Nengo Tutorial: Multiplication

This tutorial covers building a neural model capatifl performing multiplication. We start with two
neural groups representing the two values to beipliatl, create a new neural group which stores bot
values, and then produce a final neural group sgoring the product of the original values.

The following techniques are covered by this tatori
Defining neural groups (ensembles)

Defining external inputs to a network

Combining values from two neural groups into one
Non-linear transformations

Recording data from the network and plotting it
Using the scripting interface

Step 1: Create a Network
When Nengo is run, we are presented with an emptispace. The first thing to do is to create a
Network to contain all of the neural ensembles we wiltheating.

To create théletwork, go toFile->New->Network in the top menu. A dialog box will appear that

allows you to enter a name for tRetwork. EnterMultiplier and clickOk.
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Top Window - Mouse X: 1,100.56 Y: 404.45

Step 2: Represent the Input

We now need two neural populations to representwberalues we are multiplying. These will be
standard Leaky-Integrate-and-Fire (LIF) neural emdes, with 100 neurons per ensemble. Each
population will represent a single 1-dimensiondleasince we are just multiplying scalar values in
this tutorial.

Right-click inside theMultiplier Network and selecCreate New->NEFEnsemble. Set the name A,
the number of nodes to 100, and Dimensions to 1.
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Before clickingOk, we need to specify the neural properties. Thioine via thélode Factory. From
the drop-down menu, choosd Neuron. Now clickSet to set its properties.

The new dialog box allows you to configua®RC (the neurons’ membrane time constatat)Ref (the
spike refractory period), the range of maximummfirrates across the population, and the range of
intercepts across the population. For this tutona will use standard values. $&iRC to 0.02 (20
milliseconds) andauRef to 0.002 (2 milliseconds). By setting the low nmate to 100 and the high
max rate to 200, we specify that the neurons mnleural ensemble will have their maximum firing
rates chosen from a uniform distribution betweedH0and 200Hz. Since we want these neurons to
be equally accurate across the full range of theesented varable, we set the intercepts to becestw
-1 and 1 (the intercept is the represented valatkishjust large enough for the neuron to start to
respond).
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Now pres®k for theLIF Neuron Constructor and again for th8IEF Ensemble Constructor. The
neural population will now be created.
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Repeat this process to create a second neural bleseamed. Note that you can close the

NEFEnsemble Viewers, as we do not need to examine the individualoreur
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Given these neural ensembles, we can produce tefalygots. Right click on one of the ensembles
and choose@lot->Constant Rate Responses andPlot->Distortion: X.
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These graphs allow us to confirm that the neur@ve the expected tuning curves and are capable of
representing values accurately.

Step 3: Provide Input

In order for our multiplier to do anything, we wileed to be able to specify the input: the two eslio
be multiplied. Since neural models are inheretgigporal models, these inputs can change over time,



and so are treated by Nengo as functions of time.

Create a function by right-clicking on theetwork and choosin@reate New->Function Input. Give it

a name ofnput A and set itDimensions to 1. Now click orSet Functions, which allows us to specify
the function that will be used. ChodSenstant Function from the list (to indicate that we want a
function that stays at the same value over timd)dick Set. We can now specify the value that we
want as the input. Since our neurons are repriegeatrange between -1 and 1, we choose a value
within that range, such as 0.8. Now cli@k for each dialog box and the function will be cesht
Repeat this process to create a second imguit(B) with a constant value of 0.5.

Nengo Workspace _[o x|
File Edit View Options Help

4 modes
.—gi.
Multiplier (Network Viewer)

Top Window - Mouse X: 432.03 Y: 301.72

Step 4: Connect Inputs to Neural Ensembles

We now need to feed the inputs into the correspandeural ensembles. In Nengo, this is done
throughOrigins andTerminations. The two functions already have origins defirge plue circles on
their right). We need to add terminations to the heural ensembles. These will be simple
terminations that do not transform the represenédae in any way.

Right-click onNEFEnsemble A and choos@dd decoded termination. A dialog box will appear
allowing us to configure the termination. Setigsne tanput and its input dimensions to 1.

Now click onSet Weights to specify the coupling matrix for this terminatioThis can be any matrix,
allowing for any linear transformation to occun this case, since we have a single dimensioreat th
origin and a single dimension at the terminatioa,have a 1x1 matrix. Since we do not want to
transform the value in any way, we want the 1xhiitye matrix, which is simply the single number 1.
Change the coupling matrix so that it just contéimessnumber 1 and then click.
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TheDecoded Termination Constructor should now reappear. The final value to s&au®SC, the post
synaptic time constant. Set it to a value of 0.00milliseconds), since this is what we will bengs

later in the tutorial.
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A green circle indicating the new termination veippear to the left iIEFEnsemble A. Connect the
origin fromInput A to the new termination by clicking on the origmlding the mouse button down,
and dragging to the new termination. When the radusgton is released, the connection will be made.

Repeat the above process to create a terminatiovEléEnsemble B and connect it tonput B.
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Step 5: Run the Simulation

To confirm that our system is working as expecteglcan run the simulation as it stands. This shoul
result in neural populatioA encoding a value of 0.8 and neural populaBaemncoding a value in 0.5.



The first thing we need to do is to add two profeethe model. These will record the values encoded
in the spiking activity of neural ensemblesndB. Right-click onA and selecidd probe->X -

Function of NEFEnsemble state. (X refers to the value being represented by any giuieh

population). Do the same far

Right-click on theNetwork and selecRun Multiplier. A dialog box will appear where we can set the
timing for this simulation. Set thgart time to 0, theEnd time to 1, and th&tep size to 0.0005 (0.5
milliseconds). Since we will want to examine tlaedafter running the simulation, make sQpen
data viewer after simulation is enabled.

Run Multiplier (Network) ﬂ

Start time
0.0 |

Step size
[0.0005 |

End time
1 |

Open data viewer after simulation
Enable

Now click Ok to run the simulation.

After it has run, @ata Viewer will appear on the left side of the screen (daes not, selestiew-
>Toggle Data Viewer from the top menu, or press Ctrl-2). ClickMaltiplier and expand the tree to
find the data from the two probes.

If we double-click on one of the (Probe data 1D) lines, we will get the raw data of what is being
represented by that neural ensemble over the siimulaSince this is a spiking neuron model, thasad
is actually just a weighted sum of spike impulsiace we are only using 100 neurons, this will be a
noisy value, but should average around the expetettd(0.8 foR, 0.5 forB).
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To get a more useful graph, we can apply an avegddter to the plot. Do this by right-clickingho
the line in theData Viewer and choosinglot with options. Set the time constant to 0.02 and the

subsampling to 0.
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The graph indicates that the neural ensemble isratsly representing the value 0.8. Note that the
gradual increase from 0 to 0.8 at the beginninthefgraph is an artifact of the filtering proce3se
graph for the other neural ensemble should looKainbut with a value around 0.5.

Step 6: Combine the Inputs

Since multiplication is a non-linear operation, finst step in performing it is to form a new nelura
population that represents both of the valuess Tombined representation allows an accurate

approximation of multiplication to be derived.

We thus create a new neural ensemble comprisingn@0fbns and having 2 dimensions. Follow the
same process as in Step 2, using the same nevaah@ars. Call the new NEFEnsemBtEmbined.
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Now we need to connegtandB to this new neural population. We want the vditoen A to be stored
in the first dimension and the value fr@rio be stored in the second dimension. To do wesyse the
coupling matrix, as mentioned in Step 4, whereas\a one-dimensional identity matrix.

For the connection from to theCombined population, we use the coupling matrix [1,0], émdthe
connection fronB we use the coupling matrix [0,1]. We can see Has/works by imagining the 1-
dimensional inputs being multiplied by these cauglmatrices before they are stored in the combined
population:

[AI*[1,0]+[B]*[0,1]
= [A,0]+]0,B]
=[AB]
To create these connections, we need two new tations on th&€ombined population. Follow the
same steps as in Step 4, but call one of theand the other ong. Make sure the input dimension is 1
and that you set the weights of A to be [1,0] an Be [0,1].
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Now that the terminations exist, connect the ogdnoamA andB to the new terminations. If the
origins fromA andB are not visible, right click on them and sel@cigins and Terminations->Show

origin->X.

Step 7: Perform the Multiplication

Now that we have both values represented in aesipgpulation, we can multiply them. We do this by
creating a new decoded origin, which we can spestifuld extract the product of the two values. As
per NEF theory, this is done using exactly the samathod as we have been using to extract X, which



is just the basic value being represented.

We do this by creating a new origin for thembined population. Right-click on it and choo&dd
decoded origin. Set its name tproduct and the number of output dimensions to 1. Thek cn Set
Functions to define the function that should be applied.o&@eUser-defined Function from the list
and clickSet to define it. We can now specify a numerical esgion that defines the function we
want to calculate. Typed*x1 into theExpression box. This will multiply the two values in the
represented vector together. Note that you canelehy function you like here, and can make use of
the standard math functions listed in Begistered Functions list.
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Input Dimensions
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New Remove Preview

Ok Cancel

Click Ok to define the function andk again to set it.

IMPORTANT NOTE: Before clickingOk to complete the creation of the decoded origirkersure
that theNode Origin Name is set toAXON, notcurrent. We want to decode based on the spike trains
produced by the neurons, not the somatic current.
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Step 8: Store the Product

Finally, we can create a new NEFEnsemble to repteéke result of the multiplication. Create this
exactly asA andB were created, using 100 neurons, 1 dimensiontrendameProduct. Add a

decoded termination (with a coupling matrix thguist the number 1, as no transformation is needed)
Connect it to th@roduct origin of theCombined population and add a probe so that we can ob#srve
value.



If we now run the simulation as in Step 5, multption should be performed. We can observe this by

graphing the data from the probe on Eneduct population.
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As can be seen, the network has correctly calaliiduat 0.8 times 0.5 is 0.4.

Step 9: Simplify the Model

The model we have just built performs multiplicatsuccessfully. However, it turns out that we can
simplify this model considerably. Three of the r@@nsembles we have definéd B, andProduct)
merely store a value. Tt@mbined neural ensemble is where the multiplication atyuadcurs.

In a larger, more complex model (where more thahnuultiplication occurs), these three storage
neural ensembles may be needed. However, forutpoges of this model, we can actually remove
them.

Right-click onA and choos®&emove model. AnswerYes to the “Are you sure?” question. This will
delete the neural ensemble. Do the sanedndProduct. Now directly connect the origin @fput A
to theA termination on th€ombined NEFEnsemble. Do the same foput B (to theB termination).
This is now a (much simpler) multiplier network.

To view the result of the multiplication, we needew probe. Right-click on theombined neural
ensemble and selegtid probe->product.
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If we run the simulation and plot the resultingajate should get a similar result as before.
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Since the data passes through fewer neural ensgntiideresult should be slightly more accurate than
before. When creating any sort of Nengo modes, aften useful to look through it for neural
ensembles that can be removed in this way. Inrgémesural ensembles that only store a value and d
not themselves transform it are good candidatesefooval.

Step 10: Use the Scripting Interface

Instead of doing all of the above steps throughgtia@hical user interface, we can also create rsodel
using a more traditional coding approach. Nengaerien in Java, so models can be created by
directly using the Java API. However, since iiseful to be able to combine coding with the grephi
interface, a scripting language interface has lagleled to Nengo. This uses the Python syntax and
provides interaction with the Java objects in tredel thanks to the Jython project. The practical
result is that you can modify and inspect fromghepting console a model that you have created and
run using the graphical user interface, and viecsae

For now, we are going to use the Python interfadsuild our multiplier model. Start with a clean
Nengo environment by either restarting Nengo oetitedy any network you have built. Open the script
console by pressing Ctrl-P.
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We can now type into the bottom line in the scepasole. In theory, we could simply type a conglet
program in, line-by-line, executing it as we gaidlis good for doing quick things, but often wel wi
want to save our program as a script and run étashce. We can do this by creating a file witlg a
text editor, or using the built in script editoragable by pressing Ctrl-E. The file should beeshin

the main Nengo directory (on Windows, thiis8Program Files\CTN\Nengo by default). Scripts are
run by typingrun filename.py into the script console.

Here is the full program:

# Get access to the Nengo objects
from ca. nengo. model inport *

from ca. nengo. model . impl inmport *

from ca. nengo. model . nef . impl inport *
from ca. nengo. math. impl inport *

# Create a network and add it to the world
network =Networkimpl ()

network . name="Multiplier"

world . add ( network )

# Configure the neuron paraneters

ef =NEFEnsembleFactorylmpl ()

ef . nodeFactory .tauRC=0.02

ef . nodeFactory .tauRef =0.002

ef . nodeFactory . maxRate =IndicatorPDF (100, 200)
ef . nodeFactory .intercept =IndicatorPDF (-1, 1)

# Create input neural ensenbles
a=ef . make("A" , 100, 1)
network . addNode(a)

b=ef . make("B" , 100, 1)
network . addNode (b)

# Provide the input

inputA =Functionlnput  ("Input A" , [ ConstantFunction (1,0.8)], Units . UNK
inputB =Functionlnput  ("“InputB" , [ ConstantFunction (1,0.5)], Units . UNK
network . addNode (inputA )

network . addNode (inputB )

# Connect input to neural ensenbles
a. addDecodedTermination  (“input" ,[[1.0]], 0.007 , False )
network . addProjection  (inputA . getOrigin  ('origin' ), a. getTermination  ("input" ))

b. addDecodedTermination  (“input* ,[[1.0]],0.007 , False )
network . addProjection  (inputB . getOrigin  ('origin' ), b. getTermination  ("input" ))



# Conbi ne inputs
combined =ef . make( "Combined" , 200, 2)
network . addNode ( combined )

combined . addDecodedTermination  ("A",[[1.0],[0.0]], 0.007 , False )
network . addProjection  (a. getOrigin ('X' ), combined . getTermination  ("A"))

combined . addDecodedTermination ("B",[[0.0],[1.0]], 0.007 , False )
network . addProjection  (b. getOrigin (‘X' ), combined . getTerminaton  ("B"))

# Performthe nultiplication
interpreter =DefaultFunctioninterpreter @)
combined . addDecodedOrigin  ("product" , [ interpreter . parse ("x0*x1" ,2)],'AXON")

product =ef . make( "Product" , 100, 1)

network . addNode ( product )

product . addDecodedTermination  ("product” ,[[21.0]],0.007 , False )

network . addProjection  (combined . getOrigin  ('product’ ), product . getTermination  ('product’ ))

# Record the results

network . simulator . addProbe ("A", a, "X" , True)

network . simulator . addProbe ("B", b, "X", True)

network . simulator . addProbe ("Product® , product ,"X", True)

The first section adds the important classes fioeNengo API into the local namespace. This makes
it easier to access them in our code.

# CGet access to the Nengo objects
from ca. nengo. model inport *

from ca. nengo. model . impl inport *
from ca. nengo. model . nef . impl inport *
from ca. nengo. math. impl inport *

An alternative approach would be to do this instead
i mport ca.nengo

However, this approach would mean we would havestothe full name of the Nengo objects, so

instead of:
network =Networklmpl ()

we would have to write:
network =ca.nengo.model.impl.Networkimpl @)

Next, we create the network.

# Create a network and add it to the world
network =Networkimpl ()

network . name="Multiplier"

world . add ( network )

One special trick occurring here is the introductid theworid 0bject. This refers to the whole content
of the user interface, and allows the network toeap in it.

Now we configure the neuron parameters. Since iN®ften want to use the same sorts of neurons
throughout a simulation, we can configure them omitle aFactory that will allow us to produce
neurons and neural ensembles with the desired pirege

# Configure the neuron paraneters
ef =NEFEnsembleFactorylmpl ()

ef . nodeFactory .tauRC=0.02

ef . nodeFactory .tauRef =0.002



ef . nodeFactory . maxRate =IndicatorPDF (100, 200)
ef . nodeFactory . intercept =IndicatorPDF (-1, 1)

Expert users may note that we are making use ioh@ifying feature of Jython: it is aware of
JavaBean properties. That is, we could have wrttte above code in the following way, which will

be more familiar to Java programmers
ef . getNodeFactory() . setTauRC( 0.02 )

The Jython interface automatically translates thecticode to call the corregt andset methods.

Next, we create the neural ensembles by using BfeBdsembleFactory.

# Create input neural ensenbles
a=ef . make("A" , 100, 1)
network . addNode(a)

b=ef . make("B" , 100, 1)
network . addNode ( b)

The parameters to theke command are the name, the number of neuronshanauimber of
dimensions. We have to be sure to add the newbted node to the network so that it becomes part o
our simulation.

To create th&unction Inputs, we do the following.

# Provide the input

inputA =Functionlnput  ("Input A" , [ ConstantFunction (1,0.8)], Units . UNK
inputB =Functionlnput  ("“InputB" , [ ConstantFunction (1,0.5)], Units . UNK
network . addNode (inputA )

network . addNode (inputB )

Notice that we can specify an array of functionsiolr would be treated as multiple dimensions. The
unit specification at the end indicates that weraretreating this value as being in any particulaits
(seconds, Newtons, millivolts, etc.).

To connect the inputs to the relevant neural entamle need to create a termination and form the
projection between the two.

# Connect input to neural ensenbles
a. addDecodedTermination ~ (“input" ,[[1.0]], 0.007 , False )
network . addProjection  (inputA . getOrigin  (‘origin' ), a. getTermination  ("input" ))

b. addDecodedTermination  ("“input" ,[[1.0]], 0.007 , False )
network . addProjection  (inputB . getOrigin  ('origin' ), b. getTermination  ("input" ))

When creating a termination, we specify the couptimatrix, the post-synaptic time constant, and
whether this is just a modulatory input (used fdwanced models where the connection affects some
other property of the neuron without directly atfeg its current).

We follow a similar approach to create thembined neural ensemble.

# Conbi ne inputs
combined =ef . make( "Combined" , 200, 2)
network . addNode ( combined )

combined . addDecodedTermination  ("A",[[1.0],[0.0]], 0.007 , False )
network . addProjection  (a. getOrigin ('X' ), combined . getTermination  ("A"))

combined . addDecodedTermination ("B",[[0.0],[1.0]], 0.007 , False )
network . addProjection  (b. getOrigin (‘X' ), combined . getTerminaton  ("B"))



Notice that we have changed the number of neutbagjimensionality, and the coupling matrices.

To perform the multiplication, we need to createdagin and specify its transformation function.eW
can do this by creating a new Python object (yesubclassingunction), allowing us to define any
possible function. However, for this case, we willke use of the same user-defined function system
used above.

# Performthe nultiplication
interpreter =DefaultFunctioninterpreter @)
combined . addDecodedOrigin  ("product" , [ interpreter . parse ("x0*x1" ,2)],'AXON")

product =ef . make("Product" , 100, 1)

network . addNode ( product )

product . addDecodedTermination  (“product® ,[[1.0]],0.007 , False )

network . addProjection  (combined . getOrigin  ('product’ ), product .getTermination  ('product’ ))

Finally, we can add probes to our model so we ¢meKve its behaviour

# Record the results

network . simulator . addProbe ("A", a, "X", True)

network . simulator . addProbe ("B", b, "X" , True)

network . simulator . addProbe ("Product" , product ,"X", True)

The result should be a model identical to the opated using the graphical approach.



