
Nengo Tutorial: Multiplication 
 
This tutorial covers building a neural model capable of performing multiplication.  We start with two 
neural groups representing the two values to be multiplied, create a new neural group which stores both 
values, and then produce a final neural group representing the product of the original values. 
 
The following techniques are covered by this tutorial: 

� Defining neural groups (ensembles) 
� Defining external inputs to a network 
� Combining values from two neural groups into one 
� Non-linear transformations 
� Recording data from the network and plotting it 
� Using the scripting interface 

Step 1: Create a Network 
When Nengo is run, we are presented with an empty workspace.  The first thing to do is to create a 
Network to contain all of the neural ensembles we will be creating. 
 
To create the Network, go to File->New->Network in the top menu.  A dialog box will appear that 
allows you to enter a name for the Network.  Enter Multiplier and click Ok. 

 
 

Step 2: Represent the Input 
We now need two neural populations to represent the two values we are multiplying.  These will be 
standard Leaky-Integrate-and-Fire (LIF) neural ensembles, with 100 neurons per ensemble.  Each 
population will represent a single 1-dimensional value, since we are just multiplying scalar values in 
this tutorial. 
 
Right-click inside the Multiplier Network and select Create New->NEFEnsemble.  Set the name to A, 
the number of nodes to 100, and the Dimensions to 1. 



 
 
Before clicking Ok, we need to specify the neural properties.  This is done via the Node Factory.  From 
the drop-down menu, choose LIF Neuron.  Now click Set to set its properties. 
 
The new dialog box allows you to configure tauRC (the neurons’ membrane time constant), tauRef (the 
spike refractory period), the range of maximum firing rates across the population, and the range of 
intercepts across the population.  For this tutorial, we will use standard values.  Set tauRC to 0.02 (20 
milliseconds) and tauRef to 0.002 (2 milliseconds).  By setting the low max rate to 100 and the high 
max rate to 200, we specify that the neurons in this neural ensemble will have their maximum firing 
rates chosen from a uniform distribution between 100Hz and 200Hz.  Since we want these neurons to 
be equally accurate across the full range of the represented varable, we set the intercepts to be between 
-1 and 1 (the intercept is the represented value that is just large enough for the neuron to start to 
respond). 
 

Now press Ok for the LIF Neuron Constructor and again for the NEF Ensemble Constructor.  The 
neural population will now be created. 



 
Repeat this process to create a second neural ensemble named B.  Note that you can close the 
NEFEnsemble Viewers, as we do not need to examine the individual neurons. 

 
Given these neural ensembles, we can produce two useful plots.  Right click on one of the ensembles 
and choose Plot->Constant Rate Responses and Plot->Distortion: X. 

 
 
These graphs allow us to confirm that the neurons have the expected tuning curves and are capable of 
representing values accurately. 

Step 3: Provide Input 
In order for our multiplier to do anything, we will need to be able to specify the input: the two values to 
be multiplied.  Since neural models are inherently temporal models, these inputs can change over time, 



and so are treated by Nengo as functions of time. 
 
Create a function by right-clicking on the Network and choosing Create New->Function Input.  Give it 
a name of Input A and set its Dimensions to 1.  Now click on Set Functions, which allows us to specify 
the function that will be used.  Choose Constant Function from the list (to indicate that we want a 
function that stays at the same value over time) and click Set.  We can now specify the value that we 
want as the input.  Since our neurons are representing a range between -1 and 1, we choose a value 
within that range, such as 0.8.  Now click Ok for each dialog box and the function will be created.  
Repeat this process to create a second input (Input B) with a constant value of 0.5. 
 

 

Step 4: Connect Inputs to Neural Ensembles 
We now need to feed the inputs into the corresponding neural ensembles.  In Nengo, this is done 
through Origins and Terminations.  The two functions already have origins defined (the blue circles on 
their right).  We need to add terminations to the two neural ensembles.  These will be simple 
terminations that do not transform the represented value in any way. 
 
Right-click on NEFEnsemble A and choose Add decoded termination.  A dialog box will appear 
allowing us to configure the termination.  Set its name to input and its input dimensions to 1.   
 
Now click on Set Weights to specify the coupling matrix for this termination.  This can be any matrix, 
allowing for any linear transformation to occur.  In this case, since we have a single dimension at the 
origin and a single dimension at the termination, we have a 1x1 matrix.  Since we do not want to 
transform the value in any way, we want the 1x1 identity matrix, which is simply the single number 1.  
Change the coupling matrix so that it just contains the number 1 and then click Ok. 



 
The Decoded Termination Constructor should now reappear.  The final value to set is tauPSC, the post 
synaptic time constant.  Set it to a value of 0.007 (7 milliseconds), since this is what we will be using 
later in the tutorial. 

A green circle indicating the new termination will appear to the left of NEFEnsemble A.  Connect the 
origin from Input A to the new termination by clicking on the origin, holding the mouse button down, 
and dragging to the new termination.  When the mouse button is released, the connection will be made. 
 
Repeat the above process to create a termination for NEFEnsemble B and connect it to input B. 
 

 

Step 5: Run the Simulation 
To confirm that our system is working as expected, we can run the simulation as it stands.  This should 
result in neural population A encoding a value of 0.8 and neural population B encoding a value in 0.5. 
 



The first thing we need to do is to add two probes to the model.  These will record the values encoded 
in the spiking activity of neural ensembles A and B. Right-click on A and select Add probe->X - 
Function of NEFEnsemble state.  (X refers to the value being represented by any given NEF 
population).  Do the same for B. 
 
Right-click on the Network and select Run Multiplier.  A dialog box will appear where we can set the 
timing for this simulation.  Set the Start time to 0, the End time to 1, and the Step size to 0.0005 (0.5 
milliseconds).  Since we will want to examine the data after running the simulation, make sure Open 
data viewer after simulation is enabled. 

Now click Ok to run the simulation. 
 
After it has run, a Data Viewer will appear on the left side of the screen (if it does not, select View-
>Toggle Data Viewer from the top menu, or press Ctrl-2).  Click on Multiplier and expand the tree to 
find the data from the two probes.   

If we double-click on one of the X (Probe data 1D) lines, we will get the raw data of what is being 
represented by that neural ensemble over the simulation.  Since this is a spiking neuron model, this data 
is actually just a weighted sum of spike impulses. Since we are only using 100 neurons, this will be a 
noisy value, but should average around the expected data (0.8 for A, 0.5 for B). 



To get a more useful graph, we can apply an averaging filter to the plot.  Do this by right-clicking on 
the line in the Data Viewer and choosing Plot with options.  Set the time constant to 0.02 and the 
subsampling to 0. 

The graph indicates that the neural ensemble is accurately representing the value 0.8.  Note that the 
gradual increase from 0 to 0.8 at the beginning of the graph is an artifact of the filtering process.  The 
graph for the other neural ensemble should look similar, but with a value around 0.5. 

Step 6: Combine the Inputs 
Since multiplication is a non-linear operation, the first step in performing it is to form a new neural 
population that represents both of the values.  This combined representation allows an accurate 
approximation of multiplication to be derived. 
 
We thus create a new neural ensemble comprising 200 neurons and having 2 dimensions.  Follow the 
same process as in Step 2, using the same neural parameters.  Call the new NEFEnsemble Combined. 



 
Now we need to connect A and B to this new neural population.  We want the value from A to be stored 
in the first dimension and the value from B to be stored in the second dimension.  To do this, we use the  
coupling matrix, as mentioned in Step 4, where it was a one-dimensional identity matrix. 
 
For the connection from A to the Combined population, we use the coupling matrix [1,0], and for the 
connection from B we use the coupling matrix [0,1].  We can see how this works by imagining the 1-
dimensional inputs being multiplied by these coupling matrices before they are stored in the combined 
population: 
 
     [A]*[1,0]+[B]*[0,1] 
 = [A,0]+[0,B] 
 = [A,B] 
 
To create these connections, we need two new terminations on the Combined population.  Follow the 
same steps as in Step 4, but call one of them A and the other one B.  Make sure the input dimension is 1 
and that you set the weights of A to be [1,0] and B to be [0,1]. 



                 
 
Now that the terminations exist, connect the origins from A and B to the new terminations.  If the 
origins from A and B are not visible, right click on them and select Origins and Terminations->Show 
origin->X. 
 

Step 7: Perform the Multiplication 
Now that we have both values represented in a single population, we can multiply them.  We do this by 
creating a new decoded origin, which we can specify should extract the product of the two values.  As 
per NEF theory, this is done using exactly the same method as we have been using to extract X, which 



is just the basic value being represented. 
 
We do this by creating a new origin for the Combined population.  Right-click on it and choose Add 
decoded origin.  Set its name to product and the number of output dimensions to 1.  Then click on Set 
Functions to define the function that should be applied.  Choose User-defined Function from the list 
and click Set to define it.  We can now specify a numerical expression that defines the function we 
want to calculate.  Type x0*x1 into the Expression box.  This will multiply the two values in the 
represented vector together.  Note that you can define any function you like here, and can make use of 
the standard math functions listed in the Registered Functions list. 

Click Ok to define the function and Ok again to set it. 
 
IMPORTANT NOTE:  Before clicking Ok to complete the creation of the decoded origin, make sure 
that the Node Origin Name is set to AXON, not current.  We want to decode based on the spike trains 
produced by the neurons, not the somatic current. 
 

 

Step 8: Store the Product 
Finally, we can create a new NEFEnsemble to represent the result of the multiplication.  Create this 
exactly as A and B were created, using 100 neurons, 1 dimension, and the name Product.  Add a 
decoded termination (with a coupling matrix that is just the number 1, as no transformation is needed).  
Connect it to the product origin of the Combined population and add a probe so that we can observe its 
value. 



 
If we now run the simulation as in Step 5, multiplication should be performed.  We can observe this by 
graphing the data from the probe on the Product population. 

 
As can be seen, the network has correctly calculated that 0.8 times 0.5 is 0.4. 

Step 9: Simplify the Model 
The model we have just built performs multiplication successfully.  However, it turns out that we can 
simplify this model considerably.  Three of the neural ensembles we have defined (A, B, and Product) 
merely store a value. The Combined neural ensemble is where the multiplication actually occurs. 
 
In a larger, more complex model (where more than just multiplication occurs), these three storage 
neural ensembles may be needed.  However, for the purposes of this model, we can actually remove 
them. 
 
Right-click on A and choose Remove model.  Answer Yes to the “Are you sure?” question.  This will 
delete the neural ensemble.  Do the same to B and Product.  Now directly connect the origin of Input A 
to the A termination on the Combined NEFEnsemble.  Do the same for Input B (to the B termination).  
This is now a (much simpler) multiplier network. 
 
To view the result of the multiplication, we need a new probe.  Right-click on the Combined neural 
ensemble and select Add probe->product.   



If we run the simulation and plot the resulting data, we should get a similar result as before. 

Since the data passes through fewer neural ensembles, the result should be slightly more accurate than 
before.  When creating any sort of Nengo model, it is often useful to look through it for neural 
ensembles that can be removed in this way.  In general, neural ensembles that only store a value and do 
not themselves transform it are good candidates for removal. 

Step 10: Use the Scripting Interface 
Instead of doing all of the above steps through the graphical user interface, we can also create models 
using a more traditional coding approach.  Nengo is written in Java, so models can be created by 
directly using the Java API.  However, since it is useful to be able to combine coding with the graphical 
interface, a scripting language interface has been added to Nengo.  This uses the Python syntax and 
provides interaction with the Java objects in the model thanks to the Jython project.  The practical 
result is that you can modify and inspect from the scripting console a model that you have created and 
run using the graphical user interface, and vice versa. 
 
For now, we are going to use the Python interface to build our multiplier model.  Start with a clean 
Nengo environment by either restarting Nengo or deleting any network you have built.  Open the script 
console by pressing Ctrl-P. 



We can now type into the bottom line in the script console.  In theory, we could simply type a complete 
program in, line-by-line, executing it as we go.  This is good for doing quick things, but often we will 
want to save our program as a script and run it all at once.  We can do this by creating a file with any 
text editor, or using the built in script editor available by pressing Ctrl-E.  The file should be saved in 
the main Nengo directory (on Windows, this is C:\Program Files\CTN\Nengo by default).  Scripts are 
run by typing run filename.py into the script console. 
 
Here is the full program: 
# Get access to the Nengo objects 
from ca.nengo .model  import * 
from ca.nengo .model .impl  import * 
from ca.nengo .model .nef .impl  import * 
from ca.nengo .math.impl  import * 
 
 
# Create a network and add it to the world 
network =NetworkImpl () 
network .name="Multiplier" 
world .add(network ) 
 
 
# Configure the neuron parameters 
ef =NEFEnsembleFactoryImpl () 
ef .nodeFactory .tauRC=0.02 
ef .nodeFactory .tauRef =0.002 
ef .nodeFactory .maxRate =IndicatorPDF (100,200) 
ef .nodeFactory .intercept =IndicatorPDF (-1,1) 
 
 
# Create input neural ensembles 
a=ef .make("A" ,100,1) 
network .addNode(a) 
 
b=ef .make("B" ,100,1) 
network .addNode(b) 
 
 
# Provide the input 
inputA =FunctionInput ("Input A" , [ConstantFunction (1,0.8 )], Units .UNK) 
inputB =FunctionInput ("Input B" , [ConstantFunction (1,0.5 )], Units .UNK) 
network .addNode(inputA ) 
network .addNode(inputB ) 
 
 
# Connect input to neural ensembles 
a.addDecodedTermination ("input" ,[[1.0 ]],0.007 ,False ) 
network .addProjection (inputA .getOrigin ('origin' ),a.getTermination ("input" )) 
 
b.addDecodedTermination ("input" ,[[1.0 ]],0.007 ,False ) 
network .addProjection (inputB .getOrigin ('origin' ),b.getTermination ("input" )) 
 
 



# Combine inputs 
combined =ef .make("Combined" ,200,2) 
network .addNode(combined ) 
 
combined .addDecodedTermination ("A" ,[[1.0 ],[0.0 ]],0.007 ,False ) 
network .addProjection (a.getOrigin ('X' ),combined .getTermination ("A" )) 
 
combined .addDecodedTermination ("B" ,[[0.0 ],[1.0 ]],0.007 ,False ) 
network .addProjection (b.getOrigin ('X' ),combined .getTermination ("B" )) 
 
 
# Perform the multiplication 
interpreter =DefaultFunctionInterpreter () 
combined .addDecodedOrigin ("product" ,[interpreter .parse ("x0*x1" ,2)],'AXON' ) 
 
product =ef .make("Product" ,100,1) 
network .addNode(product ) 
product .addDecodedTermination ("product" ,[[1.0 ]],0.007 ,False ) 
network .addProjection (combined .getOrigin ('product' ),product .getTermination ('product' )) 
 
 
# Record the results 
network .simulator .addProbe ("A" ,a,"X" ,True ) 
network .simulator .addProbe ("B" ,b,"X" ,True ) 
network .simulator .addProbe ("Product" ,product ,"X" ,True ) 
 
 

 
 
The first section adds the important classes from the Nengo API into the local namespace.  This makes 
it easier to access them in our code.   
 
# Get access to the Nengo objects 
from ca.nengo .model  import * 
from ca.nengo .model .impl  import * 
from ca.nengo .model .nef .impl  import * 
from ca.nengo .math.impl  import * 

 
An alternative approach would be to do this instead: 
 import ca.nengo 

However, this approach would mean we would have to use the full name of the Nengo objects, so 
instead of: 
 network =NetworkImpl () 

we would have to write: 
 network =ca.nengo.model.impl.NetworkImpl () 

 
Next, we create the network. 
 
# Create a network and add it to the world 
network =NetworkImpl () 
network .name="Multiplier" 
world .add(network ) 
 

One special trick occurring here is the introduction of the world  object.  This refers to the whole content 
of the user interface, and allows the network to appear in it. 
 
Now we configure the neuron parameters.  Since we will often want to use the same sorts of neurons 
throughout a simulation, we can configure them once with a Factory that will allow us to produce 
neurons and neural ensembles with the desired properties. 
 
# Configure the neuron parameters 
ef =NEFEnsembleFactoryImpl () 
ef .nodeFactory .tauRC=0.02 
ef .nodeFactory .tauRef =0.002 



ef .nodeFactory .maxRate =IndicatorPDF (100,200) 
ef .nodeFactory .intercept =IndicatorPDF (-1,1) 
 

Expert users may note that we are making use of a simplifying feature of Jython: it is aware of 
JavaBean properties.  That is, we could have written the above code in the following way, which will 
be more familiar to Java programmers 
 ef .getNodeFactory() .setTauRC( 0.02 ) 

The Jython interface automatically translates the direct code to call the correct get  and set  methods. 
 
Next, we create the neural ensembles by using the NEFEnsembleFactory. 
 
# Create input neural ensembles 
a=ef .make("A" ,100,1) 
network .addNode(a) 
 
b=ef .make("B" ,100,1) 
network .addNode(b) 
 

The parameters to the make command are the name, the number of neurons, and the number of 
dimensions.  We have to be sure to add the newly created node to the network so that it becomes part of 
our simulation. 
 
To create the Function Inputs, we do the following. 
 
# Provide the input 
inputA =FunctionInput ("Input A" , [ConstantFunction (1,0.8 )], Units .UNK) 
inputB =FunctionInput ("Input B" , [ConstantFunction (1,0.5 )], Units .UNK) 
network .addNode(inputA ) 
network .addNode(inputB ) 
 

Notice that we can specify an array of functions, which would be treated as multiple dimensions.  The 
unit specification at the end indicates that we are not treating this value as being in any particular units 
(seconds, Newtons, millivolts, etc.). 
 
To connect the inputs to the relevant neural ensemble, we need to create a termination and form the 
projection between the two. 
 
# Connect input to neural ensembles 
a.addDecodedTermination ("input" ,[[1.0 ]],0.007 ,False ) 
network .addProjection (inputA .getOrigin ('origin' ),a.getTermination ("input" )) 
 
b.addDecodedTermination ("input" ,[[1.0 ]],0.007 ,False ) 
network .addProjection (inputB .getOrigin ('origin' ),b.getTermination ("input" )) 
 

When creating a termination, we specify the coupling matrix, the post-synaptic time constant, and 
whether this is just a modulatory input (used for advanced models where the connection affects some 
other property of the neuron without directly affecting its current). 
 
We follow a similar approach to create the Combined neural ensemble. 
 
# Combine inputs 
combined =ef .make("Combined" ,200,2) 
network .addNode(combined ) 
 
combined .addDecodedTermination ("A" ,[[1.0 ],[0.0 ]],0.007 ,False ) 
network .addProjection (a.getOrigin ('X' ),combined .getTermination ("A" )) 
 
combined .addDecodedTermination ("B" ,[[0.0 ],[1.0 ]],0.007 ,False ) 
network .addProjection (b.getOrigin ('X' ),combined .getTermination ("B" )) 
 



Notice that we have changed the number of neurons, the dimensionality, and the coupling matrices. 
 
To perform the multiplication, we need to create an origin and specify its transformation function.  We 
can do this by creating a new Python object (i.e. by subclassing Function), allowing us to define any 
possible function.  However, for this case, we will make use of the same user-defined function system 
used above. 
 
# Perform the multiplication 
interpreter =DefaultFunctionInterpreter () 
combined .addDecodedOrigin ("product" ,[interpreter .parse ("x0*x1" ,2)],'AXON' ) 
 
product =ef .make("Product" ,100,1) 
network .addNode(product ) 
product .addDecodedTermination ("product" ,[[1.0 ]],0.007 ,False ) 
network .addProjection (combined .getOrigin ('product' ),product .getTermination ('product' )) 
 

Finally, we can add probes to our model so we can observe its behaviour 
 
# Record the results 
network .simulator .addProbe ("A" ,a,"X" ,True ) 
network .simulator .addProbe ("B" ,b,"X" ,True ) 
network .simulator .addProbe ("Product" ,product ,"X" ,True ) 

 
The result should be a model identical to the one created using the graphical approach. 


