, making this algorithm biologically implausible.

Ignoring the biological implausibility, the only simulation result from Bohte et al. was
a solution to the XOR problem, a result which has seen some difficulty being replicated
[143]. While this shows that it can solve a nonlinear problem (with only 10 neurons, to its
credit), it is not clear how this would scale up to problems with complicated representations.
Additionally, only the time of the first spike for each neuron in the network is considered;
all subsequent spikes are ignored, and the network must be reset to do another learning
step.

Since its derivation in 2002, SpikeProp has been extended by Schrauwen and Camp-
enhout by learning synaptic time constants and neuron thresholds in addition to synaptic
connection weights [176] and by McKennoch et al. to create spiking versions of the pre-
viously mentioned QuickProp and RProp [138]. Neither of these extensions addresses the
issues with SpikeProp, however.

A more recent algorithm that does supervised spike-time learning is the Remote Supervised
Method (ReSuMe) [161]. The learning rule used by ReSuMe is inspired by biology; specif-
ically,

∆ωij = −∆ωSTDPij + ∆ωSTDPik for excitatory synapses,

∆ωij = ∆ωSTDPij −∆ωSTDPik for inhibitory synapses, (4.3)

where i, j, and k index presynaptic, postsynaptic, and “teaching” neurons respectively,
and ωSTPDij is the result obtained from a spike-timing dependent plasticity rule. The
STDP curve used in ReSuMe is not the stereotypical asymmetric curve (see figure 4.6, in
comparison to figure 2.7).

46

i

j

k (teacher) wSTDP
ik

wSTDP
ij

wij

ia ia

ka ja

wij

A B

Figure 4.6: A summary of the ReSuMe algorithm, from [161]. (A) The structure of the
network: a neuron is either an input, output, or teaching neuron. (B) The STDP curves of
the two learning rules. Note that one rule only implements potentiation and one depression,
though since they are summed in the final learning rule, bidirectional synaptic strength
changes occur.

ReSuMe also uses a non-Hebbian term to speed up learning, but even without the term,
Ponulak proves that ReSuMe can learn to modify synaptic weights such that an output
neuron spikes at the desired time given the same input spike trains [161].

ReSuMe’s learning rule, (4.3), is inspired by biology, but its biological plausibility is
questionable based on current evidence. Notice in equation (4.3) that the change in the
synaptic strength between neurons i and j requires information about the synapse between
neurons i and k. Heterosynaptic plasticity has certainly been observed, especially in the
context of modulatory neurotransmitters, as discussed in section 2.3, but typically in those
cases it is not the precise timing of the modulatory synapse that matters, but the phasic
level of the neurotransmitter available to the plastic synapse (as in the three-factor rule
(2.4)). It is, however, still possible that this type of heterosynaptic plasticity happens
in the brain, particularly in the cerebellum, in which the error signal is thought to be
transmitted through typical excitatory and inhibitory synapses [52] rather than through
dopaminergic synapses, as in the striatum [180].

However, ReSuMe, like many temporal coding models, does not account for the large
amounts of noise in the brain. One temporal coding study that accounted for noise was
Pfister et al.’s [157, 159], in which the spiking behaviour of neurons depended on both
synaptic input and a stochastic term intended to account for noise. They derived an
STDP-like learning rule that was able to solve the temporal-coding supervised learning

47

problem in the face of noise; however, simulations were only done with target spike trains
of at most two spikes. It is not clear if the method would scale up to complex spike trains
with many spikes.

Other methods based on temporal coding have been proposed ([10, 16, 39, 155, 220])
but because we are primarily interested in solving the general supervised learning problem,
4.1, we will leave further investigation of these methods to the interested reader.

4.2.2 Biologically plausible backpropagation

Another set of approaches to supervised learning in theoretical neuroscience attempt to
address the biological plausibility of the original backpropagation algorithm rather than
create a completely new approach.

Bogacz et al. made a model of perirhinal cortex that learns with a backpropagation-
like synaptic learning rule that they call FreqProp [29, 30]. In their model, they fix the
weights from the hidden layer to the output layer, according to the observation that in
perirhinal cortex, neurons that spike depending on the novelty of a stimulus compute a
trivial vote-summing scheme, and thus the connection weights from the hidden to output
layer are fixed and can be ignored in the calculation of the learning rule modifying the
input-hidden layer synapses. That learning rule is

∆ωij =
1

N
δaiaj, (4.4)

where δ is the activity of the output layer nodes, which is projected back to the ωij synapse.
The name FreqProp comes from the notion that the frequency of firing of the output layer
neurons modulates the amount of synaptic change in the earlier layers. The authors note
that the dependence on the weights of hidden-output synapses being equal is necessary for
the biological plausibility of the rule, and results from observations of perirhinal cortex,
which is unlikely to be true of other cortical areas.

Hinton and McClelland proposed an alternative to backpropagation that introduces
recurrent connections between each layer to allow computation of local contributions to
the global error in a biologically plausible manner [85]. The output layer, then, projects
back to the hidden layer, enabling local computation of the hidden node’s contribution to
error, and similarly for the input and hidden layer projections. Their algorithm, termed
the recirculation algorithm, was built on by O’Reilly to create a learning model called the
local error-driven associative biologically realistic algorithm (LEABRA) [152, 153]. Their
method was able to learn a number of difficult nonlinear tasks, but the neuron model used

48

did not produce spikes, so the issue of the non-differentiability of a spiking transfer function
was not addressed.

Finally, a study by Körding and König argues for biological plausibility of backprop-
agation with a model that uses two different sites of synaptic integration, based on the
experimental observation that activity in basal dendrites and apical dendrites differs signif-
icantly, and in ways that strongly modulate learning [110]. In their model, the learning rule
is the product of presynaptic and postsynaptic action potentials and “dendritic bursts.”
Action potentials are generated by applying a transfer function to basal dendritic activ-
ity, while dendritic bursts are generated by applying a different transfer function to apical
dendritic activity. The authors propose a mapping from their model to backpropagation,
though they do not assert that the brain is actually doing this, only that the two sites of
synaptic integration make this type of learning biologically plausible, with some additional
assumptions.

4.3 Supervised learning with the NEF

Our goal in examining supervised learning in the NEF is to solve the general supervised
learning problem summarized in figure 4.1. In the remainder of this section, we argue that
this problem is more general than the supervised spike-time supervised learning problem
(figure 4.5), and we show that a combination of the encoding/decoding scheme of the NEF
and learning rule (3.19) can solve this more general problem.

In the previous section, we discussed temporal-coding in spiking neural networks. In
it, information is transmitted by the time of spikes in a spike train. It should be noted
that models using the NEF’s principles can be created such that they are sensitive to
very precise spike-times, but in general, the NEF’s coding scheme considers a small time
window of spiking behaviour, making it somewhere in-between traditional “rate coding”
and “temporal coding” schemes.

4.3.1 Theoretical argument

Recall from section 3.2.1 that the NEF defines a process for encoding vectors of real-valued
numbers in the spiking profiles of neural populations, and a process for decoding spiking
profiles back into vectors of numbers. Also recall the two versions of the supervised learning
problem introduced in this chapter (figures 4.1 and 4.5).

49

One approach to using the NEF’s encoding/decoding scheme to solve the machine
learning problem would be to take an input vector, x, encode it in a population, and
record the spike trains of the population for some length of time. We could then take an
output vector, y, encode it in a different neural population, record its spike trains, and call
those our desired spike times. If we connect the input and output populations in a manner
described by the algorithms presented in the previous section, with random connection
weights, we should be able to use their algorithms to learn a set of connection weights that
approximates G(S(ti)) ≈ G(S(tdj)).

However, recall that x and y can be encoded in an infinite number of different spiking
profiles. Intuitively, it would seem that an algorithm that could learn the G(x) ≈ y
transformation in a biologically plausible manner would be more general than one that
learns the spike-time equivalent version of this. Additionally, functions that operate in
vector spaces are ones that can be well understood by humans, whereas functions that
operate in the space of spikes require additional steps to understand.

In order to more rigorously show that the supervised spike-time learning problem is less
general than the supervised learning problem, it would be ideal to show that a solution to
the general problem can also solve the supervised spike-time learning problem. This work
has not yet been done. However, a solution to the general supervised learning problem
follows.

Recall from the beginning of this chapter the general strategy to solving the supervised
learning problem. We need to first compute an error signal, and then determine how that
error signal translates into changes in connection weights. In backpropagation, the second
part is difficult, but in our case we have already derived a learning rule that accomplishes
this, rule (4.5) (copied below for convenience).

∆ωij = καjej · Eai (4.5)

The more difficult part in this case is calculating the error signal, because we want the
network to compute this quantity in a biologically plausible manner. This requires using
the transformation principle of the NEF (see section 3.2.2). Ideally, all of the connection
weight matrices in the network would be learned, but even though we use some analytically
determined connection weight matrices, they are simple linear transformations, and so it
does not affect the biological plausibility of the overall network, pictured in figure 4.7.

The connection matrix being learned is the one between the Input and Output popula-
tions. Looking at rule (4.5), when we create the output population, we know αj, the gain,
and ej, the encoding vector. We choose some appropriate learning rate κ. The activity
of the Input population, ai, is the spiking activity that represents the encoded vector, x.

50

Desired output y Error

OutputInputx

f(y) = -y

G(x) = ?

Excitatory/Inhibitory
Modulatory
Plastic

Figure 4.7: The network topology used to solve the supervised learning with a model
created according to the principles of the NEF. Note the similarity with the biologically
inspired network in figure 4.4.

All of these are available locally to the synapse. The error signal, E, is the global error;
that is, it is the difference between our actual output and desired output. Note that this
quantity is multidimensional. E is computed by the Error population; it sums the input
from the Output population and a population that represents the desired output accord-
ing to equation (3.15). Since the desired output is also encoded in a neural population,
E = x̂d − x̂. With this, we are able to evaluate the learning rule continuously online.

It is interesting to note that, although we did not model our learning rule after back-
propagation, because it works on the idea of gradient descent, the two have a very clear
mapping.

Backpropagation

∆ωij = −κδjai
NEF error-minimization

∆ωij = καjej · Eai
= −κδjai, where δj = −αjej · E

In backpropagation, we noted that δj is the local error at neuron j. If we rearrange the
terms as above, the NEF error-minimization rule’s δj is also a measurement of the local
error at neuron j; ej tells us the direction that neuron j is sensitive to, and αj tells us
how sensitive it is to that direction. Since the error E is also a vector, we are projecting
the error onto the neuron’s encoding vector, and scaling it by αj. This is essentially
determining how much neuron j is responsible for the global error; if the error is high,

51

but in a direction that j is not sensitive to, then δj is low, but high error in the direction
that j is sensitive to results in a high δj. It does the same thing as backpropagation
without requiring backpropagation because the encoders prescribe what part of the error
space it should be sensitive to, rather than determining it during the simulation based
on downstream neurons. This means that neurons in the hidden layer are less flexible in
the NEF, and thus an NEF network may require more neurons than would be required
for learning the same function in a multilayer perceptron, but this is a small cost for the
benefit of biological plausibility.

It should be noted that, while the network shown in figure 4.7 appears to be a two layer
network with just the Input and Output populations (and thus solving supervised learning
in this framework would violate the proof of the Universal Approximation Theorem [88,
46]), this should be thought of as a three-layer network because there are at least two non-
linearities applied to the input signal. Encoding the input vector x in the input population
is a nonlinear process, making the Input population of our network more analogous to
the hidden layer of a traditional 3-layer perceptron. The encoding process does not use
synaptic weights (it is, like the learning rule, prescribed by the encoding vectors); it is only
the Input-Output (i.e. hidden-output layer) connections that are learned. Recall from the
representation principle (see section 3.2) that the decoding process is linear, so this is still
analogous to the 3-layer perceptron architecture that is most often used in artificial neural
networks.

4.3.2 Biological plausibility

In this section we argue for the biological plausibility of our neural solution to the supervised
learning problem.

The network structure from figure 4.7 is simple, and there is some evidence that similar
networks exist in parts of the brain like the cerebellum (see figure 4.4). All of the elements
of the learning rule are local and available at the synapse, which is the primary determinant
of biological plausibility for a learning rule.

• κ, the learning rate, is a convenience term that ensures that the amount of synaptic
modification is appropriate for the network. It collects a number of scalar factors
that would likely combine simply in a very detailed biophysical model.

• αj, the gain factor, is an intrinsic property of a neuron.

• ai, the activity of the presynaptic cell, is communicated by the axon terminal of the
presynaptic side of the synapse.

52

More thought must be given to the final two terms, E and ej. If we examine each
of these individually, E is some modulatory signal projected from the Error population.
This global error signal could be signalled by a phasic change in dopamine levels, as in
three-factor rules, and indeed much of the literature treats dopamine quantity as a single
global variable. Alternatively, E could be the activity trace of some other neural activity,
as is more likely in the cerebellum. The encoding vector, ej, should not be thought of as a
property intrinsic to a neuron, though an argument could be made for it in purely sensory
neurons. Instead, a better physical correlate for the encoding vector is that it reflects a
neuron’s spatial position in a physical network of neurons. As mentioned several times
in this thesis, learning appears to be critically modulated by a synapse’s location on the
dendritic tree of a neuron. The neuron’s spatial location in a network certainly affects
how other neurons will connect to its dendritic tree, and the effects of that spatial position
may be well summarized by the encoding vector ej. This would suggest a possible role for
random local connections that are made during development, and for connections that are
made based on genetics.

We also submit as an alternative argument for biological plausibility that we can con-
sider the dot product ej · E as a single quantity with a single physical correlate. As
mentioned, this is essentially the local error for neuron j; this (scalar) value is more easily
analogized to phasic dopamine levels available to a synapse, as it does not require the same
amount of dopamine to be delivered to each synapse.

Experimental explorations of this type of heterosynaptic plasticity were discussed in
section 2.3. We make the additional hypothesis that dopamine levels in and around each
synapse are different across a neural population. Aragona et al. showed that phasic
dopamine levels are different in subregions of the nucleus accumbens, lending credence to
our hypothesis [3]. More precise experiments measuring phasic dopamine levels at individ-
ual neurons would differentiate between the two arguments for the biological plausibility
of ej · E. Specifically, if it were shown that phasic dopamine levels were different between
two neurons in close spatial proximity, it would support the explanation that identifies a
single neural correlate of the quantity ej · E, because spatial location in a population is
not a factor in this explanation. If, however, it were shown that phasic dopamine levels
are similar for neurons in close spatial proximity, but different for those farther apart,
these findings would support the explanation that identifies separate neural correlates of
ej and E, because in this explanation, spatial location is hypothesized to be an important
determinant of the area of the error space a neuron is sensitive to.

53

4.3.3 Simulation results

A number of simulations were run to confirm the theoretical results, and determine how
fast certain functions could be learned.

For each of the mathematical functions tested, a network like figure 4.7 was constructed;
the only differences between the networks were the number of neurons used in the various
populations and the function used to produce input-output pairs. All of the models use
only leaky integrate-and-fire neurons. The number of neurons used varies, and are listed
in table 4.1.

The Input population receives as input a randomly varying vector. Each dimension of
the input vector changes by a small amount on each timestep (determined randomly from
a Gaussian distribution with mean 0 and variance 0.05). The ideal output is computed
directly using the function being tested.

The connection weight matrix between the Input and Output populations is initialized
with random values chosen from a uniform distribution in the range [−0.0001, 0.0001]. We
apply learning rule (4.5) to every connection weight in the Input-Output matrix on each
timestep of the simulation. The timestep used was dt = 1ms.

Evaluation method

Recall that the Error population encodes the E value that we use to modify the connection
weights. We use this measure in evaluating how well the network is performing the target
function. A simulation is broken up into training and testing phases. In the testing phase,
learning is disabled. Until the end of the testing phase, the absolute value of the value
represented by the Error population is accumulated. When the training phase begins, the
accumulated error is recorded, and learning resumes.

The accumulated error can be calculated with the formula

Eacc =

∫ te

ts
|E|

=

∫ te

ts
|x̂d − x̂|,

where ts is the start of a training phase and te is the end of a training phase.

The accumulated error of a network during learning is not solely due to the network hav-
ing not yet learned the transformation. Some amount of the error in the learning network

54

is due to factors other than the connection weight matrix; noise, randomly chosen neuron
parameters, the nonlinearities present in spiking neural networks, and the theoretical limi-
tations of linear decoding in populations of neurons all contribute to error when examining
the simulation on a timestep-by-timestep basis. For this reason, the accumulated error
values from the networks over the course of learning are compared to the average accumu-
lated error values of an analogous control network. The control network has connection
weights calculated using the NEF’s transformation principle, as discussed in section 3.2.2.

The metric by which we will evaluate network performance over time is the ratio of the
accumulated error over the testing phase of the learning network to the average accumu-
lated error over the same length of time in the control network. The average accumulated
error over the same length of time in the control network can be thought of as the expected
value of the accumulated error, giving us as a final network performance metric

Eacc

E[Eacc]
.

Test functions

Five networks to learn nonlinear functions were created. The functions learned in these
networks differed in the dimensionality of the input and output, among other factors.
In this section, we make explicit the five functions and the properties that make them
interesting targets for testing the performance of the learning networks.

In addition to the practical benefits of the functions chosen, we note that previous NEF
models have used these nonlinear functions [42, 166, 192]. Since the implicit assumption
in their use is that such functions could be learned in the brain, these experiments lend
credence to those models by showing that they indeed can be learned with sufficient time
and an appropriate network setup.

Multiplying two scalars
f(x1, x2) = x1x2

Multiplying two numbers is the simplest function that was attempted, in terms of the
dimensionality of the input and output. The input is two-dimensional, and the output
is one-dimensional. It is essential a minimal example, similar to the XOR problems that
many of the supervised spike-timing learning algorithms solve; though, because the output
is scalar and not binary, it is a more difficult problem.

55

Combining two products

f(x1, x2, x3, x4) = x1x2 + x3x4

This function combines two separate, unrelated products. The input is four-dimensional,
and the output is one-dimensional. An important feature of this function is that it is a
linear combination of non-linear functions. Despite that, the error signal is scalar, match-
ing the dimensionality of the output of this function; so, while the network is learning two
non-linearities and the linear combination of them, the only reinforcement it receives is
how incorrect it is at the current timestep.

This function was chosen because it increases the dimensionality of the input space,
providing some indication of how increasing input dimension affects the number of neurons
needed in the input population, how long the network takes to learn, and so on.

Three separate products

f(x1, x2, x3) = [x1x2, x1x3, x2x3]

This function computes three separate, but related, products. The input is three-
dimensional, and the output is three-dimensional. This is the first demonstration of learn-
ing a function that produces multidimensional output. While it is not a minimal example
of this, it is a function that can be separated into three functions that have previously
been examined. So, a learning rule that can learn to multiply two numbers can solve this
problem with three subnetworks. Using multidimensional input and output values tests
the learning rule’s ability to learn in these higher-dimensional spaces.

Supervised learning in high-dimensional spaces is a difficult problem because the size
of the input and output spaces grows exponentially with dimensionality. Because of this,
previous studies have examined different ways to work around this problem (e.g. [70]). By
using a multidimensional error signal, however, we show that it is possible to learn in the
high-dimensional space directly.

Two-dimensional circular convolution

f(x1, x2, x3, x4) = [x1, x2]⊗ [x3, x4]

The circular convolution operation is used in many NEF models because it can be
used to bind and unbind vectors that represent symbols. Previous models using circular

56

convolution have used a 3-layer network to improve accuracy. In the first layer, a linear
transformation projects the original vector into the frequency domain (i.e., computes the
discrete Fourier transform). In the second layer, the vectors in the frequency domain are
computed. In the third layer, the vectors are projected back into the signal domain using
the inverse discrete Fourier transform.

This 3-layer approach differs from the network structure shown in figure 4.7, and re-
quires more neurons. It is not clear how an analogous 3-layer network would be learned, so
we attempt to learn the circular convolution operation with the typical 2-layer structure.
The learned network, in this case, is compared to both the 3-layer approach typically used
in networks without learning, and a 2-layer approach in which decoders to approximate
circular convolution are computed.

Three-dimensional circular convolution

f(x1, x2, x3, x4, x5, x6) = [x1, x2, x3]⊗ [x4, x5, x6]

Adding a third dimension to the circular convolution network described above gives
insight into how additional dimensions affects the nature of the learning in the network.
Like in the 2D case, we compare the learned network with a 3-layer and 2-layer version of
the control network.

While it would be ideal to continue exploring convolution in even higher-dimensional
spaces, three dimensions starts to reach the ceiling of how complex the network can be
tested in a reasonable amount of computer time.

A summary of these five functions and some of specifics of the networks is provided in
table 4.1.

Results

The five learning networks were simulated for an appropriate length of time based on
initial tests of how long the network takes to converge to a good solution. Each non-
convolution network was simulated 40 times. The convolution networks were simulated
10 times each, due to the length of time necessary to run these simulations. The average
relative accumulated error values over time are plotted for each learning network in figure
4.8.

As a whole, these graphs provide strong evidence that our method can learn to compute
arbitrary nonlinear functions. The nonlinear functions are in an arbitrary vector space, and

57

Function
Input
dimensions

Output
dimensions

Neurons in
learning
network

Neurons in
control
network

f(x) = x1x2 2 1 420 420
f(x) = x1x2 + x3x4 4 1 756 756
f(x) = [x1x2, x1x3, x2x3] 3 3 756 756
f(x) = [x1, x2]⊗ [x3, x4] 4 2 700 704 (2-layer)

1500 (3-layer)
f(x) = [x1, x2, x3]⊗ [x4, x5, x6] 6 3 800 804 (2-layer)

1700 (3-layer)

Table 4.1: A summary of the functions tested. The network structure for all but the 3-
layer convolution networks is depicted in figure 4.7. Note that the number of neurons listed
includes the neurons for the input, output, and error populations only; the desired output
and some non-essential populations used for convenience are not included.

not in the space of spike-times, meaning that it solves the more general supervised learning
problem. Additionally, unlike approaches in artificial neural networks, these networks are
robust; almost all parameters are randomly generated (the tuning properties of neurons,
encoding vectors, initial connection weights). The only free parameter is the learning rate,
κ, which in these simulations was always 1× 10−7; it was not optimized for each network.

The amount of time needed to learn each function is difficult to characterize. In artificial
neural network literature, learning curves are plotted as a function of the number of learning
episodes. In the case of our networks, learning happens continuously; one could say that
each timestep is a learning episode, and for that reason we plot the learning curves as a
function of time, but because the input-output pairs are also continuously generated and
randomly varying, it’s possible that the networks could learn faster with better choices for
the input-output pairs. Similarly, it is likely that the network would learn slower if the
input and output pairs varied at a slower rate or discretely.

Nevertheless, the networks appear to learn quickly. More importantly, increasing the
number of dimensions does not have a markedly negative effect on the speed of learning.
Figure 4.9 quantifies this relationship. From those plots, it seems that neither input nor
output dimensionality is significantly more important than the other. The total dimen-
sionality seems to show the best relationship in the data; the best-fit line appears to fit
quite well, suggesting that this method of supervised learning scales linearly in the number
of dimensions, meaning that from a simulation-time point of view, it does not suffer from

58

0 10 20 30 40 50 60

1.0

1.2

1.4

1.6

1.8

2.0

R
el

at
iv

e
er

ro
r

(l
ea

rn
in

g
vs

.a
na

ly
ti

c)

f(x) = x1x2

0 20 40 60 80 100
0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

f(x) = x1x2 + x3x4

0 20 40 60 80 100
0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

f(x) = [x1x2, x1x3, x2x3]

0 20 40 60 80 100 120 140
Learning time (seconds)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
el

at
iv

e
er

ro
r

(l
ea

rn
in

g
vs

.a
na

ly
ti

c)

3 layer control
2 layer control

f(x) = [x1, x2]⊗ [x3, x4]

0 50 100 150 200 250 300 350 400
Learning time (seconds)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

3 layer control

2 layer control

f(x) = [x1, x2, x3]⊗ [x4, x5, x6]

Figure 4.8: Results of the learning error’s accumulated error compared to the control
network’s, whose connection weight matrices are determined analytically. In the case of
circular convolution (bottom two plots), the results of the 2-layer control network is also
compared to the 3-layer control network. Black lines represent the average relative accu-
mulated error values. Filled grey areas represent bootstrapped 95% confidence intervals.
These confidence intervals are determined by randomly choosing 40 (or 10) samples from
the 40 (or 10) trails, computing the mean of those samples, and then repeating the pro-
cedure 1000 times. The bootstrapped 95% confidence interval is the interval between
elements 25 and 975 of the sorted list of 1000 random samples of the data. The time
indicated on the x-axis is the amount of time that the network has been allowed to learn.
At 0 seconds, the Input and Output populations are connected with a completely random
connection weight matrix. At 10 seconds, the network has learned for 10 seconds, but has
also gone through one or more testing phases that are not included in the time represented
by the x-axis.

59

1 2 3 4 5 6 7
Input dimensions

20

30

40

50

60

70

80

90

100
T

im
e

to
le

ar
n

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Output dimensions

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10
Input+Output dimensions

20

30

40

50

60

70

80

90

100

Figure 4.9: Amount of time taken to “learn” a function, as a function of input dimension-
ality (left), output dimensionality (middle), and total dimensionality (right). A function is
considered “learned” when the 95% confidence interval reaches 1.0 relative error (see figure
4.8). The dashed line is fit to the data points.

the curse of dimensionality. The amount of computing time taken to do each simulation
is not plotted, but because of the increase in the number of neurons, computationally the
algorithm slows superlinearly as the dimensions increase.

We can extrapolate from the best-fit line for the plot with the total number of dimen-
sions, and estimate how long it would take to learn a function on 500 dimensional vectors,
which are the size of vectors hypothesized to be represented in the brain [59]. For a func-
tion with 500-dimensional input and output, the best-fit line predicts that it would take
8130 seconds, or just over 2.25 hours, to learn any nonlinear function, with a continuous
stream of input-output examples.

An interesting result shown in figure 4.8 is that the learned 2-layer convolution networks
perform significantly better than the analytically determined 2-layer control networks;
in the 2-dimensional case, the learned 2-layer network performs as well as the 3-layer
control. The 3-layer architecture was created because a 2-layer solution does not compute
the convolution accurately enough; however, our results contradict that and suggest that
connection weight matrices to do circular convolution in 2-layers exist.

60

4.3.4 Conclusion

In this section, we proposed a solution for the machine learning supervised learning prob-
lem, based on the principles of the NEF and learning rule (4.5). We have showed that this
learning rule is analogous to backpropagation, but maintains biological plausibility as all
of the elements used in the learning rule are available locally to the synapse.

Simulation results showed that our method can learn a number of complicated non-
linear functions. Additionally, in terms of simulated time, our method does not suffer
from the curse of dimensionality. Our results also suggested that the NEF is capable of
performing more complicated transformations in 2-layers than are currently implemented.
It may be the case that solving for the weights with many more evaluation points can
reach the same performance of the learned network, though it may also point to a need for
improvements in the process of solving for decoding weights.

61

Chapter 5

Reinforcement learning

While supervised learning is a problem initially posed and solved in computer science,
reinforcement learning is inspired by animal behaviour. Animals are born with a certain
amount of their capabilities available, but it is clear that animals learn from their environ-
ment by taking actions in different situations and adapting their future actions based on
reinforcement, either internally or from the environment. The simplest example of this is
when a child first learns “the hard way” not to touch the stove when it’s hot: the child
sees the red-hot element, takes the action to touch it, and receives negative reinforcement
in the form of a painful burn. In the future, the normally functioning child will associate
touching a red-hot element with this negative reinforcement, and not perform that action
in the future. Because this type of learning is dependent on some kind of negative or
positive reinforcement, it is called reinforcement learning.

Early behavioural and psychological explorations of this can be best summarized by
Thorndike’s law of effect [203], which, simply stated, says that animals in a certain situation
are more likely to perform actions that have produced a satisfying effect, and are less likely
to perform actions that have produced detrimental effects. This idea led to many models of
reinforcement learning, though the term was not used and the field generally disorganized
until the pioneering work of Barto and Sutton in the early 1980s [13, 196], inspired by
Klopf’s work in the 1970s [106, 107]. Since then, reinforcement learning has become a
large part of machine learning research.

One of the hallmarks of this research is that modelling efforts have informed neuro-
science experiments, revealing that mathematical models of reinforcement learning may
not be far removed from the neural implementation of learning from sparse reinforcement
by trial and error [177, 179].

62

In the remainder of this chapter, we present the mathematical framework that has
been developed by the machine learning community, discuss some simple models, and then
summarize the evidence that these simple models are analogous to reinforcement learning
in the brain. Finally, we present a model that shows that we can use the NEF learning
rule from chapters 3 and 4 to create a biologically plausible model that bridges the gap
between purely mathematical models and experimental evidence.

5.1 Reinforcement learning in traditional artificial neu-

ral networks

At the core of all work done in reinforcement learning are two ideas: the agent-environment
interface and Markov decision processes.

5.1.1 The agent-environment interface

Unlike supervised learning in which everything involved in the problem is observable and
controllable by the learning algorithm, in reinforcement learning a distinction is made
between the elements of a problem that are controllable by the learning algorithm and
which are only observable. The controllable aspects are said to be modified by an agent,
and the observable aspects are said to be sensed through the environment (see figure 5.1).

Agent

Environment

Action
at

Reward
rt

State
st

rt+1

st+1

Figure 5.1: The basic agent-environment interface. Recreated from [198].

The agent and environment interact over time; this notion of time could represent the
realistic passage of time, with t = [0, dt, 2dt, ...], or it could be an abstraction of time, with
each timestep representing the time at which an “important” aspect of the environment
has changed.

63

In either case, at each point in time, the environment is in some state, st, which is one
of a finite set of states, represented by S. The agent has access to that state, and based
on it takes some action, at, which is one of a finite set of actions available at a given state,
represented by A(st). That action has some effect on the environment, which pushes it
into its next state, st+1. The environment also emits a scalar reward value, rt+1. The
interpretation of the reward value is task-specific; in some tasks, the reward is very sparse
(e.g. rt = 0, except when in some goal state).

The goal of a reinforcement learning algorithm is to choose the best actions for the
agent. The best action in any given state is usually defined as the one that results in the
maximum future reward; that is, the agent is attempting to maximize the quantity

R =
∞∑
t=0

rt+1.

It is, however, impossible to reason about rewards delivered for all of time, so rewards
are weighted such that those delivered sooner are weighted higher, and rewards delivered
very far in the future are ignored entirely. To do this, we add a discounting factor γ ≤ 1
to the above equation.

R =
∞∑
t=0

γtrt+1 (5.1)

5.1.2 Markov decision processes

Given the above description, a reinforcement learning task would be intractable if the
optimal strategy depended on knowing the current state and all previous states that led
to the current state; this would require knowledge of an infinite combinations of state
sequences.

Instead, reinforcement learning problems enforce the Markov property. Any process
that exhibits the Markov property does not require memory. In reinforcement learning
tasks, this means that a state contains all of the information necessary to make a rational
decision; having memory of the states that led up to the current state gives no additional
information. Stated in a different way, the next state in a reinforcement learning problem
exhibiting the Markov property is completely determined by the current state, the action
taken in that state, and possibly one or more random variables.

In tasks where some kind of memory of previous states affects the decision one would
make in the current state, the general strategy is to include any necessary information

64

in the state representation. Creating state representations with sufficient information but
not extraneous information can be difficult, and often requires domain knowledge. For
example, to learn how to act in a board game like checkers, all that is necessary is the
current position of all the pieces on the board – the history of how those pieces got there is
usually (though not always) irrelevant. In a more dynamic game like soccer, the position
of the players and the ball is clearly not sufficient; velocity information, and possibly
acceleration would be necessary to act rationally in this environment.

If the environment exhibits the Markov property, or if it can be made so with augmented
states, then we can phrase the reinforcement learning problem using Markov decision pro-
cesses (MDPs). An MDP is made up of four elements.

1. S, the set of possible states.

2. As, the set of possible actions from each state.

3. Pa(s, s′) = Pr(st+1 = s′|st = s, at = a)
The transition probability matrix. This matrix defines the probability of arriving in
each possible successor state, s′, when action a is taken in state s.

4. Ra(s, s
′) = E(rt+1|st = s, at = a, st+1 = s′)

The expected reward matrix. This matrix defines the expected value of the reward
given when taking action a in state s results in successor state s′.

In reinforcement learning tasks, the agent knows S and As, but usually does not know
one or both of Pa(s, s′) and Ra(s, s

′).

As previously stated, the reinforcement learning problem is to choose the best actions
for the agent; because of the Markov property, this decision is only dependent on the
current state and the agent’s accumulated experience from taking actions in that state
previously. We can express this as a function called the policy, π(s), which outputs an
action given a state. The optimal policy, π∗(s), is one that maximizes the discounted sum
of future rewards (equation (5.1)).

This mathematical framework forms the basis of most reinforcement learning research
in machine learning. The reinforcement learning problem is summarized in figure 5.2.

5.1.3 Value functions

Our goal is to learn the optimal policy, or some policy very close to optimal.

65

Given some information about a Markov Decision Process,

MDP = (S,As,Pa(s, s′),Ra(s, s
′)),

find a policy π(s) = a such that following that policy maximizes

R =
∞∑
t=0

γtrt+1.

Figure 5.2: The reinforcement learning problem.

If we know the whole MDP, then we can find an optimal policy by repeatedly “simulat-
ing” the MDP and keeping track of which states can lead to high reward values [18]. This
algorithm, called value iteration, involves keeping track of the value for each state, which
we will represent by V (s). If we have complete information about the MDP, then we can
evaluate

V (s) = max
a

[∑
s′

Pa(s, s′)(Ra(s, s
′) + γV (s′))

]
, (5.2)

which is known as the Bellman equation for MDPs. Note the recursive nature of this
equation; V (s) depends on the value of the successor state, V (s′). Because of this, we use
dynamic programming to solve this equation. This approach, which follows, is conceptually
simple, but computationally costly.

1. Create a table that will store the value of each state in the set S. Randomly assign
initial values to each state.

2. For each state, evaluate equation (5.2); use the value table instead of evaluating
V (s′).

3. Repeat step 2 until all V (s) values remain unchanged after evaluating the equation
for each state.

In practice, it is usually better to stop repeating step 2 when the overall change in V (s) is
some small amount. It has been proven that, even if the value function does not converge,
value iteration can be used to find the optimal policy in some finite number of steps [20].

Note in equation (5.2) that we use the transition probabilities and expected reward
values to determine the optimal policy. This dependence makes value iteration a model-

66

based approach to reinforcement learning. In model-based approaches, we either must
know the full MDP at the outset, or learn it through trial and error.

5.1.4 Temporal-difference learning

An alternative to model-based approaches are model-free approaches, which aim to find an
optimal policy without explicitly learning the underlying MDP. One of the first model-free
approaches is called temporal-difference learning (TD-learning). In TD-learning, we also
keep track of the value for each state, but instead of using the model to update our estimate
of the value, we instead take the action that our policy recommends in the current state,
and then update our estimate using the information from the environment on the next
state.

Specifically, our value update function is

V (st) = V (st) + α [rt+1 + γV (st+1)− V (st)] , (5.3)

where α is a learning rate, which determines how closely our new estimate of the value
matches what the current timestep’s prediction dictates, and γ is the discount factor from
equation (5.1), included because the value function represents the discounted sum of future
rewards, which at time t+ 1 is discounted by γ.

Note again that this equation is recursive, in that the value of one state depends on the
value of the next state. This means that we must explicitly store the value for each state,
usually in a lookup table.

The value of the next state reflects our prediction of how much reward we are likely to
accumulate after time t + 1; the value of the current state is that amount plus what we
expect the reward to be at time t+ 1. If we predict correctly, then we will not change the
value we have assigned to the current state.

rt+1 + γV (st+1)− V (st)

=rt+1 +
∞∑

i=t+1

γi−trt+2 −
∞∑
i=t

γi−trt+1

=rt+1 − γ0rt+1 = 0

If we have predicted incorrectly, then this term will be some non-zero value. For this
reason, we call this value the prediction error, δ.

67

δt = rt+1 + γV (st+1)− V (st) (5.4)

If we have underestimated the value of the next state, then δ is positive, and we raise
our estimate of the current state. If we overestimated the value of the next state, then δ
is negative, and we lower our estimate of the current state.

TD-learning converges to the optimal value function given a fixed policy. But, without
knowing the correct transition probabilities, we cannot use the value function alone to
determine the optimal policy. To do that, we define a new value function that determines
the value of state-action pairs. This function is called the Q-function.

We can adapt equation (5.3) to use state-action pairs instead of just states.

Q(st, at) = Q(st, at) + α [rt+1 + γQ(st+1, at+1)−Q(st, at)] (5.5)

This equation is called Sarsa because it depends on the quintuple (st, at, rt+1, st+1, at+1).
With this, we update Q-values with experience, and given a state, choose a rational action.
Sarsa is called an “on-policy” method because it learns solely through the actions it takes
while interacting with the environment.

An “off-policy” temporal-difference learning algorithm is known as Q-learning. Its value
update equation is

Q(st, at) = Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (5.6)

Note that while we still follow the policy given by the current Q value, the value update
equation uses whichever action produces the largest value in the next state, even if the
policy does not choose that action (hence the “off-policy” label). That means that we can
take actions that explore the space without slowing down learning.

5.1.5 Using artificial neural networks

TD-learning alone converges to the optimal state-value function [49, 196], and Q-learning
converges to the optimal state-action-value function [207]; however, most early convergence
proofs depended on a table-based implementation of the value functions (i.e., V (s) and
Q(s, a) values are stored in a table). We are interested in artificial neural networks, and
since V (s) and Q(s, a) are just specific nonlinear functions, it should be straightforward
to apply the previously discussed ideas to an agent implemented with a neural network;

68

however, efforts to this end have met with varied success. Baird created a method called
residual algorithms that implemented Q-learning using linear function approximators with
guaranteed convergence, but it is not clear that the proof would hold for nonlinear function
approximators like a multilayer perceptron [8, 198]. Doya devised a version of TD-learning
that operates in continuous time and space [53, 54], and Baddeley showed that it could be
applied to a multilayer perceptron, though learning was extremely slow unless a specific
rehearsal strategy was used [7].

5.1.6 Comparison to supervised learning

The distinction that is commonly made between supervised learning and reinforcement
learning is that supervised learning offers a constant fine-grained error signal – that is,
at any point in time, the neural network knows that exactly how “wrong” it is. In rein-
forcement learning, the reinforcement (which could be interpreted as an error signal) is
temporally sparse and of varying granularity. The reward could be as simple as a binary
value – the neural network performs some function, and after a certain amount of time
performing that function, it is told if it is right or wrong.

However, the MDP-based formulation of the reinforcement learning problem, summa-
rized in figure 5.2, is very flexible. Although we typically expect to get sparse rewards with
little detail, we could instead make the reward have the same detail as the error signal in a
supervised learning problem. With this, it is easy to pose the supervised learning problem
as a reinforcement learning problem.

It is generally accepted that the converse of that statement is not true: a reinforce-
ment learning problem cannot be phrased as a supervised learning problem [12]. MDP
model random processes, and an approach to solving them must model this stochasticity,
which cannot be done in a single nonlinear function. This may explain why implement-
ing reinforcement learning techniques using multilayer perceptrons has proved difficult,
and suggests that a neural implementation of reinforcement learning will require a more
complicated architecture than the one in figure 4.7. We use the complexity of reinforce-
ment learning over supervised learning when discussing previous neural implementations
of reinforcement learning.

69

5.2 Reinforcement learning in spiking neural networks

Despite being a more difficult problem than supervised learning, the literature for reinforce-
ment learning in experimental and theoretical neuroscience is vast and rapidly developing.

This section presents experimental evidence that several areas of the brain encode a
signal that is closely related to temporal-difference reward prediction error (see equation
(5.4)). We will examine previous neural models of reinforcement learning motivated by
these experiments, and then present our own model that replicates the behaviour and
single-cell recordings of rats in a simple reinforcement learning task.

5.2.1 Dopamine may encode TD-like reward prediction error

The origins of reinforcement learning are in the classical conditioning experiments of
Pavlov, who showed that animals can be trained to respond in certain ways to arbitrary
stimuli [175]. The classic experiment performed by Pavlov paired an auditory tone with
food powder delivery to hungry dogs. After repeated pairings of the tone with food, the
dogs started to salivate after the tone, but before the food was delivered. We call the
auditory tone the conditioned stimulus (CS), and the delivery of food the unconditioned
stimulus (US). The US usually has some intrinsic positive or negative value to the animal,
while the CS is arbitrary; classical conditioning can be used to transfer some aspect of the
US to the CS. The dogs salivating after the tone but before the food was delivered indicates
that the dogs responded to the tone by predicting the delivery of food, which produced a
autonomic response. In classical conditioning, the animal does not have to perform an ac-
tion to ensure that the US is delivered, so it is essentially learning to associate two stimuli;
this is sometimes referred to as learning stimulus-stimulus (S-S) associations.

Operant conditioning (sometimes called instrumental conditioning) is a similar paradigm
for teaching animal behaviour, except that after the CS, or instead of the CS, the animal
takes some action in order to receive the positive US, or avoid the negative US [189].
This is more related to Thorndike’s law of effect; instead of learning S-S associations, the
animal learns stimulus-response (S-R) associations. Operant conditioning can be further
subdivided into habits, which are simple S-R associations, and goal-directed behaviour, in
which the animal also learns the outcome of the response (S-R-O associations), and modi-
fies its response to the stimulus based on whether the outcome is desirable. The difference
between learning habits and goal-directed behaviours maps well onto the reinforcement
learning distinction between model-free and model-based learning, respectively.

70

While the behavioural mapping seems clear, a neurological mapping was not elucidated
until Wolfram Schultz et al. showed evidence in the mid-90s that the activity of dopamin-
ergic neurons in the midbrain appeared to encode something very similar to TD reward
prediction error (δ from equation (5.4)) [141, 177, 179, 180]. Figure 5.3 summarizes the
main result, which is that the dopaminergic neurons initially respond to a juice reward,
indicating that they are sensitive to appetitive events. With repeated associations of the
CS and juice reward, the dopamine neurons shift from responding to the actual appetitive
event to the conditioned stimulus. Further, when the CS does not result in the predicted
reward, there is a dip in dopaminergic neuronal activity when the reward would normally
be delivered.

Temporal-difference reinforcement learning can explain this activity. We can think of
the animal as the agent in a reinforcement learning situation. The value of an arbitrary
state is some baseline value, with small changes due to internal states and environmental
changes, as indicated by the baseline activity of the neuron in figure 5.3. The time of the
CS is tCS and the time of the reward is tUS. During initial pairing, the delivery of reward
at tUS increases the value of the state associated with that time; i.e., V (stUS) increases. As
the two stimuli are repeatedly paired, the value of stCS also increases if we use a temporal
difference learning rule like equation (5.3), as the difference V (stUS)− V (stCS) is positive.
Over time, the value of V (stCS) increases, and because the CS occurs at an arbitrary point
in time, it is not predicted by a previous state, and so its prediction error is positive, and
dopamine neurons activate. When the US is not delivered, then the prediction error is
negative, and decreased activity in dopamine neurons is observed.

One important thing to note is that dopamine neurons do not gradually shift their
activity back in time to different points between tCS and tUS; activity shifts directly from
tUS to tCS. Further, if the US is delayed by even a small amount of time, dopamine
neurons show increased activity after the stereotypical dip in activity where the reward
was predicted [130]. This indicates that some part of the brain keeps track of time, and
possibly associates it with states. That is, when the CS occurs, or the appropriate action
is taken, the animal does not transition to the state associated with the US until the
appropriate amount of time has passed. Encoding this temporal information presents
many difficulties to neural models of reinforcement learning in the brain.

It is also important to note that the prediction error theory of dopamine is only one of
a handful of theories concerning what information the dopamine system encodes. Other
roles attributed to the dopamine system include incentive salience [19], uncertainty [63],
and motivation [160]. However, in our domain, which is in changing behaviour in a simple
task based on conditioning with reward, Tsai et al. showed that phasic dopamine firing
is sufficient for behavioural conditioning, suggesting that while dopamine may play many

71

R

CS R

−0.5 0.0 0.5 1.0 1.5 2.0

Time (seconds)

No CS

Reward delivered

Reward predicted
Reward delivered

Reward predicted
Reward not delivered

Figure 5.3: The activity of dopamine neurons appears to code for reward prediction error.
Each plot is the response of one neuron over multiple trials, with the peri-stimulus time
histogram plotted above. (Top) With no conditioned stimulus (CS) delivery of juice reward
causes firing of the dopamine neuron. (Middle) After repeated pairings of a CS with juice
reward, the dopamine neuron now spikes in response to the CS, rather than the reward.
Note that as the animal learns, the dopamine response does not travel back in time from
the time of reward to the CS; over time, the neuron responds less at the time of reward
and more at the time of the CS. (Bottom) In the absence of reward, the neuron does not
fire when reward would normally be delivered, indicating that the reward is predicted at a
specific time. Recreated from [179].

roles, one such role is in this type of learning [206].

Dopaminergic neurons exist in the ventral tegmental area (VTA) and substania nigra
pars compacta (SNc). Neurons from these areas project through dopaminergic pathways
primarily to the frontal cortex, hippocampus, and the basal ganglia, particularly the stria-
tum (see [28] and figure 5.4). There have been many attempts to map the elements of

72

the reinforcement learning problem (figure 5.2) to these areas and area with projections to
them (see [130] for a review). Of particular importance to the current study are theories
positing that the basal ganglia does action selection, and that dopamine projections to
the striatum inform action selection by changing the values assigned to states and actions
[96, 103].

Mesocortical

Pathway

Mesolimbic
Pathway

Mesostriatal

Pathway

Substantia nigra

Ventral tegmental area

Striatum

Figure 5.4: The three primary dopaminergic pathways in the brain. Note the strong
connections to striatum and frontal cortex. Recreated from [28].

5.2.2 Previous neural models

Many models have been proposed that map reinforcement learning ideas onto brain areas,
or use neuroscientific evidence to inform machine learning models (e.g. the actor-critic
architecture [11, 81, 96, 103, 194, 195], Neural-fitted Q-iteration [169], and others [48, 66,
98]). However, as we are concerned in this thesis with maintaining biological plausibility,
in this section we review only those models that use spiking neural networks.

RL through reward-modulated STDP

The majority of spiking neural network models of reinforcement learning use a reward-
modulated spike-timing dependent plasticity rule to reinforce more strongly those neurons
active in a certain desirable state.

73

Florian developed a reinforcement learning technique based on a previous non-spiking
approach that did online optimization of average reward in partially observable MDPs
(POMDPs), which are like MDPs except that the agent cannot directly observe the state
st and instead must infer the state given some observations [64, 65]. By applying the ideas
of the previous non-spiking approach, they arrived at a learning rule that is essentially
the product of a simple STDP curve (see figure 2.7) and a global reward signal. While
the algorithm is biologically plausible, including a stochastic firing threshold, simulation
results are unconvincing as a proposed method of reinforcement learning in the brain. In
an attempt to learn a network to solve the XOR problem, one of the simplest nonlinear
functions, and a supervised learning problem (which, as discussed in section 5.1.6, is an
easier problem than reinforcement learning), the algorithm took many learning episodes
to convincingly solve the task. The temporal coding scheme used represented each binary
value as a 500ms long spike train, which calls into question whether the algorithm could
operate in a situation with sophisticated representations. Baras and Meir derive a very
similar rule, also inspired by reinforcement learning solutions to POMDPs, and showed
similar results on the XOR task [9]. They also showed results from a path learning task,
but this problem can also be reduced to a supervised learning problem, and thus does not
warrant further investigation as a solution to the reinforcement learning problem.

Farries and Fairhall used an error modulated STDP rule to train a network to take an
arbitrary input spike train and produce a target output spike train [60]. While they pose
their algorithm in the context of reinforcement learning, this problem is clearly equivalent
to the supervised spike-time learning problem (figure 4.5). Further, their algorithm, like
other solutions to supervised spike-time learning, is not scalable; it can only map from an
input spike train to a target output spike train with five spikes or less.

Izhikevich used a reward-modulated STDP rule to solve a temporal credit assignment
problem [92]. He used a straightforward learning rule that was the product of an eligibility
trace that accumulates the effects of STDP, and the amount of extracellular dopamine.
The eligibility trace determines what kind of weight changes one would expect from typical
STDP experiments, but the weight is not changed until reward is delivered in the form
of extracellular dopamine; the dopamine acts as a gate to learning, which is consistent
with activity in some areas of the brain (see section 2.3). In one experiment, 100 different
subsets of neurons are stimulated at arbitrary times and reward delivered only after one
of the 100 stimuli; this stimulus causes much more spiking activity, indicating that the
stimulus now predicts the reward (see figure 5.5).

However, we note that this experiment is dependent on the speed of decay of the
eligibility trace (see fig 5.6); in these experiments, the reward must be delivered within 3
seconds of the CS or synaptic strengths will not change. Izhikevich also showed that the

74

0

200

400

600

800

1000

S1 S8 S82 S97 S45

reward

n
e
u

ro
n

n
u
m

b
e

r

before:

time

0

200

400

600

800

1000

S1 S31 S88 S94

reward

100 ms

n
e
u
ro

n
n
u
m

b
e

r

after:

time 1 s

Figure 5.5: Conditioning the network to respond preferentially to stimlus S1, but not any
of the other 99 stimuli. (Top) Before conditioning, the response to S1 is the same as any
of the other stimuli. (Bottom) After conditioning, there is a larger response to S1 over any
of the other stimuli. From [92].

network shifted its strongest response from the US to the CS using the same learning rule.
The only element missing from from Izhikevich’s model is the decrease in activity when the
CS predicts reward that is not delivered; however, Chorley and Seth extended this model
and were able to simulate the decreased activity from non-delivered predicted reward [43].
These models propose a good mechanism for classical conditioning, but it is not clear that
it could be used for models with highly structured representations of states, nor does an
extension for model-based reinforcement learning seem possible. It is also, as mentioned
before, limited by the rate of decay of the eligibility trace.

A final perspective on STDP-based implementations of reinforcement learning is the
view that STDP itself implements temporal difference learning. Roa and Sejnowski showed
that modelling dendritic backpropagating action potentials in a detailed biophysical model
and changing synaptic weights according to the temporal difference in the postsynaptic
membrane potential yields STDP [165]. Kolodziejski et al. provided a mathematical
proof that differential Hebbian learning (i.e., equation (2.3)) modulated multiplicatively
by a third term is equivalent to TD-learning; however, the approach has not yet been
applied in a convincing simulation that shows that differential Hebbian learning can solve
a reinforcement learning task [109].

75

500 ms

reward (delayed by 1-3 sec)

synaptic strength

extracellular dopamine

pre

post

eligibility trace

Figure 5.6: A demonstration of how Izhikevich’s learning rule works. The eligibility trace
accumulates the effects that would occur with normal STDP (see, for example, the dip
after a post-pre pairing). The delivered reward allows the plasticity to occur, raising the
synaptic strength [92].

As a general commentary on the biological plausibility of these error-modulated STDP
models, all of the models summarized in this section used simple pair-based STDP, which
does not capture all of the observed STDP effects in the brain (see section 2.1.3). None of
the studies mention the possibility of extending the model with a triplet-based rule, which
would assuage these concerns.

Further, the models that did simulate reinforcement learning tasks utilized a global re-
ward signal. Schultz provides for the justification for using global reward; in [178] he argues
that there are between 300-400 times more striatal neurons than dopamine neurons, and
the population response of those dopamine neurons is relatively homogeneous. However,
as we have previously stated, phasic dopamine levels have been shown to be different in
subregions of the nucleus accumbens, suggesting that phasic dopamine levels are at some
level local (see [3] and section sec:sup-nef-bioplaus).

One approach that showed a clear improvement in performance using a local formulation
of reward was described by Urbanczik and Senn [211]. They used population coding to
encode the response of a neural network to input rather than a single neuron or a small
assembly of neurons. Their approach was similar to Florian’s in that input was delivered as
500ms long spike trains, and like their formulation of the XOR task, there were two possible
outputs. They showed that using a population of neurons to code the output rather than a

76

single neuron improved the speed and accuracy of learning if the learning rule incorporated
a local error term that represented an individual neuron’s contribution to the global error.
Further, performance improved with more neurons in the output population. While a
good motivator of using population coding (as the NEF does), this classification problem
is reducible to a nonlinear function, meaning it can be solved with supervised learning,
and therefore is not a convincing demonstration of RL in a spiking neural network.

Spiking actor-critic

Potjans et al. developed a spiking network model that can solve a nontrivial reinforcement
learning task, and at the moment is the most convincing account of reinforcement learning
in a spiking neural network [162]. Their network is based on the actor-critic architecture, in
which action selection is done by an “actor” module, and the result of the action is evaluated
by a “critic” module, modifying the future behaviour of the actor. This architecture is
based on a mapping to biology in which the dorsal striatum is the “actor” module, and the
ventral striatum is the “critic” [130]. This mapping has been widely explored, but there
remain unanswered questions concerning what the ventral striatum encodes, and what
function it performs [212].

Figure 5.7: Circuit diagram summarizing Potjans et al.’s spiking actor-critic model [162].

The network structure in figure 5.7 summarizes the approach. States are represented
by populations of 40 LIF neurons, and the critic by a population of 20 LIF neurons. Each
action has an associated neuron, and when the environment signals a change in state by

77

stimulating one of the “state” populations, the first action neuron to spike signals what
action will be taken (this technique is seen in many other models, and is termed first-spike
coding). The environment emits a reward that is globally signalled to critic neurons after
an action is taken and the state changed.

The connections from state to critic are plastic, and represent the state-value function.
Because the prediction error cannot be computed until the agent leaves the state whose
value is modified, a critical period after the state transition is identified, and the state-
critic projection is only plastic during that critical period (see figure 5.8). Activity traces
at different timescales are used to simultaneously represent the values of the previous and
current states. These elements are combined to calculate a TD prediction error, which is
used directly to modify connection weights (i.e., the strength of synapses from state A to
the critic population is V (A)).

Figure 5.8: From [162]. (Left) The activity of a presynaptic neuron. At 6 seconds, the
cell is stimulated; when the trace passes θh, it enters the “high-activity” state. At 9
seconds the stimulation is removed. When it decreases past θp, it enters the “plastic”
state, at which time any efferent connections from this neuron can be modified. Once the
activity decreases past θl, the neuron is in the “low-activity” state and is no longer plastic.
These state transitions are unidirectional. (Right) Example of a change in a state-critic
connection weight. The dashed and solid black lines represent two postsynaptic activity
traces, one fast and one slow, respectively. The grey line is the synaptic strength, which
increases at 3, 9, and 15 seconds in response to a state change; the synapse is only plastic
for a short time, due to the effect described in the left plot.

The connections from state to actor are also plastic, and represent the policy. The
changes in synaptic strength are proportional to the state-critic strength changes; when
the actor neuron fires, a postsynaptic activity trace begins that defines the period in which
the state-actor connections are plastic. The amount of weight change is proportional to the
state-critic changes, the biological plausibility of which is argued with cited experimental

78

findings of axonal spread of LTP/LTD of nearby synapses, though we point out that
this makes the unstated assumption that actor neurons would be spatially close to critic
neurons.

The algorithm reliably and quickly solves a gridworld task. As a neural implementation
of the classic actor-critic algorithm, it is the most sophisticated that we found. However,
one of the strengths of neural networks is the ability to generalize, and the algorithm as
it is now cannot generalize due to discrete populations representing each state. Further,
these states do not represent any information, only signal that the agent is in a particular
discrete state; as such, this architecture could not scale up to the infinitely large space of
states that an organism can find itself in. The action selection mechanism is not robust,
as losing one neuron would result in no longer being able to perform an action, though the
authors outline a number of more robust action selection mechanisms that could be used
in the network. There are many concerns about the biological plausibility of the approach,
though plausibility was not necessarily the authors’ main focus.

5.3 Reinforcement learning in the NEF

In the previous section, we discussed a spiking implementation of the actor-critic architec-
ture. A previous model implemented using the principles of the NEF implements something
similar to the “actor” module. We augment this model with a “critic” module, and show
that this model can replicate the behavioural and single-cell recording results of a rat in a
simple reinforcement learning task.

5.3.1 Action selection

In reinforcement learning terminology, “action selection” is the problem of determining a
policy given the state value function, or more commonly, the state-action value function. If
the optimal state-action value function is known, then the greedy policy is optimal. When
determining state-action values, following the greedy policy can result in local minima; this
is often referred to as the exploration-exploitation tradeoff.

The basal ganglia have been hypothesized as the part of the brain responsible for action
selection. A model based on experimental evidence of this hypothesis was implemented
by Gurney, Prescott and Redgrave in 2001 [74, 75]. A spiking version of their model,
implemented using the NEF by Stewart et al., matches behavioural and neurobiological
experiments [192].

79

C
or

te
x

Striatum
D1

Striatum
D2

STN

GPe Excitatory
Inhibitory

GPi/SNr

Figure 5.9: Network model of the basal ganglia, proposed by Gurney et al. [74, 75] and
implemented in the NEF by Stewart et al. [192]. Performs action selection via a winner-
take-all approach.

Figure 5.9 describes the structure of the network. The population of neurons labelled
Cortex represents the state of the animal, which is hypothesized to be stored in various
areas of cortex. The state-action value function, Q(s, a), is computed in the Cortex-
Striatum connections and the Cortex-STN connection. This computation is identical across
the three different projections, though the connection weight matrices implementing the
computation differ. The Striatum and STN populations encode each action’s Q-value in a
separate dimension. The rest of the network can be thought of as a winner-take-all circuit,
doing a series of transformations on those Q-values such that the output of the GPi/SNr

is non-zero except for the dimension that corresponds to the chosen action. The GPi/SNr

is meant to connect through inhibitory connections to the thalamus, inhibiting all but the
chosen action.

Action selection using this model can be summarized with the simple equation

π(st) = arg max
a
Q(st, a) (5.7)

80

5.3.2 Critiquing the actor

With an “actor” module as simple as the one described above, the “critic” model only needs
to ensure that Q-values are updated appropriately. This is accomplished by calculating the
temporal difference prediction error, δ, and using that value to drive the error-modulated
learning rule previously applied to the NEF model of supervised learning, copied below for
convenience.

∆ωij = καjej · Eai (5.8)

Despite the problem being more complicated, the use of the rule does not change; in
supervised learning the error term E was a continuous fine-grained signal. In the rein-
forcement learning case, the error term is likely to be temporally sparse, but that does not
affect the learning rule; this demonstrates the generality and flexibility of this rule.

To implement a critic, then, we only need to create a population of neurons that will
compute the TD prediction error. Recall from section 5.1.4 that there are two different
possible prediction errors, defined by the Sarsa and Q-learning algorithms, but in this case,
because Q(st+1, at+1) = max

a
Q(st+1, a), these are equivalent.

δt = rt+1 + γQ(st+1, at+1)−Q(st, at) (5.9)

Figure 5.10 shows the modified basal ganglia model. Populations representing the
ventral striatum and the dopaminergic substantia nigra and ventral tegmental area were
added. The ventral striatum implements the critic by calculating the temporal difference
error through the projection to the dopaminergic neurons, whose output modulates plastic-
ity on Cortex-Striatum synapses. This model differs from Gurney et al.’s in that they do
not differentiate between the dorsal and ventral striatum; however, there is significant ex-
perimental evidence that suggests that the two have different functional roles and therefore
should be separated in a functional model [130].

5.3.3 Simulation results

To test the model, we attempted to recreate the results of Kim et al.’s 2009 study of rats
performing a simple reinforcement learning task [104]. This study was chosen because
the task is simple but stochastic (i.e., cannot be solved through supervised learning), and
because the study includes both behavioural results and single-cell recordings, both of
which we aim to recreate with the proposed model.

81

C
or

te
x

Striatum
D1

Striatum
D2

STN

GPe Excitatory
Inhibitory
Modulatory

GPi/SNr

Ventral
Striatum

S
N
c/

V
T
A

Sensory
information

Figure 5.10: Modified basal ganglia model. The ventral striatum implements the “critic”
module, getting state-action-value information from the cortex and sensory information
(i.e. reward) from the environment. The temporal difference error is calculated through
the projection to the dopaminergic SNc/VTA neurons, whose output modulates plasticity
of cortico-striatal connections.

The specific task is a 2-armed bandit task. In this task, rats are given one decision
to make, whether to turn left or right, and are given reward with a certain probability,
depending on which decision was made. The task can be broken up into five stages, as
described in the caption of figure 5.11.

The experiment was implemented in Nengo, software that enables quick creation and
simulation of neural network models created with the principles of the NEF. The environ-
ment, described by figure 5.11, was simulated with a finite state machine. The states and
transitions of the finite state machine match the MDP on the right side of figure 5.11.

The model’s behaviour, compared to animal behaviour, is summarized in figure 5.12.
Model behaviour matches closely the animal behaviour in the single experiment plotted in
the paper. The average of all 200 trials shows that this result is not atypical; the model
quickly learns to switch to the reward site with higher probability of reward in each block
of trials.

Because the model is implemented in spiking neurons, we can also compare the spiking

82

D

G

Rw

RtRt

Rw

A

D

Go

A

L R

Rw

Rt Rt

Figure 5.11: (Left) The 2-armed bandit task. On each trial of the task, the animal goes
through the following five stages.

1. Animal waits (Delay phase).

2. Bridge lowers, allowing animal to move (Go phase).

3. Animal reaches decision point, either turns left or right (Approach phase).

4. Reward is stochastically delivered at reward site (Reward phase).

5. Animal returns to delay area (Return phase).

(Right) A Markov Decision Process modelling the 2-armed bandit task. Grey nodes repre-
sent states, and white nodes represent actions. Black arrows are normal state transitions,
and grey arrows indicate transitions that may result in reward delivery.

activity of ventral striatum neurons in the model and in the rat. The model presented
here predicts that the ventral striatum is encoding the variables necessary to compute
prediction error: the current and next state-values, and the reward. The population’s
activity also depends on the presence or absence of reward: when no reward is delivered,
the population’s activity is suppressed through inhibitory gating, even if there is large
disparity between the value of the current and next state. The neural results presented

83

40 80 120 160

Trial number

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
m

ov
in

g
le

ft

L:0.21 R:0.63 L:0.63 R:0.21 L:0.12 R:0.72 L:0.72 R:0.12
Average over 200 runs
One experimental run
One simulation run

Figure 5.12: Behavioral results from real rats in a 2-armed bandit task from Kim et al.,
and simulated rats from the model described in this chapter. Each experiment is broken
up into 40 trials, and each block of trials has a certain probability of reward for the left
and right reward sites. The block reward probabilities are given in the figure title. 200
simulations were run, and the averaged results are shown in the grey line. The solid area
represents bootstrapped 95% confidence intervals. The experimental run data is from [104].
The matching simulation run is the run whose mean squared error is lowest compared to
the experimental data; for the run plotted, MSE = 0.0273125.

in figure 5.13 and 5.14 show that, in general, activity increases sharply during the reward
phase and is low otherwise in both the model and the rat.

5.3.4 Challenges for the current model

While these results are promising, they are best described as a proof of concept that the
existing basal ganglia model can be adapted to do dynamic decision making. The challenges
central to reinforcement learning remain. In this section, we discuss those challenges, and
propose modifications to our network that may solve them.

84

0

5

10

15

20

25

30

35

40

T
ri

al
nu

m
be

r

Delay Approach Reward Delay

Experimental spike trains

Simulated spike trains
0

20

40

60

80

100

120

140

160

N
eu

ro
n

nu
m

be
r

Figure 5.13: (Top) Spike data from a single cell in the ventral striatum of real rats in a
2-armed bandit task, over 40 trials, from Kim et al. (Bottom) Spike data from a population
of cells in the ventral striatum of the basal ganglia model described in this chapter.

85

0.0 0.1 0.2 0.3 0.4 0.5

Time (seconds)
0

1

2

3

4

5

6

7

8

9

F
ilt

er
ed

nu
m

be
r

of
sp

ik
es

Delay Approach Reward Delay

Experimental
Simulation

Figure 5.14: Spike trains from figure 5.13 filtered with Gaussians with mean 0 and standard
deviation 0.015 seconds (15 milliseconds).

Spatial credit assignment

Generally stated, the spatial credit assignment problem is determining how to route rein-
forcement signals to the synapses responsible for the delivery of the reinforcement. In the
case of spiking neural networks operating in continuous time, this is difficult because by
the time the network has enough information to change the estimated value of a state, the
agent is no longer in that state. In table-based algorithms this does not matter, but in
neural networks, learning rules are activity dependent. To appropriately update connection
weights, the activity must reflect the state whose value is to be changed.

Of the previous models, only Potjans et al.’s spiking actor-critic had a solution to this
problem, which was to use two activity traces to track postsynaptic activity of the critic
neurons. A slow activity trace remembers the value of the last state, while a faster activity
trace quickly reflects the value of the current state. At a critical point in time, the values
of the current and last states are represented, which can be used to compute the temporal
difference reward prediction error. This solution could be implemented in our network.

However, the biological plausibility of this approach is questionable, and would not
work if the reward was not delivered at the exact same time as the state transition. This is
assumed in most reinforcement learning systems, but in a real-time system, this may not
necessarily be the case.

86

We have begun an implementation of an alternative solution to this problem. The
solution is inspired by other models implemented in the NEF that use recurrent connections
to temporarily store values. These populations can be best described as integrators, which
when driven to arbitrary points in a vector space, will attempt to remain there until
disturbed by further input. We can use integrators to remember the current state, as
well as the value of the current state. Once the agent transitions to a new state, the
previous state and its value remains available to be used in a temporal-difference update
equation. This architecture would provide the flexibility to wait until reward is delivered
before updating the value of the previous state.

Temporal credit assignment

The spatial credit assignment problem discussed above is often presented as the temporal
credit assignment problem. However, there is a more important temporal issue: in a real-
time simulation like those discussed in this thesis, time does not move in idealized discrete
steps like an MDP. While the MDP moves from st to st+1 and so on, in real time the state
represented by st may transition to st+1 after 1 second, st+2 1 minute later, and so on.
While this should not matter in general, it is clear from previously discussed experimental
evidence that the brain tracks precisely the time of a predicted reward.

Izhikevich solved this problem using activity traces, but the predictive ability of the
network is limited by the decay of the activity traces. In his paper, he also stated that ac-
tivity occurring between the CS and US is part of the temporal credit assignment problem,
though this does not appear to be an issue with our model.

Representations of time in spiking neural networks is itself a significant and growing
area of research, and mechanisms for representing time, such as an integrator with constant
input, could be added to the network.

However, it is our opinion that the timing issues of these spiking neural networks
operating in continuous time require more formal investigation before being implemented
in spiking neural networks. While the MDP is good for table-based reinforcement learning,
it may be the case that spiking neural networks require more complex representations of
reinforcement learning problems. Continuous-time MDPs were recently formalized [72],
but have yet to be widely examined in reinforcement learning. Many solutions to exact
timing problems have also been proposed in the field of real-time programming in computer
science; these ideas may be well-suited to reinforcement learning in spiking neural networks.

87

The exploration-exploitation tradeoff

The action selection mechanism used in this network is simple and greedy, making it
likely to get stuck in local minima. There are a few ways in which exploration could be
implemented in the network.

Noise could be injected into the system, directly in the striatal populations. This
method is biologically plausible, in that the brain is a very noisy system, though further
investigation will have to be done to determine the amount of noise in various parts of
the basal ganglia. This method has the additional benefit of more exploration when two
actions are close in value, as large differences in value would not frequently be overcome
even with large amounts of noise.

It would also be possible to explicitly drive exploration through a new population of
neurons. The population would either stochastically or deterministically increase the value
of some random, or somehow salient, action. This would be easy to implement, as it only
requires a population providing extra input to the striatum.

5.3.5 Conclusions

In this section, we have proposed a modification to Stewart et al.’s basal ganglia model,
adding a population of neurons that acts as a “critic.” The critic, which we map onto the
ventral striatum, calculates the TD prediction error through the projection to dopaminergic
neurons, whose activity modulates a plasticity rule applied to cortico-striatal connections.
This model is able to recreate the behavioural effects and neural data recorded in rats
performing a two-arm bandit task.

While this model has not solved the spatial and temporal credit assignment problems,
it has made rational dynamic decisions in a stochastic reinforcement learning task using
a biologically plausible neural architecture. We suggest that this model is more scalable
than previous models, and provides the first step toward a general architecture for solv-
ing continuous time reinforcement learning problems in high-dimensional state and action
spaces.

88

Chapter 6

Unsupervised learning

Unsupervised learning is easily distinguishable from supervised and reinforcement learning
by a lack of an error signal. Typically, it is said that unsupervised learning is the problem of
finding patterns in a set of data; this leads to unsupervised learning solutions to problems
like clustering, feature extraction, dimension reduction, and others.

In previous chapters discussing other machine learning problems, we attempted to
build biologically plausible models to solve the same problems solved by machine learning
techniques. However, in this chapter we take a different approach; instead of determining
suitable learning rules to solve a problem, as machine learning does, we instead investigate
the problems solved by learning rules that describe plasticity in the brain.

As will be discussed in the next section, unsupervised learning in machine learning
can also be thought of as “self-supervised learning.” Self-supervised techniques exist for
spiking neural networks as well, but in section 6.2 we instead focus on neural models in
which synaptic plasticity rules are applied to a network with no error signals. Finally,
we test some of the theoretical ideas in unsupervised learning through an NEF model,
and propose a novel learning rule that ties together the learning rule previously used for
supervised and reinforcement learning and the unsupervised learning rules introduced in
this chapter.

89

6.1 Unsupervised learning in traditional artificial neu-

ral networks

The machine learning unsupervised learning problem is summarized in figure 6.1. An
assumption in most unsupervised learning techniques is that the input data represent
samples from some underlying probability distribution, and the network attempts to infer
information about that distribution [50]. For this reason, a common choice for the cost
function is Kullback-Leibler divergence [114], which measures the difference between two
probability distributions. A cost function like KL-divergence can be incorporated in an
artificial neural network’s learning rule; multi-layer perceptrons with learning rules derived
from KL-divergence-like cost functions have been used as generative models [115], for
clustering [142], and many other supervised learning tasks that require statistical modelling
of large amounts of data (see [151] for a review).

Given input X and cost function C(x,y),
generate output Y and minimize C(x,y).

Figure 6.1: The unsupervised learning problem.

In machine learning, this problem is considered unsupervised because there is no ex-
plicit error signal; however, the cost function provides a way for the network to implicitly
determine an error signal. The main difference between supervised learning and unsuper-
vised learning in machine learning is that in unsupervised learning the computation of the
error signal is embedded in the learning rule, while in the supervised case the learning rule
is flexible and accepts an arbitrary signal as the error. We can determine a learning rule
for any arbitrary cost function; in the brain, however, the learning rules are already deter-
mined, and the question is what cost function they minimize. Because the cost function
is available by definition for this problem in machine learning, we leave the discussion of
unsupervised learning in artificial neural networks at this very general level.

6.2 Unsupervised learning in spiking neural networks

Unsupervised learning in machine learning is essentially the process of finding a learning
rule that will minimize a cost function. We consider the neural unsupervised learning
problem to be the opposite: experimental evidence has suggested several learning rules, so
we attempt to determine the cost function that the learning rule is minimizing.

90

Previous models in which a biologically inspired learning rule is applied to a network
in an unsupervised fashion have suggested a number of possible cost functions, or in many
cases, behavioural consequences, which we relate to possible cost functions. Additionally,
this section will introduce learning rules that describe the plasticity mechanisms that were
discussed in chapter 2.

6.2.1 Artola, Bröcher, Singer (ABS) rule

The Artola, Bröcher, Singer (ABS) rule, proposed by Hancock et al. [80], models the results
found by Artola, Bröcher and Singer in rat visual cortex [4]. They found that direction of
synaptic weight change was dependent on the rate of postsynaptic spiking. The simplest
learning rule that captured their qualitative results is

∆ωij = aiσ(aj), where σ(aj) =

∆+ if aj ≥ θ+

∆− if θ− < aj < θ+

0 otherwise.

(6.1)

σ(aj) is a simple filter of the postsynaptic activity. The filter from equation (6.1) is plotted
in figure 6.2. In Hancock et al.’s original paper, this version of the ABS rule is applied to a
feedforward network learning to associate random patterns, and it is argued that the rule
is useful for correcting errors.

θ− θ+

∆−

∆+

Figure 6.2: The simple version of the ABS rule.

Artola and Singer provided a version of the ABS rule in which the direction and magni-
tude of weight change is dependent on postsynaptic activity – in their case, they consider
the postsynaptic neuron’s membrane potential as its activity, aj [5]. Their version of the

91

rule can be seen in figure 6.3. Of particular importance is the ability for the rule’s two
thresholds to change as a function of the presynaptic activity of other cells connected to
the presynaptic cell. This modification is meant to model heterosynaptic LTD (see figure
2.5), which few other learning rules do.

Figure 6.3: A more complicated version of the ABS rule in which the amount of potentiation
or depression differs based on the exact time since a postsynaptic spike. (Right) The
thresholds θ− and θ+ are modified by presynaptic activity. As the presynaptic activity
increases (right axis) the ABS curve (Left) is shifted to the left.

The ABS rule, however, has not seen wide use in the modelling community, and we
can find no studies that investigate its functional significance in a spiking neural model.
This may be due to it having few functional benefits, or because it is very similar to the
BCM rule that was proposed earlier, only without guaranteed stability. The BCM rule is
examined in the next section.

6.2.2 Bienenstock, Cooper, Munro (BCM) rule

Bienenstock, Cooper and Munro proposed a learning rule in 1982 that models biological
LTP/LTD findings [23]. It is similar to the ABS rule in that it filters postsynaptic activity
with a curve that has an initial negative component followed by a positive component;
unlike ABS, however, there is only one threshold, which we call θ. Only one threshold is

92

needed because with any postsynaptic activity, there will be some weight change, either
positive or negative (unless aj = θ); this contradicts the findings of Artola et al. [4], but
matches other experimental findings and simplifies the model. Like the more complicated
version of the ABS rule, the threshold changes, in this case as a function of the expected
value of the postsynaptic activity. In other words, the threshold carries some information
about the history of the cell’s activity, and deviations from its historical firing patterns
result in synaptic weight changes.

The original mathematical description of the BCM rule is below. Its postsynaptic filter
is plotted in figure 6.4.1

∆ωij = aiaj(aj − θ) (6.2)

θ = E[aj/c],

where c is some constant scaling factor, and E[·] is the expected value. The expected value
is meant to be the average response over all possible input patterns, but in practice this
is estimated well enough by a temporal average over a sufficiently long timescale. Other
variants of the BCM rule exist (e.g. Intrator and Cooper’s version [89]), with slightly
different BCM curve shapes and rules for modifying the threshold, but the general idea in
all BCM learning rules is the same.

Looking at the curves, we can see that the qualitative aspects of LTD/LTP induction
could be satisfied in certain conditions, mainly if the neuron’s current threshold is at an
appropriate level. If the neuron is typically moderately active, then an experimental setup
that stimulates the cell with low frequency stimulation would result in LTD, and high
frequency stimulation would result in LTP, as would be expected. Some counterexamples
to these basic forms of LTD/LTP could be explained with arguments about the neuron’s
typical activity compared to the experimental procedure.

This, however, raises the question of whether the threshold θ is a biologically plausible
element intrinsic to a cell. It could be hypothesized that each cell has some fixed threshold,
but the adaptive threshold posited by BCM requires experimental verification. Kirkwood
et al. provided that verification by showing that light-deprived rats showed more LTP and
less LTD in visual cortex compared to rats raised in normal light environment (see [105]
and figure 6.5). This finding supports the idea that the threshold at which LTD switches to
LTP is not fixed. Wang and Wagner showed a similar result in rat hippocampus [24, 215].
Bear proposed that a possible neurobiological mechanism for the sliding threshold is the
calcium dependent protein kinase CaMKII [14].

1The original formulation of equation (6.2) included a decay term, εωij . We do not include it as we
have not considered decay in any learning rules to this point, nor do we from this point forward.

93

0.0 1.0 2.0 θ 4.0
−2

0

2

4

6
y = x(x− θ)

0.0 1.0 θ 3.0 4.0

−1.0

−0.5

0.0

0.5

1.0

1.5
if x > θ, y = tanh(x)

Figure 6.4: The postsynaptic activity filters for two different BCM rules. (Left) The original
BCM rule proposed in [23]. Note that in the original BCM formulation, the positive portion
of the curve will continue off to infinity. (Right) A different version of the BCM rule in
which the positive portion has a definite maximum due to the use of the tanh function.

Early models using the BCM rule focused on the unsupervised development of orien-
tation selectivity and ocular dominance in visual cortex [116, 181]. In those models, a
representation of the visual field is projected through two populations of input neurons,
one from each eye, to an output population. The connections between the input and out-
put populations begin with small random values, and evolve according to a BCM rule like
equation (6.2). After a sufficient amount of training, the output of the output population
looks similar to what is observed in visual cortex: neurons are sensitive to small areas
of the visual field, known as their receptive fields, and information in that visual field is
filtered with Gabor filters with certain orientations. Ocular dominance is also observed,
meaning that the second population is, in general, more sensitive to input from one eye
than the other.

A non-neural unsupervised learning technique applied to the same network is Inde-
pendent Component Analysis (ICA) [201]. ICA attempts to identify components of a
vector such that output components are statistically independent. One implementation
of ICA for nonlinear data models used a multi-layer perceptron and a learning rule using
KL-divergence as the cost function [99]. Other implementations of ICA applied to the
development of visual cortex have used functions measuring kurtosis (a statistical measure
that is high when a probability distribution has a high peak and heavy tails) and skewness

94

10−1 100 101 102

Stimulation frequency

−20

−10

0

10

20

30

%
ch

an
ge

in
ω
ij

Light-reared

Dark-reared

Figure 6.5: Experimental evidence supporting evidence of a modifiable threshold that can
change the direction and magnitude of synaptic strength changes. In this experiment by
Kirkwood et al. [105], rats deprived of light (i.e., with lower average postsynaptic activity)
were more readily potentiated than those raised in normal light conditions.

(a measure of the asymmetry in a probability distribution) as cost functions [25]. This
suggests that there are a number of different possible cost functions that the BCM rule
may be implicitly minimizing.

Intrator and Cooper applied a BCM rule to the more general unsupervised learning
problem of projection pursuit, in which the goal is to find the most statistically “inter-
esting” projection in a multidimensional set of data, where “interesting” usually means
non-Gaussian [89]. In their study, they derived a rule that follows the principles of BCM
theory using an explicit cost function that can be thought of as a measure of sparsity of
the output distribution. This suggests yet another cost function for the BCM rule, and
another possible functional use.

All of the models discussed to this point have used non-spiking neurons, though many
of the neuron models are biologically inspired. Our interest is in unsupervised learning in
spiking neural networks; fortunately, most of the BCM rules (like equation (6.2)) can be
adapted for use in a spiking neural network by changing the activities of cells from firing
rates or idealized scalar values to filtered spike trains, with the exception of Intrator and
Cooper’s rule, which uses the derivative of the neuron’s activation function in the synaptic

95

update rule [89].

One study that used a BCM rule with spiking neurons was Toyoizumi et al.’s, which
proposed a learning rule that minimized KL-divergence under the constraint of attempting
to maintain a target postsynaptic firing rate [205]. That a BCM rule was found under
this additional constraint suggests that homeostasis could be another functional effect of
a BCM rule. The study confirms that the rule can be applied to spiking neural networks.

6.2.3 Spike-timing dependent plasticity rules

The history and experimental exploration of STDP was previously discussed in section
2.1.3. Below we present learning rules that model STDP effects phenomenologically. Early
models using pair rules include Song et al.’s [187], and triplet rules were first mathematically
characterized by Pfister and Gerstner [158].

The first STDP rules were based on the interactions between pairs of spikes: a pre-post
pairing causes potentiation and a post-pre pairing causes depression. This can be expressed
with the following two equations

∆ωij(t
pre) = A− exp

(
tpostl − tpre

τ−

)
∆ωij(t

post) = A+ exp

(
tprel − tpost

τ+

)
, (6.3)

where tpre is the time of a presynaptic spike, tprel is the time of the last presynaptic
spike, and similarly for tpost and tpostl for postsynaptic spikes. A− is a (negative) constant
representing the maximum amplitude of post-pre depression, and τ− is the time constant
controlling its exponential decay; similarly, A+ and τ+ define the positive pre-post part
of the STDP curve. Note that this learning rule, unlike all others that we have examined
in this thesis, is applied only at the times of pre- and postsynaptic spikes, rather than on
every timestep.

This learning rule only takes into account the most recent presynaptic and postsynaptic
spike; however, we know that different frequencies of activity affect plasticity. A first step
toward modelling this is to incorporate more than one spike by using activity traces for the
pre- and postsynaptic activities. This results in the following set of differential equations.

96

do(t)

dt
= −o(t)

τ−
, if t = tpost then o(t) = o(t) + 1

dr(t)

dt
= −r(t)

τ+
, if t = tpre then r(t) = r(t) + 1

∆ωij(t
pre) = A−o(t) ∆ωij(t

post) = A+r(t) (6.4)

However, just adding activity traces does not capture the effects of experiments like [122,
186] that varied the frequency of pre-post pairings. As discussed previously, incorporating
a third spike and adding rules for pre-post-pre and post-pre-post interactions is sufficient
to replicate the experimental results. Using only nearest spike interactions, this results in

∆ωij(t
pre) = − exp

(
tpostl − tpre

τ−

)[
A−2 + A−3 exp

(
tprel − tpre

τx

)]
∆ωij(t

post) = exp

(
tprel − tpost

τ+

)[
A+

2 + A+
3 exp

(
tpostl − tpost

τ y

)]
. (6.5)

Note that in the presynaptic rule, we now put the negative sign in front of the equation
and let the amplitude constants A−2 and A−3 be positive values. Also note that this rule is
a generalization of the pair-based rules, as setting the triplet amplitude constants A−3 =
A+

3 = 0 results in equation (6.3).

To do all-to-all interactions instead of nearest spikes, we introduce two additional ac-
tivity traces to equation (6.4).

do1(t)

dt
= −o1(t)

τ−
, if t = tpost then o1(t) = o1(t) + 1

do2(t)

dt
= −o2(t)

τ y
, if t = tpost then o2(t) = o2(t) + 1

dr1(t)

dt
= −r1(t)

τ+
, if t = tpre then r1(t) = r1(t) + 1

dr2(t)

dt
= −r2(t)

τx
, if t = tpre then r2(t) = r2(t) + 1

∆ωij(t
pre) = −o1(t)

[
A−2 + A−3 r2(t− dt)

]
, ∆ωij(t

post) = r1(t)
[
A+

2 + A+
3 o2(t− dt)

]
(6.6)

In the final equations, we use r2(t − dt) and o2(t − dt) so that the current spike does not
affect the activity trace that is supposed to represent the activity based on previous spikes.

97

STDP has been applied to many different models, and has been attributed many dif-
ferent functional consequences, indicating a wide range of possible cost functions that it
may be minimizing.

Masquelier and Thorpe connected two population of neurons representing two layers of
the visual hierarchy together and showed that an STDP learning rule caused the network
to do a kind of feature selection in a first-to-spike coding scheme [135]. Masquelier also
collaborated on a later paper that suggested that STDP is key to the development of
temporal coding schemes in the brain, meaning that the encoding of high-dimensional
information may require STDP [134].

Sprekeler et al. showed that the STDP rule could be derived by assuming that the
cost function was one that measures slowness, which enables a network using STDP to do
slow feature analysis [188]. Slowness can be thought of as temporal stability; if we think
about using the rule in visual cortex, we would expect objects in the visual field to stay
generally the same from one point in time to the next. Slow feature analysis aims to find
those time-invariant features.

Nessler et al. showed that STDP is able to do expectation-maximization, which is
essentially the process of minimizing KL-divergence, which suggests that it may be a
possible cost function for STDP as well [146]. Krieg and Triesch derived an STDP rule
by maximizing kurtosis (i.e., sparseness) of the membrane potential. This rule was able to
recover both precise spike-time and frequency dependence, making it a good candidate for
a possible cost function for STDP [112].

Finally, STDP has been implicated in two different forms of normalization. In one form,
it has been shown that STDP can be used to maintain a relatively constant firing rate in
postsynaptic cells without an explicit normalization step [183]. In another, introducing a
small amount of random jitter in the STDP window results in intrinsic stability of synaptic
connection weights, which in other studies, have often polarized (i.e., half of the synapses
go to some very small strength, half go to some very large strength) [6].

All of these simulation results together indicate that the space of possible cost functions
that STDP may be minimizing is rather large, though there are promising overlaps between
the functional consequences of the BCM rule and STDP.

6.2.4 Relationship between BCM and STDP rules

Similarities in the functional consequences and cost functions of the BCM and STDP learn-
ing rules raises a question about the similarity between the two rules. BCM was originally

98

devised with rate-based neuron models, and STDP necessarily uses spiking neurons; how-
ever, both are modelling essentially the same thing: induction of LTP and LTD in the
brain.

Izhikevich showed that BCM and STDP can be mapped onto each other directly, re-
flecting their similarities in both experimental motivations and modelling studies [93].
However, this equivalence is contingent on two conditions: that the firing patterns of pre-
and postsynaptic neurons are uncorrelated or weakly correlated Poisson spike trains, and
that only nearest-spike interactions are take into account (i.e., only equation (6.3) can be
mapped to a BCM rule).

Izhikevich’s argument preceded Pfister et al.’s triplet rule proposal. When a third spike
is considered, it was shown that the all-to-all triplet rule (i.e., equation (6.6)) maps onto
a BCM rule [158]; in this case, the conditions are that A−3 must be 0, meaning that only
the post-pre rule is applied and not the pre-post-pre rule, and that the input and output
spike trains have Poisson statistics.

6.2.5 General unsupervised learning

The variety of problems solved by the same or similar unsupervised learning techniques,
and the fact that rules similar to BCM rules and STDP rules can be obtained by minimizing
many different but related cost functions, suggests that these rules do general unsupervised
learning, extracting salient features from input. All unsupervised learning systems do this
abstractly, the main difference is in how each system defines salience.

There are two possible ways in which different saliency measures could be identified by
the same network with a similar learning rule.

1. Saliency may be solely dependent on input.

2. STDP/BCM may each refer to a class of unsupervised learning rules, each specific
rule designed to pick out a particular salient feature.

The variety of STDP curves found in the brain and the different mathematical descriptions
of BCM theory suggest the latter explanation is more plausible.

6.3 Unsupervised learning in the NEF

We wanted to experimentally confirm the theoretical arguments put forth by Izhikevich,
Pfister and Gerstner that the BCM rule is equivalent to STDP. To do this, we created a

99

network with only two LIF neurons connected unidirectionally. We manually chose the
neuron parameters such that the neurons could be stimulated deterministically from 0
to 100 Hz. The encoding vector was 1 for both neurons. A node in the network was
programmed to compute the BCM postsynaptic filter, which was used as the error term E
in our normal learning rule. Recall that that learning rule is

∆ωij = καjej · Eai. (6.7)

Substituting the BCM filter aj(aj − θ) in for E, and setting ej to 1 gives

∆ωij = καjaiaj(aj − θ). (6.8)

This is essentially the original BCM learning rule, equation (6.2). Note that the neuron
gain is a scalar, and can easily be absorbed into the learning rate constant κ.

This mapping from the synapse-specific but arguably non-Hebbian error-minimization
rule, equation (6.7), to a Hebbian BCM rule, equation (6.8), lends more credibility to the
assertion that the error-minimization rule is biologically plausible.

6.3.1 Simulation results

Using the network of two neurons with the BCM rule, we aimed to recreate the effects
of the STDP protocol, as seen in dozens of experiments. In doing so, we would add
simulated experimental credence to the theoretical findings of Izhikevich, and Pfister and
Gerstner. Additionally, it suggests that the learning rule that has been used in the previous
chapters can be modified slightly such that it is sensitive to exact spike-times, as seen in
STDP experiments, despite the fact that it does not explicitly track the times of pre- and
postsynaptic spikes.

To recreate the STDP protocol, the two neurons are given a series of current pulses last-
ing 3ms, chosen because it elicited a single spike robustly. There are three free parameters
that were varied in these experiments, and one that was randomly selected.

Pulse delay The pulse of current to the presynaptic and postsynaptic cells is delayed by a
certain amount. Using appropriate delays ensures pre-post or post-pre spikes, which
will be used to generate STDP curves.

Pulse rate The number of current pulses delivered per second can vary, in order to recre-
ate experiments that show plasticity’s frequency dependence.

100

Threshold value We consider the threshold to be a temporal average of recent postsy-
naptic activity. While the learning rule is implemented such that the threshold will
change over time due to postsynaptic activity, the temporal average is done on the
scale of hours, meaning that in these short simulations, θ does not change signifi-
cantly. The threshold, θ, starts at a certain value in each simulation, which we vary.
Note that Pfister and Gerstner also assume a long timescale temporal average in
order to show that STDP can be mapped onto BCM [158].

Initial connection weight Unlike other NEF simulations, in this network we impose a
minimum and maximum connection weight, 5× 10−4 and 2× 10−3 respectively. The
initial connection weight is randomly selected uniformly between the minimum and
maximum weight. This makes analysis of the results easier because we are always
dealing with positive connection weights.

It should be noted that there are other parameters that can affect these results, such
as the shape and amplitude of spike filters. In these simulations, the default value of 10ms
was used for the time constants of the spike filters.

In the results presented below, each data point represents the relative change in the
connection weight between the two neurons after 60 spike pairings (pre-post, post-pre, or
simultaneous spikes), averaged over 20 trials.

The STDP curve

The simple STDP curve, first discussed in this thesis in section 2.1.3, is the most iconic
graph in spike-timing dependent plasticity research. It describes the relationship between
the amount of synaptic weight change as a function of the difference in time between the
presynaptic and postsynaptic spikes.

In order to recreate an STDP curve, we varied the pulse delay in a number of situations.
The results are plotted in figure 6.6.

Despite not explicitly remembering spike times, the postsynaptic BCM filter enables
the learning rule to be critically dependent on the relative timings of presynaptic and
postsynaptic activity. In some cases, most notably when both neurons are spiking at
20Hz, there is a sharp discontinuity when changing from pre-post to post-pre spike pairs.

None of these curves match exactly the STDP curve originally discovered by Bi and
Poo (see figure 2.7); however, several of the experiments, most notably those done at 20Hz,
match the qualitative effects: pre-post pairings that are sufficiently close cause potentiation,

101

−0.03 −0.02 −0.01 0.00 0.01 0.02
−0.4

−0.2

0.0

0.2

0.4

0.6

∆
ω
ij
/ω

ij

5 Hz

θ = 0.3

θ = 0.33

θ = 0.36

−0.03 −0.02 −0.01 0.00 0.01 0.02

−0.5

0.0

0.5

1.0

10 Hz

θ = 0.3

θ = 0.33

θ = 0.36

−0.03 −0.02 −0.01 0.00 0.01 0.02

tpre − tpost (seconds)

−0.5

0.0

0.5

1.0

1.5

∆
ω
ij
/ω

ij

15 Hz

θ = 0.3

θ = 0.33

θ = 0.36

−0.03 −0.02 −0.01 0.00 0.01 0.02

tpre − tpost (seconds)

−0.5

0.0

0.5

1.0

1.5

20 Hz

θ = 0.3

θ = 0.33

θ = 0.36

Figure 6.6: Simulated STDP curves using the two-neuron network with a BCM learning
rule. Surrounding areas represent bootstrapped 95% confidence intervals.

which gets stronger as the spikes get closer, until post precedes pre, and then depression
occurs. Some of the other STDP curves, such as the one found at 10Hz, look qualitatively
similar to others that have been seen experimentally (see figure 2.8). This suggests that
BCM may be a more general rule than STDP, able to replicate several experimentally
observed STDP curves, as opposed to the traditional STDP models presented earlier in

102

this chapter, which only model one type of STDP.

The effect of changing θ is consistent throughout all of the experiments; a decrease in
θ causes an upward shift of the STDP curve, regardless of its shape. Decreasing θ further
may enable the network to achieve a more quantitative similarity to the traditional STDP
curve; decreasing it could, for example, get rid of the pre-post depression in these curves.

−0.03 −0.02 −0.01 0.00 0.01

tpre − tpost (seconds)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

∆
ω
ij
/ω

ij

Pulse rate = 40Hz

Figure 6.7: With high frequencies, the network is insensitive to precise timing effects.

We also tested the network with a relatively high pulse rate, as shown in figure 6.7.
With very high frequencies, potentiation is seen regardless of temporal order. A more
reasoned exploration of frequency dependence follows.

Frequency dependence curves

While frequency dependence is an aspect of STDP that is often overlooked, the exper-
imental result that LTP/LTD induction with STDP protocols critically depends on the
frequency of spikes calls into question the validity of pair-based STDP models. Pfister
and Gerstner’s triplet model can reproduce frequency effects; ideally, the BCM rule would
be able to reproduce these effects as well, making it conceptually more powerful than
pair-based STDP models.

To test this, we varied the pulse rate in the two-neuron network. The results, shown in
figure 6.8, confirm that our network is sensitive to the frequency of pre- and postsynaptic
spiking, in addition to the strict temporal effects previously discussed. This implies that
the BCM rule has more in common with the more biologically plausible triplet model than
with pair-based models.

103

1 5 10 20 50 100
Stimulation frequency (Hz)

-50

0

50

100

%
ch

an
ge

in
ω
ij

Simulation

θ = 0.4

θ = 0.3

1 5 10 20 50 100
Stimulation frequency (Hz)

−20

−10

0

10

20

30

%
ch

an
ge

in
ω
ij

Experiment (Kirkwood)

Light-reared
Dark-reared

Figure 6.8: Plots showing that the two-neuron network with the BCM rule is sensitive
to the frequency of spike pairings. (Left) Change in synaptic strength as a function of
pulse rate for the simulated network. (Right) The same axes, but for Kirkwood et al.’s
experimental data. From [105].

By varying θ, we have also replicated the effects of Kirkwood et al.’s experiments in rat
visual cortex. A lower θ value represents less postsynaptic activity, which would be seen
in the dark-reared rats; LTP is more readily induced in those rats, and also in the model
with lower θ values.

Discussion

These results support Izhikevich, Pfister and Gerstner’s theoretical arguments that STDP
can be mapped onto BCM theory. We have shown that a spiking two-neuron network with

104

a BCM rule can exhibit the essential feature of STDP: critical dependence on the time
difference between pre- and postsynaptic spikes. Additionally, by showing that the model
also exhibits frequency dependence, we assert that it is more similar to the biologically
plausible triplet model than pair-based models. Testing in networks with more than two
neurons is the logical next step for this line of research.

Additionally, we have shown that BCM theory can be applied directly to a spiking
neural network easily. Where the original BCM rules considered “activity” to be the firing
rates of neurons, we instead interpret it to be filtered spike trains. The sliding threshold θ is
updated online by keeping track of the average postsynaptic activity over a long timescale.
The network appears to perform as well as the rate-based BCM models, though more
large-scale experiments should be done to explore this further.

6.3.2 A unifying learning rule

While we showed in section 6.3 that the error-minimization rule used in chapters 4 and 5
can be manipulated to essentially be the BCM rule, we propose that a general rule that can
exhibit either supervised or unsupervised learning can be implemented, and hypothesize
that it can be used in any network to do unsupervised, supervised, or reinforcement learning
by changing parameters.

The main idea is to additively combine rules (6.7) and (6.8). There are several ways to
do this.

It may be the case that unsupervised learning effects are applied independent of the
encoding vector of the postsynaptic neuron. In this case, the rule is

∆ωij = αjai [κuaj(aj − θ) + κsej · E] , (6.9)

where κu is the learning rate corresponding to the unsupervised learning term, and κs is
the learning rate for the supervised learning term. It is hypothesized that these learning
rates may be inversely proportion to each other, meaning that the more supervision, the
less unsupervised learning occurs, and vice versa.

It may instead be the case that the postsynaptic spike filter should also be interpreted
using the encoding vector, meaning that unsupervised learning would also depend on what
part of the vector space the neuron is sensitive to. In this case, we treat the unsupervised
portion of the rule in the same way we treat E, resulting in the rule

∆ωij = αjai [κuej · ejaj(aj − θ) + κsej · E] . (6.10)

105

However, since ej is a unit vector, ej · ej = |ej|2 = 12 = 1. Therefore, these rules are
equivalent. The unsupervised term does not rely on the encoding vector unless that vector
is not a unit vector.

At the moment, the simpler rule, (6.9), can be used in any of the simulations presented
in this thesis; for the supervised and reinforcement learning sections, we would set κu = 0,
and for the unsupervised learning section, we would set κs = 0. Further testing with both
terms used together in supervised and reinforcement learning should give more insight into
the functional role of unsupervised learning in the brain.

106

Chapter 7

Discussion and conclusions

This thesis aimed to give a comprehensive overview of learning in spiking neural networks.
We have used the taxonomy of learning problems currently used by machine learning,
and showed how those problems have been solved by traditional artificial neural networks,
other spiking neural network models, and spiking neural network models created with the
principles of the Neural Engineering Framework.

Novel contributions of this thesis include all of the NEF network models discussed; i.e.,
sections 4.3, 5.3, and 6.3. In addition, plasticity rules were implemented in Nengo, a piece
of software for building NEF network models; a technical report detailing this process has
been previously published [15].

While the error-minimization learning rule used in many of the NEF networks in this
thesis was previously derived and published [128], we proposed a novel learning rule that
integrates both unsupervised and supervised learning effects (equation (6.9)). This learning
rule will be the focus of future research.

In the remainder of this thesis, we discuss other promising areas of future research.

7.1 Large-scale unsupervised learning

In chapter 6, we provided simulation results that supported the idea that STDP can be
mapped onto BCM theory. However, we did not create a large-scale model that investigated
the possible functional effects of BCM theory.

Chapter 9.5 of [59] discusses a technique for determining the function being computed
given two populations and their connection weight matrix. Application of this, or a similar,

107

technique to a large scale network learning without supervision would give insight into the
cost function being minimized by these rules.

7.2 Model-based reinforcement learning

At the end of chapter 5, we discussed outstanding issues of the current model, including
more attention being paid to the exploration-exploitation problem. One issue that we
did not touch on in that chapter is the distinction between model-based and model-free
reinforcement learning. We took a model-free approach for simplicity, but also because
implementing a model-based approach would require a different mechanism for action
selection; it would necessitate a network that actively makes predictions about future
states.

Implementing such a system requires more thought than do the other challenges we
discussed in that chapter; however, it is essential to examine model-based reinforcement
learning because it is clear that humans and other animals can make active predictions
and plan ahead, suggesting that they construct models of the environment and exploit
them during reinforcement learning tasks. Doya et al. have even proposed a reinforcement
learning algorithm that learns multiple models simultaneously, using information from a
combination of them to select an appropriate action [55]. Neural implementations of model-
based reinforcement learning will be an important step forward in learning in large-scale
spiking neural networks.

7.3 Supervised error signals

Reinforcement learning has been widely explored in theoretical neuroscience in large part
due to Schultz and other’s work showing that dopaminergic neurons signal something akin
to temporal-difference reward prediction error. Supervised learning is not motivated in the
same way; it is a theoretical problem posed by machine learning, and largely unexplored
in neuroscience.

The NEF and other theoretical neuroscience frameworks make the assumption that
the brain is a computational device; groups of neurons do some kind of mathematical
transformation on the information encoded by the spiking patterns of afferent neurons. If
this assumption is true, then it should be possible to set up an experiment that would
allow one to observe experimentally a supervised learning process. The creation of such

108

an experiment would be highly informative to theoretical models of learning in large-scale
spiking neural networks.

However, such an experiment is difficult to devise without knowing how fine-grained
error signals would be generated. Work on the cerebellum has suggested that fine-grained
error signals exist there, but the exact use of those error signals remains an open question
[52].

From a theoretical perspective, further research into error signals in the brain, and
the neural circuits that produce them, is the logical next step. It may be possible to
identify and model a system that does not require an idealized error signal provided by the
modeller, but instead computes it from a plausible neural model. Ideally, this model would
be well-defined enough to be tested experimentally, giving more insight into supervised
learning in the brain.

7.3.1 Solving the supervised spike-time learning problem

While we have shown that we can solve the general supervised learning problem, and
argued that the supervised spike-time learning problem is less general and thus should be
able to be solved by our solution, we have not yet shown this, either through a theoretical
argument or simulation results. This result would be significant to the field of supervised
learning in spiking neural networks.

7.4 Computational complexity

While previous discussions of complexity and time-to-learn have focused on simulation
time, issues of computational complexity are a large issue for scaling up the models
presented in this thesis. Already, the supervised learning network struggles to learn 3-
dimensional convolution in a reasonable amount of computer time. Learning networks, as
opposed to other models created with the principles of the NEF, must track each connec-
tion weight separately, and compute an update for each connection weight on each timestep
of the simulation. As neuronal populations get larger, the number of connections grows
multiplicatively. Specifically, the amount of computations done on each timestep is a func-
tion of the number of input neurons, output neurons, and the dimensionality of the output
population; or, in big-O notation, the computational complexity of the error-minimization
rule used in this thesis is O(NiNjDj).

109

The most promising avenue for speeding up these learning simulations without sacri-
ficing biological plausibility is to use powerful graphical processing units (GPUs), which
have previously been used to speed up NEF networks without learning. Because all of
the connection weight update rules are independent of each other, they are well suited for
being sped up by the highly parallel GPUs.

7.4.1 Decoder-level learning

Another promising avenue for speeding up learning simulations is to move to a higher-level
abstraction of these spiking neural networks. While we have said that learning requires
examination at the low level of connection weights, it may be the case that we can learn
in the space of decoding weights instead, and still argue for biological plausibility.

In the derivation of the error-minimization rule, an intermediate stage was one such
learning rule on decoding weights, equation (3.18). This rule should be implemented in
the NEF and compared to the analogous rule operating in connection weights to determine
if they have any functional differences. If they do not, it would mean that we can create
networks to learn functions in much higher-dimensional spaces with more neurons; it may
even be feasible to use learning in networks that would typically employ faster non-learning
methods for changing behaviour over time.

110

References

[1] Larry F. Abbott and Sacha B. Nelson. Synaptic plasticity: taming the beast. Nature
Neuroscience, 3:1178–83, November 2000. ix, 14, 15

[2] Per Andersen. A prelude to long-term potentiation. Philosophical Transactions of
the Royal Society of London, 358(1432):613–5, April 2003. 8

[3] Brandon J. Aragona, Jeremy J. Day, Mitchell F. Roitman, Nathan A. Cleaveland,
R. Mark Wightman, and Regina M. Carelli. Regional specificity in the real-time
development of phasic dopamine transmission patterns during acquisition of a cue-
cocaine association in rats. The European Journal of Neuroscience, 30(10):1889–99,
November 2009. 53, 76

[4] Alain Artola, S. Bröcher, and Wolf Singer. Different voltage-dependent thresholds
for inducing long-term depression and long-term potentiation in slices of rat visual
cortex. Nature, 347(6288):69–72, 1990. 91, 93

[5] Alain Artola and Wolf Singer. Long-term depression of excitatory synaptic trans-
mission and its relationship to long-term potentiation. Trends in Neurosciences,
16(11):480–487, November 1993. 91

[6] Baktash Babadi and Larry F. Abbott. Intrinsic stability of temporally shifted spike-
timing dependent plasticity. PLoS Computational Biology, 6(11):e1000961, January
2010. 98

[7] Bart Baddeley. Reinforcement learning in continuous time and space: interference
and not ill conditioning is the main problem when using distributed function ap-
proximators. IEEE Transactions on Systems, Man, and Cybernetics, 38(4):950–956,
June 2008. 69

[8] Leemon C. Baird. Residual algorithms: reinforcement learning with function approx-
imation. In Machine Learning, pages 30–37. Citeseer, 1995. 69

111

[9] Dorit Baras and Ron Meir. Reinforcement learning, spike-time-dependent plasticity,
and the BCM rule. Neural Computation, 19(8):2245–79, August 2007. 74

[10] David Barber. Learning in spiking neural assemblies. In Advances in Neural Infor-
mation Processing Systems, volume 15, page 165. The MIT Press, 2002. 48

[11] Andrew G. Barto. Adaptive critics and the basal ganglia. Models of Information
Processing in the Basal Ganglia, (1994):215–232, 1995. 73

[12] Andrew G. Barto and Thomas G. Dietterich. Reinforcement learning and its rela-
tionship to supervised learning. Technical report, 2004. 69

[13] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE Transactions on
Systems, Man, and Cybernetics, 13(5):834–846, 1983. 62

[14] Mark F. Bear. Mechanism for a sliding synaptic modification threshold. Neuron,
15(1):1–4, July 1995. 93

[15] Trevor Bekolay. Using and extending plasticity rules in Nengo Plasticity rules in
Nengo. Technical report, Centre for Theoretical Neuroscience, 2010. 107

[16] Ammar Belatreche, Liam Maguire, Martin McGinnity, and Qing Xiang Wu. A
method for supervised training of spiking neural networks. Cybernetic Intelligence,
Challenges and Advances, page 11, 2003. 48

[17] Curtis C. Bell, Victor Z. Han, Yoshiko Sugawara, and Kirsty Grant. Synaptic plastic-
ity in a cerebellum-like structure depends on temporal order. Nature, 246(5429):170–
170, November 1997. 13

[18] Richard Bellman. A Markovian decision process. Mathematics and Mechanics,
6(5):679–684, 1957. 66

[19] Kent C. Berridge. The debate over dopamine’s role in reward: the case for incentive
salience. Psychopharmacology, 191(3):391–431, April 2007. 71

[20] Dimitri P. Bertsekas. Dynamic programming: deterministic and stochastic models.
Simon and Schuster, 1978. 66

[21] Guo-Qiang Bi and Mu-Ming Poo. Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.
The Journal of Neuroscience, 18(24):10464–72, December 1998. 13, 14, 15

112

[22] Guo-Qiang Bi and Mu-Ming Poo. Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annual Review of Neuroscience, 24(1):139–66, January
2001. 14

[23] Elie L. Bienenstock, Leon N. Cooper, and Paul Munro. Theory for the development of
neuron selectivity: orientation specificity and binocular interaction in visual cortex.
Journal of Neuroscience, 2(1):32, 1982. 92, 94

[24] Brian S. Blais and Leon N. Cooper. BCM theory. Scholarpedia, 3(3):1570, 2008. 93

[25] Brian S. Blais, Nathan Intrator, Harel Z. Shouval, and Leon N. Cooper. Receptive
field formation in natural scene environments: comparison of single-cell learning
rules. Neural Computation, 10(7):1797–1813, September 1998. 95

[26] T. V. P. Bliss and Terje Lø mo. Long-lasting potentiation of synaptic transmission
in the dentate area of the anaesthetized rabbit following stimulation of the perforant
path. The Journal of Physiology, 232(2):331, 1973. 8, 9

[27] Tim V. P. Bliss, Graham L. Collingridge, and Richard G. M. Morris. Long-term
potentiation: enhancing neuroscience for 30 years. Oxford University Press, USA,
2004. 9

[28] Hal Blumenfeld. Neuroanatomy through clinical cases, volume 14. Sinauer Associates,
Sunderland, MA, 2002. x, 72, 73

[29] Rafal Bogacz, Malcolm W. Brown, and Christophe Giraud-Carrier. Frequency-based
error back-propagation in a cortical network. In International Joint Conference on
Neural Networks, pages 211–216 vol.2. Ieee, 2000. 48

[30] Rafal Bogacz, Malcolm W. Brown, and Christophe Giraud-Carrier. Model of familiar-
ity discrimination in the perirhinal cortex. Journal of Computational Neuroscience,
10(1):5–23, 2001. 48

[31] Sander M. Bohte, Joost N. Kok, and Han La Poutre. Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing, 48(1-4):17–37,
2002. 46

[32] Sander M. Bohte, Joost N. Kok, and Han La Poutre. SpikeProp: Backpropagation
for networks of spiking neurons. Neurocomputing, 48(1-4):17, 2002. 46

113

[33] Tiago Branco and Michael Häusser. The single dendritic branch as a fundamental
functional unit in the nervous system. Current Opinion in Neurobiology, 20(4):494–
502, August 2010. 10

[34] Arthur Earl Bryson and Yu-Chi Ho. Applied optimal control: optimization, estima-
tion, and control. Blaisdell Publishing Company, 1969. 41

[35] Paolo Calabresi, Paolo Gubellini, Diego Centonze, Barbara Picconi, Giorgio
Bernardi, Karima Chergui, Per Svenningsson, Allen A. Fienberg, and Paul Green-
gard. Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal
long-term depression and long-term potentiation, opposing forms of synaptic plas-
ticity. The Journal of Neuroscience, 20(22):8443–51, November 2000. 18

[36] Paolo Calabresi, Barbara Picconi, Alessandro Tozzi, and Massimiliano Di Filippo.
Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neu-
rosciences, 30(5):211–9, May 2007. 18

[37] Paolo Calabresi, Adolfo Saiardi, Aantonio Pisani, Ja-Hyun Baik, Diego Centonze,
Nicola B. Mercuri, Giorgio Bernardi, and Emiliana Borrelli. Abnormal synaptic
plasticity in the striatum of mice lacking dopamine D2 receptors. Journal of Neuro-
science, 17(12):4536–44, June 1997. 18

[38] Natalia Caporale and Yang Dan. Spike timing-dependent plasticity: a Hebbian
learning rule. Annual Review of Neuroscience, 31(1):25–46, 2008. 14

[39] Andrew Carnell and Daniel Richardson. Linear algebra for time series of spikes. In
European Symposium on Artificial Neural Networks, number April, pages 363–368.
Citeseer, 2005. 48

[40] Pablo E. Castillo, Chiayu Q. Chiu, and Reed C. Carroll. Long-term plasticity at
inhibitory synapses. Current Opinion in Neurobiology, 21:328–338, February 2011.
18

[41] C. A. Castro, L. H. Silbert, Bruce L. McNaughton, and C. A. Barnes. Recover of
spatial learning deficits after decay of electrically induced synaptic enhancement in
the hippocampus. Nature, 342:545–548, 1989. 11

[42] Feng-Xuan Choo. The ordinal serial encoding model: serial memory in spiking neu-
rons. PhD thesis, University of Waterloo, 2010. ix, x, 23, 28, 30, 35, 36, 55

114

[43] Paul Chorley and Anil K. Seth. Dopamine-signaled reward predictions generated by
competitive excitation and inhibition in a spiking neural network model. Frontiers
in Computational Neuroscience, 5(May):21, January 2011. 75

[44] Brian R. Christie, Jeffrey C. Magee, and Daniel Johnston. The role of dendritic action
potentials and Ca2+ influx in the induction of homosynaptic long-term depression
in hippocampal CA1 pyramidal neurons. Learning & Memory, 3(2-3):160–9, 1996.
12

[45] Leon N. Cooper. A possible organization of animal memory and learning. In No-
bel Symposium on Collective Properties of Physical Systems, volume 252, page 264.
Academic Press, New York, 1973. 10

[46] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics
of Control, Signals, and Systems, 2(4):303–314, 1989. 43, 52

[47] Justin Dauwels, Francois Vialatte, Theophane Weber, and Andrzej Cichocki. On
similarity measures for spike trains. Advances in Neuro-Information Processing, 2009.
45

[48] Nathaniel D. Daw. Reinforcement learning models of the dopamine system and their
behavioral implications. PhD thesis, 2003. 73

[49] Peter Dayan. The convergence of TD(λ) for general λ. Machine Learning, 8(3-4):341–
362, May 1992. 68

[50] Peter Dayan. Unsupervised Learning. In The MIT Encyclopedia of the Cognitive
Sciences, volume 47. October 1999. 90

[51] Peter Dayan and Larry F. Abbott. Theoretical neuroscience. MIT Press, 2001. 31

[52] Paul Dean, John Porrill, Carl-Fredrik Ekerot, and Henrik Jörntell. The cerebellar
microcircuit as an adaptive filter: experimental and computational evidence. Nature
Reviews Neuroscience, 11(1):30–43, January 2010. x, 44, 45, 47, 109

[53] Kenji Doya. Temporal difference in learning in continuous time and space. Advances
in Neural Information Processing Systems, pages 1073–1079, 1996. 69

[54] Kenji Doya. Reinforcement learning in continuous time and space. Neural Compu-
tation, 12(1):219–45, January 2000. 69

115

[55] Kenji Doya, Kazuyuki Samejima, Ken-ichi Katagiri, and Mitsuo Kawato. Multiple
model-based reinforcement learning. Neural Computation, 12:1347–1369, August
2002. 108

[56] Serena M. Dudek and Mark F. Bear. Homosynaptic long-term depression in area CA1
of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proceedings
of the National Academy of Sciences of the United States of America, 89(10):4363–7,
May 1992. 12

[57] Thomas Dunwiddie and Gary Lynch. Long-term potentiation and depression of
synaptic responses in the rat hippocampus: localization and frequency dependency.
The Journal of Physiology, (1978):353–367, 1978. 11, 12

[58] Chris Eliasmith. Notes from SYDE750 course, 2011. ix, 22, 32

[59] Chris Eliasmith and Charles H. Anderson. Neural engineering: computation, rep-
resentation, and dynamics in neurobiological systems. Computational neuroscience.
MIT Press, 2003. 20, 23, 24, 29, 31, 37, 60, 107

[60] Michael A. Farries and Adrienne L. Fairhall. Reinforcement learning with modulated
spike timing dependent synaptic plasticity. Journal of Neurophysiology, 98(6):3648–
65, December 2007. 74

[61] Paul Fatt. Electric potentials occurring around a neurone during its antidromic
activation. Journal of Neurophysiology, 20(1):27, 1957. 9

[62] Elodie Fino, Jacques Glowinski, and Laurent Venance. Bidirectional activity-
dependent plasticity at corticostriatal synapses. The Journal of Neuroscience,
25(49):11279–87, December 2005. 16

[63] Christopher D. Fiorillo, Philippe N. Tobler, and Wolfram Schultz. Discrete coding of
reward probability and uncertainty by dopamine neurons. Science, 299(5614):1898–
902, March 2003. 71

[64] Rzvan V. Florian. A reinforcement learning algorithm for spiking neural networks.
In Symbolic and Numeric Algorithms for Scientific Computing, number Section 3,
page 8 pp. Ieee, 2005. 74

[65] Rzvan V. Florian. Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity. Neural Computation, 19(6):1468–1502, 2007. 74

116

[66] D. J. Foster, R. G. Morris, and Peter Dayan. A model of hippocampally dependent
navigation, using the temporal difference learning rule. Hippocampus, 10(1):1–16,
January 2000. 73

[67] Robert C. Froemke, Mu-ming Poo, and Yang Dan. Spike-timing-dependent synaptic
plasticity depends on dendritic location. Nature, 434(7030):221–225, 2005. 15

[68] M. Fujita. Adaptive filter model of the cerebellum. Biological Cybernetics, 45(3):195–
206, 1982. 44

[69] Apostolos P. Georgopoulos, Andrew B. Schwartz, and Ronald E. Kettner. Neuronal
population coding of movement direction. Science, 233(4771):1416–1419, September
1986. 24

[70] Samuel J. Gershman, Jonathan D. Cohen, and Yael Niv. Learning to selectively
attend. In Cognitive Science, pages 1270–1275, 2010. 56

[71] Nace L. Golding, Nathan P. Staff, and Nelson Spruston. Dendritic spikes as a mech-
anism for cooperative long-term potentiation. Nature, 418(6895):326–331, 2002. 15

[72] Xianping Guo and Onesimo Hernandez-Lerma. Continuous-Time Markov decision
processes: theory and applications, volume 26. Springer, December 2009. 87

[73] Hirac Gurden, Masatoshi Takita, and Therese M. Jay. Essential role of D1 but not D2
receptors in the NMDA receptor-dependent long-term potentiation at hippocampal-
prefrontal cortex synapses in vivo. The Journal of Neuroscience, 20(22):RC106,
November 2000. 18

[74] Kevin Gurney, Tony J. Prescott, and Peter Redgrave. A computational model of
action selection in the basal ganglia. I. A new functional anatomy. Biological Cyber-
netics, 84(6):401–10, June 2001. 79, 80

[75] Kevin Gurney, Tony J. Prescott, and Peter Redgrave. A computational model of ac-
tion selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological
Cybernetics, 84(6):411–23, June 2001. 79, 80

[76] B. Gustafsson and H. Wigstrom. Hippocampal long-lasting potentiation produced
by pairing single volleys and brief conditioning tetani evoked in separate afferents.
The Journal of Neuroscience, 6(6):1575, 1986. 9

117

[77] B. Gustafsson, H. Wigström, W. C. Abraham, and Y. Y. Huang. Long-term po-
tentiation in the hippocampus using depolarizing current pulses as the conditioning
stimulus to single volley synaptic potentials. The Journal of Neuroscience, 7(3):774–
80, March 1987. 9

[78] Bengt Gustafsson and Holger Wigstrom. Physiological mechanisms underlying long-
term potentiation. Trends in Neurosciences, 11(4):156–162, 1988. 9, 15

[79] Julie S. Haas, Thomas Nowotny, and H. D. I. Abarbanel. Spike-timing-dependent
plasticity of inhibitory synapses in the entorhinal cortex. Journal of Neurophysiology,
96(6):3305–13, December 2006. 18

[80] Peter J. B. Hancock, Leslie S. Smith, and William A. Phillips. A biologically sup-
ported error-correcting learning rule. Neural Computation, 3(2):201–212, June 1991.
91

[81] Thomas Hanselmann, Lyle Noakes, and Anthony Zaknich. Continuous-time adaptive
critics. IEEE Transactions on Neural Networks, 18(3):631–47, May 2007. 73

[82] Jason Hardie and Nelson Spruston. Synaptic depolarization is more effective than
back-propagating action potentials during induction of associative long-term poten-
tiation in hippocampal pyramidal neurons. Journal of Neuroscience, 29(10):3233–41,
March 2009. 10

[83] Michael Hausser, Nelson Spruston, and Greg J. Stuart. Diversity and dynamics of
dendritic signaling. Science, 290(5492):739–744, October 2000. 9

[84] Donald O. Hebb. The organization of behavior. Wiley & Sons, New York, 1949. 6, 7

[85] Geoffrey E. Hinton and James L. McClelland. Learning representations by recircula-
tion. In Neural Information Processing Systems, pages 358–366. American Institute
of Physics, New York, 1988. 48

[86] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current
and its application to conduction and excitation in nerve. The Journal of Physiology,
117(4):500, 1952. 20

[87] Carl D. Holmgren and Yuri Zilberter. Coincident spiking activity induces long-term
changes in inhibition of neocortical pyramidal cells. The Journal of Neuroscience,
21(20):8270–7, October 2001. 15

118

[88] K Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991. 43, 52

[89] Nathan Intrator and Leon N. Cooper. Objective function formulation of the BCM
theory of visual cortical plasticity: statistical connections, stability conditions. Neural
Networks, 5(1):3–17, 1992. 93, 95, 96

[90] Masao Ito. Long-term depression. Annual Review of Neuroscience, 12(1):85–102,
1989. 12

[91] Eugene M. Izhikevich. Which model to use for cortical spiking neurons? IEEE
Transactions on Neural Networks, 15(5):1063–70, September 2004. 21

[92] Eugene M. Izhikevich. Solving the distal reward problem through linkage of STDP
and dopamine signaling. Cerebral Cortex, 17(10):2443–2452, 2007. 74, 75, 76

[93] Eugene M. Izhikevich and Niraj S. Desai. Relating STDP to BCM. Neural Compu-
tation, 15(7):1511–1523, 2003. 99

[94] Vincent Jacob, Daniel J. Brasier, Irina Erchova, Dan Feldman, and Daniel E. Shulz.
Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat.
The Journal of Neuroscience, 27(6):1271–84, February 2007. 16

[95] Therese M. Jay. Dopamine: a potential substrate for synaptic plasticity and memory
mechanisms. Progress in Neurobiology, 69(6):375–390, April 2003. 18

[96] Daphna Joel, Yael Niv, and Eytan Ruppin. Actor-critic models of the basal ganglia:
new anatomical and computational perspectives. Neural Networks, 15(4-6):535–47,
2002. 73

[97] Renaud Jolivet, Felix Schürmann, Thomas K. Berger, Richard Naud, Wulfram Gerst-
ner, and Arnd Roth. The quantitative single-neuron modeling competition. Biological
Cybernetics, 99(4-5):417–26, November 2008. 20

[98] Matt Jones and Fabián Cañas. Integrating reinforcement learning with models of
representation learning. In Conference of the Cognitive Science Society, pages 1258–
1263, 2010. 73

[99] J. Karhunen. Nonlinear independent component analysis. In Stephen Roberts and
Richard Everson, editors, Independent Component Analysis: Principles and Practice,
pages 113–134. Cambridge University Press, Cambridge, 2001. 94

119

[100] Hiroyuki K. Kato, Ayako M. Watabe, and Toshiya Manabe. Non-Hebbian synap-
tic plasticity induced by repetitive postsynaptic action potentials. The Journal of
Neuroscience, 29(36):11153–60, September 2009. 16

[101] S. R. Kelso, A. H. Ganong, and T. H. Brown. Hebbian synapses in hippocampus.
Proceedings of the National Academy of Sciences of the United States of America,
83(14):5326–30, July 1986. 9

[102] Jason N. D. Kerr and J. R. Wickens. Dopamine D-1/D-5 receptor activation is
required for long-term potentiation in the rat neostriatum in vitro. Journal of Neu-
rophysiology, 85(1):117, 2001. 18

[103] Mehdi Khamassi, Löıc Lachèze, Benôıt Girard, Alain Berthoz, and Agnès Guillot.
Actor-critic models of reinforcement learning in the basal ganglia: from natural to
artificial rats. Adaptive Behavior, 13(2):131–148, June 2005. 73

[104] Hoseok Kim, Jung Hoon Sul, Namjung Huh, Daeyeol Lee, and Min Whan Jung.
Role of striatum in updating values of chosen actions. Journal of Neuroscience,
29(47):14701–12, November 2009. 81, 84

[105] Alfredo Kirkwood, Marc G. Rioult, and Mark F. Bear. Experience-dependent modi-
fication of synaptic plasticity in visual cortex. Nature, 381(6582):526–528, 1996. 93,
95, 104

[106] A. Harry Klopf. Brain function and adaptive systems: a heterostatic theory. Tech-
nical Report 133, DTIC Document, 1972. 62

[107] A. Harry Klopf. A comparison of natural and artificial intelligence. ACM SIGART
Bulletin, (52):11–13, 1975. 62

[108] A. Harry Klopf. A neuronal model of classical conditioning. Psychobiology, 1988. 7

[109] Christoph Kolodziejski, Bernd Porr, and Florentin Worgotter. On the asymptotic
equivalence between differential Hebbian and temporal difference learning. Neural
Computation, 21(4):1173–1202, 2009. 8, 75

[110] Konrad P. Körding and Peter König. Supervised and unsupervised learning with two
sites of synaptic integration. Journal of Computational Neuroscience, 11(3):207–15,
2002. 49

[111] Bart Kosko. Differential hebbian learning. In American Institute of Physics: Neural
Networks for Computing, pages 277–282. Citeseer, 1986. 7, 8

120

[112] Daniel Krieg and Jochen Triesch. STDP explained? Connecting function and bio-
physics. In Computational and Systems Neuroscience, 2011. 98

[113] Nicola Kuczewski, Christophe Porcher, Nadine Ferrand, Hervé Fiorentino,
Christophe Pellegrino, Richard Kolarow, Volkmar Lessmann, Igor Medina, and Jean-
Luc Gaiarsa. Backpropagating action potentials trigger dendritic release of BDNF
during spontaneous network activity. Journal of Neuroscience, 28(27):7013–23, July
2008. 10

[114] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951. 90

[115] Harri Lappalainen and Xavier Giannakopoulos. Multi-layer perceptrons as nonlinear
generative models for unsupervised learning: a Bayesian treatment. In International
Conference on Artificial Neural Networks, volume 1999, pages 19–24. Iee, 1999. 90

[116] C. Charles Law and Leon N. Cooper. Formation of receptive fields in realistic vi-
sual environments according to the Bienenstock, Cooper, and Munro (BCM) theory.
Proceedings of the National Academy of Sciences of the United States of America,
91(16):7797–801, August 1994. 94

[117] Kevin S. Lee. Cooperativity among afferents for the induction of long-term potentia-
tion in the CA1 region of the hippocampus. The Journal of Neuroscience, 3(7):1369,
1983. 9

[118] Johannes J. Letzkus, Björn M. Kampa, and Greg J. Stuart. Learning rules for spike
timing-dependent plasticity depend on dendritic synapse location. The Journal of
Neuroscience, 26(41):10420–9, October 2006. 14

[119] W. B. Levy and O. Steward. Temporal contiguity requirements for long-term as-
sociative potentiation/depression in the hippocampus. Neuroscience, 8(4):791–797,
1983. 12, 13

[120] William B. Levy and Oswald Steward. Synapses as associative memory elements in
the hippocampal formation. Brain Research, 175(2):233–245, 1979. 9

[121] David J. Linden. Long-term synaptic depression in the mammalian brain. Neuron,
12(3):457–72, March 1994. 10, 11, 12

[122] John Lisman and Nelson Spruston. Postsynaptic depolarization requirements for
LTP and LTD: a critique of spike timing-dependent plasticity. Nature Neuroscience,
8(7):839–841, 2005. 15, 16, 97

121

[123] John E. Lisman, Howard Schulman, and Hollis Cline. The molecular basis of
CaMKII function in synaptic and behavioural memory. Nature Reviews Neuroscience,
3(3):175–90, March 2002. 15

[124] Dmitri V. Lissin, Stephen N. Gomperts, Reed C. Carroll, Chadwick W. Chris-
tine, Daniel Kalman, Marina Kitamura, Stephen Hardy, Roger A. Nicoll, Robert C.
Malenka, and Mark von Zastrow. Activity differentially regulates the surface expres-
sion of synaptic AMPA and NMDA glutamate receptors. Proceedings of the National
Academy of Sciences of the United States of America, 95(12):7097–102, June 1998.
17

[125] Terje Lø mo. The discovery of long-term potentiation. Philosophical Transactions of
the Royal Society of London, 358(1432):617–20, April 2003. 8

[126] Gary Lynch, Thomas Dunwiddie, and V. Gribkoff. Heterosynaptic depression: a
postsynaptic correlate of long-term potentiation. Nature, 266:737–9, 1977. 11

[127] Wolfgang Maass. Lower bounds for the computational power of networks of spiking
neurons. Neural Computation, 8(1):1–40, January 1996. 45

[128] David Macneil and Chris Eliasmith. Fine-tuning and stability of recurrent neural
networks. PloS One, 2011. 37, 107

[129] Jeffrey C. Magee and Daniel Johnston. A synaptically controlled, associative signal
for hebbian plasticity in hippocampal neurons. Science, 275(5297):209–213, January
1997. 10

[130] Tiago V. Maia. Reinforcement learning, conditioning, and the brain: successes and
challenges. Cognitive Affective & Behavioral Neuroscience, 9(4):343–64, December
2009. 71, 73, 77, 81

[131] Robert C. Malenka and Mark F. Bear. LTP and LTD: an embarrassment of riches.
Neuron, 44(1):5–21, September 2004. 9, 10

[132] Henry Markram, Joachim Lubke, Michael Frotscher, and Bert Sakmann. Regula-
tion of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science,
275(5297):213–215, January 1997. 8, 13

[133] S. J. Martin, P. D. Grimwood, and R. G. Morris. Synaptic plasticity and memory: an
evaluation of the hypothesis. Annual Review of Neuroscience, 23:649–711, January
2000. 19

122

[134] Timothée Masquelier, Rudy Guyonneau, and Simon J. Thorpe. Competitive STDP-
based spike pattern learning. Neural Computation, 21(5):1259–1276, 2009. 98

[135] Timothée Masquelier and Simon J. Thorpe. Unsupervised learning of visual features
through spike timing dependent plasticity. PLoS Computational Biology, 3(2):e31,
February 2007. 98

[136] Peter V. Massey and Zafar I. Bashir. Long-term depression: multiple forms and
implications for brain function. Trends in Neurosciences, 30(4):176–84, April 2007.
11, 12

[137] David A. McCormick, Barry W. Connors, James W. Lighthall, and David A. Prince.
Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of
the neocortex. Journal of Neurophysiology, 54(4):782–806, October 1985. ix, 28

[138] Sam McKennoch, Dingding Liu, and Linda G. Bushnell. Fast modifications of the
SpikeProp algorithm. In IEEE International Joint Conference on Neural Networks,
pages 3970–3977. Ieee, 2006. 46

[139] B. L. McNaughton, R. M. Douglas, and G. V. Goddard. Synaptic enhancement in
fascia dentata: cooperativity among coactive afferents. Brain Research, 157(2):277–
293, 1978. 9

[140] C. Daniel Meliza and Yang Dan. Receptive-field modification in rat visual cortex
induced by paired visual stimulation and single-cell spiking. Neuron, 49(2):183–9,
January 2006. 16

[141] Jacques Mirenowicz and Wolfram Schultz. Importance of unpredictability for reward
responses in primate dopamine neurons. Journal of Neurophysiology, 72(2), 1994. 71

[142] Jugurta R. Montalvho Filho, Murilo A. Bezerra, and Levi P. Oliveira. Clustering with
multilayer perceptrons and hebbian learning based on kullback-leibler divergence. In
Machine Learning for Signal Processing, pages 243–252. Ieee, 2004. 90

[143] S.C. Moore. Back-propagation in spiking neural networks. PhD thesis, University of
Bath, 2002. 46

[144] R. M. Mulkey and Robert C. Malenka. Mechanisms underlying induction of homosy-
naptic long-term depression in area CA1 of the hippocampus. Neuron, 9(5):967–75,
November 1992. 12

123

[145] Takeshi Nakamura, Jean-Gael Barbara, Kyoko Nakamura, and William N. Ross.
Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation
of mGluRs paired with backpropagating action potentials. Neuron, 24(3):727–37,
November 1999. 10

[146] Bernhard Nessler, Michael Pfeiffer, and Wolfgang Maass. STDP enables spiking
neurons to detect hidden causes of their inputs. In Advances in Neural Information
Processing Systems, volume 22, pages 1–9. MIT Press, 2009. 98

[147] Thomas Nevian and Bert Sakmann. Spine Ca2+ signaling in spike-timing-dependent
plasticity. The Journal of Neuroscience, 26(43):11001–13, October 2006. 15

[148] Makoto Nishiyama, Kyonsoo Hong, Katsuhiko Mikoshiba, Mu-Ming Poo, and Kunio
Kato. Calcium stores regulate the polarity and input specificity of synaptic modifi-
cation. Nature, 408(6812):584–8, November 2000. 15

[149] Yael Niv. Reinforcement learning and the basal ganglia. PhD thesis, Tel Aviv Uni-
versity, 2001. 18

[150] Richard J. O’Brien, Sunjeev Kamboj, Michael D. Ehlers, Kenneth R. Rosen, Ger-
ald D. Fischbach, and Richard L. Huganir. Activity-dependent modulation of synap-
tic AMPA receptor accumulation. Neuron, 21(5):1067–78, November 1998. 17

[151] Erkki Oja. Unsupervised learning in neural computation. Theoretical Computer
Science, 287(1):187–207, September 2002. 90

[152] Randall C. O’Reilly. Biologically plausible error-driven learning using local activation
differences: the generalized recirculation algorithm. Neural Computation, 8(5):895–
938, July 1996. 48

[153] Randall C. O’Reilly. The LEABRA model of neural interactions and learning in the
neocortex. PhD thesis, Carnegie Mellon University, 1996. 48

[154] Nonna A. Otmakhova and John E. Lisman. D1/D5 dopamine receptor activation in-
creases the magnitude of early long-term potentiation at CA1 hippocampal synapses.
The Journal of Neuroscience, 16(23):7478–86, December 1996. 18

[155] N. G. Pavlidis, D. K. Tasoulis, V. P. Plagianakos, G. Nikiforidis, and M. N. Vrahatis.
Spiking neural network training using evolutionary algorithms. In International Joint
Conference on Neural Networks, volume 4, pages 2190–2194. IEEE, 2005. 48

124

[156] Verena Pawlak and Jason N. D. Kerr. Dopamine receptor activation is re-
quired for corticostriatal spike-timing-dependent plasticity. Journal of Neuroscience,
28(10):2435–46, March 2008. 18

[157] Jean-Pascal Pfister, David Barber, and Wulfram Gerstner. Optimal hebbian learn-
ing: a probabilistic point of view. In International Conference on Artificial Neural
Networks and Neural Information Processing, pages 92–98. Springer-Verlag, 2003. 47

[158] Jean-Pascal Pfister and Wulfram Gerstner. Triplets of spikes in a model of spike
timing-dependent plasticity. Journal of Neuroscience, 26(38):9673–82, September
2006. 16, 96, 99, 101

[159] Jean-Pascal Pfister, Taro Toyoizumi, David Barber, and Wulfram Gerstner. Opti-
mal spike-timing-dependent plasticity for precise action potential firing in supervised
learning. Neural Computation, 18(6):1318–48, June 2006. 47

[160] Anthony G. Phillips, Giada Vacca, and Soyon Ahn. A top-down perspective on
dopamine, motivation and memory. Pharmacology, Biochemistry, and Behavior,
90(2):236–49, August 2008. 71

[161] Filip Ponulak. Supervised learning in spiking neural networks with ReSuMe method.
Phd, Poznan University of Technology, 2006. 46, 47

[162] Wiebke Potjans, Abigail Morrison, and Markus Diesmann. A spiking neural network
model of an actor-critic learning agent. Neural Computation, 339:301–339, 2009. x,
77, 78

[163] R. Quian Quiroga, L. Reddy, G. Kreiman, C. Koch, and I. Fried. Invariant visual
representation by single neurons in the human brain. Nature, 435(7045):1102–7, June
2005. 26

[164] Wilfrid Rall and Gordon M. Shepherd. Theoretical reconstruction of field potentials
and dendrodendritic synaptic interactions in olfactory bulb. Journal of Neurophysi-
ology, 31(6):884, 1968. 9

[165] Rajesh P. N. Rao and Terrence J. Sejnowski. Spike-timing-dependent Hebbian plas-
ticity as temporal difference learning. Neural Computation, 13(10):2221–37, October
2001. 75

[166] Daniel Rasmussen and Chris Eliasmith. A neural model of rule generation in induc-
tive reasoning. Topics in Cognitive Science, 3(1):140–153, January 2011. 55

125

[167] Alexander Rauch, Giancarlo La Camera, Hans-Rudolf Luscher, Walter Senn, and
Stefano Fusi. Neocortical pyramidal cells respond as integrate-and-fire neurons to
in vivo-like input currents. Journal of Neurophysiology, 90(3):1598–612, September
2003. 21

[168] John N. J. Reynolds and Jeffery R. Wickens. Dopamine-dependent plasticity of
corticostriatal synapses. Neural Networks, 15(4-6):507–21, 2002. 18

[169] Martin Riedmiller. Neural fitted Q iteration - first experiences with a data efficient
neural reinforcement learning method. Learning, pages 317–328, 2005. 73

[170] Patrick D. Roberts. Computational consequences of temporally asymmetric learn-
ing rules: I. Differential Hebbian learning. Journal of Computational Neuroscience,
7(3):235–46, 1999. 8

[171] Edmund T. Rolls. Absolute refractory period of neurons involved in MFB self-
stimulation. Physiology & Behavior, 7(3):311–5, September 1971. 23

[172] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323(6088):533–536, 1986. 41

[173] Ausra Saudargiene, Bernd Porr, and Florentin Wörgötter. How the shape of pre- and
postsynaptic signals can influence STDP: a biophysical model. Neural Computation,
16(3):595–625, 2004. 8

[174] Ausra Saudargiene, Bernd Porr, and Florentin Wörgötter. Synaptic modifications
depend on synapse location and activity: a biophysical model of STDP. Bio Systems,
79(1-3):3–10, 2005. 8

[175] Nestor A. Schmajuk. Classical conditioning. Scholarpedia, 3(3):2316, 2008. 70

[176] Benjamin Schrauwen and Jan Van Campenhout. Improving SpikeProp: enhance-
ments to an error-backpropagation rule for spiking neural networks. In Prorisc
Workshop, volume 11, pages 301–305, 2004. 46

[177] Wolfram Schultz. Dopamine neurons and their role in reward mechanisms. Current
Opinion in Neurobiology, 7(2):191–7, April 1997. 62, 71

[178] Wolfram Schultz. Predictive reward signal of dopamine neurons. Journal of Neuro-
physiology, 80(1):1–27, July 1998. 76

126

[179] Wolfram Schultz, Peter Dayan, and P. Read Montague. A neural substrate of pre-
diction and reward. Science, 275(5306):1593–1599, March 1997. 62, 71, 72

[180] Wolfram Schultz, Leon Tremblay, and Jeffrey R. Hollerman. Reward prediction in
primate basal ganglia and frontal cortex. Neuropharmacology, 37(4-5):421–9, 1998.
47, 71

[181] Harel Shouval, Nathan Intrator, and Leon N. Cooper. BCM network develops ori-
entation selectivity and ocular dominance in natural scene environment. Vision
Research, 37(23):3339–42, December 1997. 94

[182] Hava T. Siegelmann and Eduardo D. Sontag. Turing computability with neural nets.
Applied Mathematics Letters, 4(6):77–80, 1991. 43

[183] Jesper Sjöström and Wulfram Gerstner. Spike-timing dependent plasticity. Scholar-
pedia, 5(2):1362, 2010. 13, 14, 16, 98

[184] Per Jesper Sjöström and Sacha B. Nelson. Spike timing, calcium signals and synaptic
plasticity. Current Opinion in Neurobiology, 12(3):305–314, June 2002. 15

[185] Per Jesper Sjöström, Ede A. Rancz, Arnd Roth, and Michael Hausser. Dendritic
excitability and synaptic plasticity. Physiological Reviews, 88(2):769, 2008. 14, 15

[186] Per Jesper Sjöström, Gina G. Turrigiano, and Sacha B. Nelson. Rate, timing, and
cooperativity jointly determine cortical synaptic plasticity. Neuron, 32(6):1149–64,
December 2001. 16, 17, 97

[187] Sen Song, Kenneth D. Miller, and Larry F. Abbott. Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9):919–
26, September 2000. 96

[188] Henning Sprekeler, Christian Michaelis, and Laurenz Wiskott. Slowness: an objective
for spike-timing-dependent plasticity? PLoS Computational Biology, 3(6):e112, June
2007. 98

[189] John E. R. Staddon and Yael Niv. Operant conditioning. Scholarpedia, 3(9):2318,
2008. 70

[190] Charles F. Stevens. A million dollar question: does LTP = memory? Neuron,
20(1):1–2, January 1998. 19

127

[191] Terrence C. Stewart, Trevor Bekolay, and Chris Eliasmith. Neural representations of
compositional structures: representing and manipulating vector spaces with spiking
neurons. Connection Science, 23(2):145–153, June 2011. 26

[192] Terrence C. Stewart, Xuan Choo, and Chris Eliasmith. Dynamic behaviour of a
spiking model of action selection in the basal ganglia. In ICCM, 2010. 55, 79, 80

[193] Greg J. Stuart, Nelson Spruston, Bert Sakmann, and Michael Häusser. Action po-
tential initiation and backpropagation in neurons of the mammalian CNS. Trends in
Neurosciences, 20(3):125–31, March 1997. 9

[194] Roland E. Suri and Wolfram Schultz. Learning of sequential movements by neural
network model with dopamine-like reinforcement signal. Experimental Brain Re-
search, 121(3):350–4, August 1998. 73

[195] Roland E. Suri and Wolfram Schultz. A neural network model with dopamine-
like reinforcement signal that learns a spatial delayed response task. Neuroscience,
91(3):871–90, January 1999. 73

[196] Richard S. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44, August 1988. 62, 68

[197] Richard S. Sutton and Andrew G. Barto. Toward a modern theory of adaptive
networks: expectation and prediction. Psychological Review, 88(2):135–70, March
1981. 7

[198] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction,
volume 3. Cambridge University Press, September 1999. x, 63, 69

[199] Takeo Suzuki, Masami Miura, Kin-ya Nishimura, and Toshihiko Aosaki. Dopamine-
dependent synaptic plasticity in the striatal cholinergic interneurons. The Journal
of Neuroscience, 21(17):6492–501, September 2001. 18

[200] J. L. Swanson-Park, C. M. Coussens, S. E. Mason-Parker, C. R. Raymond, E. L.
Hargreaves, M. Dragunow, A. S. Cohen, and W. C. Abraham. A double dissociation
within the hippocampus of dopamine D1/D5 receptor and beta-adrenergic receptor
contributions to the persistence of long-term potentiation. Neuroscience, 92(2):485–
97, January 1999. 18

[201] Dharmesh R. Tailor, Leif H. Finkel, and Gershon Buchsbaum. Color-opponent recep-
tive fields derived from independent component analysis of natural images. Vision
Research, 40(19):2671–6, January 2000. 94

128

[202] Carlo A. Terzuolo and T. Araki. An analysis of intra- versus extracellular potential
changes associated with activity of single spinal motoneurons. Annals of the New
York Academy of Sciences, 94(2):547–558, 1961. 9

[203] Edward Lee Thorndike. Animal intelligence: an experimental study of the associate
processes in animals. Psychological Review, 2(4):1–8, 1898. 62

[204] Simon J. Thorpe. Spike arrival times: a highly efficient coding scheme for neural
networks. Parallel Processing in Neural Systems, pages 91–94, 1990. 23, 45

[205] Taro Toyoizumi, Jean-Pascal Pfister, Kazuyuki Aihara, and Wulfram Gerstner. Gen-
eralized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes infor-
mation transmission. Proceedings of the National Academy of Sciences of the United
States of America, 102(14):5239–44, April 2005. 96

[206] Hsing-Chen Tsai, Feng Zhang, Antoine Adamantidis, Garret D. Stuber, Antonello
Bonci, Luis de Lecea, and Karl Deisseroth. Phasic firing in dopaminergic neurons is
sufficient for behavioral conditioning. Science, 324(5930):1080–4, May 2009. 72

[207] John N. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16(3):185–202, 1994. 68

[208] Gina G. Turrigiano. The self-tuning neuron: synaptic scaling of excitatory synapses.
Cell, 135(3):422–35, October 2008. 17

[209] Gina G. Turrigiano, Kenneth R. Leslie, Niraj S. Desai, Lana C. Rutherford, and
Sacha B. Nelson. Activity-dependent scaling of quantal amplitude in neocortical
neurons. Nature, 391(6670):892–6, February 1998. 17

[210] Nathaniel N. Urban and German Barrionuevo. Induction of Hebbian and non-hebbian
mossy fiber long-term potentiation by distinct patterns of high-frequency stimulation.
The Journal of Neuroscience, 16(13):4293–9, July 1996. 16

[211] Robert Urbanczik and Walter Senn. Reinforcement learning in populations of spiking
neurons. Nature Neuroscience, 12(3):250–2, March 2009. 76

[212] Matthijs A. A. van Der Meer and A. David Redish. Ventral striatum: a critical look
at models of learning and evaluation. Current Opinion in neurobiology, 21(3):387–
392, March 2011. 77

[213] Rufin Van Rullen, Rudy Guyonneau, and Simon J. Thorpe. Spike times make sense.
Trends in Neurosciences, 28(1):1–4, January 2005. 45

129

[214] Jonathan D. Victor. Spike train metrics. Current Opinion in Neurobiology, 15(5):585–
92, October 2005. 45

[215] Hongyan Wang and John J. Wagner. Priming-induced shift in synaptic plasticity in
the rat hippocampus. Journal of Neurophysiology, 82:2024–2028, 1999. 93

[216] Huai-Xing Wang, Richard C. Gerkin, David W. Nauen, and Guo-Qiang Bi. Coac-
tivation and timing-dependent integration of synaptic potentiation and depression.
Nature Neuroscience, 8(2):187–93, February 2005. 16

[217] Jack Waters, Andreas Schaefer, and Bert Sakmann. Backpropagating action poten-
tials in neurones: measurement, mechanisms and potential functions. Progress in
Biophysics and Molecular Biology, 87(1):145–70, January 2005. 10

[218] Alanna J. Watt, Mark C. W. van Rossum, Katrina M. MacLeod, Sacha B. Nelson,
and Gina G. Turrigiano. Activity coregulates quantal AMPA and NMDA currents
at neocortical synapses. Neuron, 26(3):659–70, June 2000. 17

[219] J. Wickens and R. Kötter. Cellular models of reinforcement. In Models of information
processing in the basal ganglia, pages 187–214. The MIT Press, 1995. 18

[220] Jianguo Xin and Mark J. Embrechts. Supervised learning with spiking neural net-
works. In International Joint Conference on Neural Networks, volume 3, pages 1772–
1777. IEEE, February 2001. 48

[221] Z. Zainuddin, N. Mahat, and Y. Abu Hassan. Improving the convergence of the back-
propagation algorithm using local adaptive techniques. World Academy of Science,
Engineering and Technology, (4):1200–1204, 2005. 43, 44

[222] Li I. Zhang, Huizhong W. Tao, Christine E. Holt, William A. Harris, and Mu-ming
Poo. A critical window for cooperation and competition among developing retino-
tectal synapses. Nature, 395(6697):37–44, 1998. 14

130

	List of Figures
	Introduction
	Thesis organization
	Thesis goals

	Synaptic plasticity
	Hebbian learning
	Long-term potentiation (LTP)
	Long-term depression (LTD)
	Spike-timing dependent plasticity (STDP)

	Non-Hebbian plasticity
	Dopamine modulated plasticity
	Explaining behaviour with synaptic strengths

	Large-scale neural modelling
	Single-neuron models
	Leaky integrate-and-fire model

	The Neural Engineering Framework
	Representation
	Transformation

	Plasticity in the NEF
	Error minimization rule

	Supervised learning
	Supervised learning in traditional artificial neural networks
	Backpropagation

	Supervised learning in spiking neural networks
	Temporal-coding based models
	Biologically plausible backpropagation

	Supervised learning with the NEF
	Theoretical argument
	Biological plausibility
	Simulation results
	Conclusion

	Reinforcement learning
	Reinforcement learning in traditional artificial neural networks
	The agent-environment interface
	Markov decision processes
	Value functions
	Temporal-difference learning
	Using artificial neural networks
	Comparison to supervised learning

	Reinforcement learning in spiking neural networks
	Dopamine may encode TD-like reward prediction error
	Previous neural models

	Reinforcement learning in the NEF
	Action selection
	Critiquing the actor
	Simulation results
	Challenges for the current model
	Conclusions

	Unsupervised learning
	Unsupervised learning in traditional artificial neural networks
	Unsupervised learning in spiking neural networks
	Artola, Bröcher, Singer (ABS) rule
	Bienenstock, Cooper, Munro (BCM) rule
	Spike-timing dependent plasticity rules
	Relationship between BCM and STDP rules
	General unsupervised learning

	Unsupervised learning in the NEF
	Simulation results
	A unifying learning rule

	Discussion and conclusions
	Large-scale unsupervised learning
	Model-based reinforcement learning
	Supervised error signals
	Solving the supervised spike-time learning problem

	Computational complexity
	Decoder-level learning

	References

