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Abstract

Spinal neural networks in larval zebrafish generate a variety of movements
such as escape, struggling, and swimming. There have been a number of untested
proposals regarding possible mechanisms at both the network and neural levels
to account for switches between these behaviours. However, there are currently
no detailed demonstrations of such mechanisms, so it is not possible to determine
which are plausible and which are not. Here we propose a detailed, biologically
plausible model of the interactions between the swimming and escape networks in
the larval zebrafish. This model shows how distinct behaviours can be controlled
by anatomically overlapping networks. More generally, this paper demonstrates
a method for constructing spiking networks consistent with both high-level be-
havioural descriptions and available neural data.
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1 Introduction

Two distinct rhythmic motor patterns, classified as ‘escape’ and ‘swimming,’ are ob-
served in the larval zebrafish. Escape is characterized by large amplitude waves prop-
agating along the body of the fish in a C- or S-shaped pattern. Normal swimming is
defined as movement that possesses rhythmic alternating movements of the tail, with
bends propagating from the rostral to the caudal end [1].

Two possible means by which both escape and swimming behaviours could be gen-
erated by the same network have been suggested. One possibility is that of a unified
network [5]. Such a network would use different control signals in order to elicit dif-
ferent motor behaviour from the same network of neurons. The other possibility is
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that there exist separate classes of spinal interneurons implicated in the different be-
haviours.

Anatomical and functional evidence clearly shows that there are differences in the
spinal networks of zebrafish during escape and swimming movements, supporting the
second hypothesis [4]. Nevertheless, because swimming and escape are produced by
the same muscles and motoneurons in fish, there must be some interaction between the
interneurons responsible for these behaviours.

2 Larval Zebrafish System Description

The two classes of interneuron included in the model are the circumferential descend-
ing (CiD) interneurons and the multipolar commisural descending (MCoD) interneu-
rons.

In zebrafish larvae, CiD interneurons have been found to be active during escapes
but not swimming [4]. CiD interneurons are characterized by sparse dendrites and
ventrally projecting, ipsilateral axons [4]. CiD interneurons are generally found in the
middle and dorsal regions along the dorso-ventral extent of the spinal cord [4].

The MCoDs are ventrally and laterally positioned compared to the CiD interneu-
rons and have elaborate dendritic arbors. The MCoD has been found to be active during
swimming but not escape [4].

3 Control Theoretic Model

We describe the zebrafish in a horizontal plane as a set of finite length rods (vertebrae)
connected by muscles whose tensions result in the desired swimming motion. Analysis
of this simple model results in the following Fourier decomposition of the tensions as
a function of time, frequency,ω, and lengthwise position,z:

T (z, t;x) = κ

(
N∑

n=1

x2n(t) cos(2πnz) + x2n+1(t) sin(2πnz)

)
(1)

wherek = 2π
L and κ is a constant whose value is determined byk, the wave

amplitude, a viscosity coefficient, and the ratio of vertebrae height and length. As well,
x0(t) = − cos(ωt), x1(t) = − sin(ωt), andx2 = cos(ωt). The dynamics of these
coefficients form a simple oscillator. These dynamics can be represented using the
dynamics state equation from standard control theory,

dx
dt

= Ax(t) + Bu(t) (2)

wherex are the amplitudes of the coefficients in the orthonormal space,A is the
oscillator dynamics matrix, andB is the input matrix which controls the start up be-
haviour of the model. Following Eliasmith and Anderson’s model of the lamprey eel,
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the dynamics matrix,A, can be decomposed into a dampening term to remove un-
wanted, higher frequency distortions,Adamp, and a steady state oscillator matrix,Aosc

[2]. We then define an escape signal,E(t), as either±1 for left or right stimulation (re-
sulting in an escape in the opposite direction), and 0 during normal swimming. Thus,
the matrices describing escape and swimming can be written as:

Adamp =

 −α 0 −α
0 0 0
−α 0 −α

 (3)

Aosc =

 0 ω(1− E) 0
− 1

2ω(1− E) 0 1
2ω(1− E)

0 −ω(1− E) 0

 (4)

B =

 1
2 −υE(x1 − 1) − 1

2
0 1 −υEx2

− 1
2 υE(x3 + 1) 1

2

 (5)

When an escape bend occurs, the dynamics matrix goes to zero. This is accom-
plished by including a nonlinearity in theAosc matrix, which is controlled byE; i.e.,
E is 0 for no escape, and1 for a leftward escape. An additional matrix,Adamp is
added toAosc because the representations ofx0 andx2 in a neural population can-
not be assumed to be perfect. Any error in either of these two components leads to a
rapidly increasing error in the now non-zero derivatives ofx0 andx2 [2]. The damping
in Adamp counteracts this error.

To control startup, the constant portion of the input matrixB is multiplied by a
step inputu(t). This causes the model to display exponential start-up behaviour until
the desired amplitude is reached. Escape behaviour is incorporated by multiplying the
escape signalE by the rate constantv, which controls the speed with which the system
responds to an escape stimulus.The input signalu(t) is the superposition of the escape
signal and the start-up signal, where it is assumed for simplicity that these signals do
not overlap in time.

In sum, the switch between behaviours is described by the model as follows: During
regular swimming, the model zebrafish swims in steady state determined byAosc with
a traveling wave whose temporal frequency is controlled byω. When the escape signal
E(t) is active, the normal swimming motion is interrupted, so the amplitudes ofAosc

are forced to zero. However, theB matrix become active during an escape and elicits
the rapid, characteristic C-shaped escape motion. When the escape signal is removed
the amplitudes ofAosc once again dominate and normal swimming is resumed.

4 Neural Model

In order to investigate the interactions between the escape and swimming interneurons,
a neural model with two distinct populations of neurons can be constructed that dis-
plays both escape and swimming. Given the previous high-level characterization of
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the system dynamics and behaviour, a neurologically plausible representation can be
constructed using the methods described in Eliasmith and Anderson [2].

As a result, we define the encoding and decoding of the coefficients,x, being rep-
resented in the neural population to be of the form:∑

n

δi(t− tn) = Gi

[
αi

〈
φ̃i (hi(t) ∗ [A′x(t) + B′u(t)])

〉
m

+ Jbias
i

]
Encoding

x̂(t) =
∑
in

δi(t− tn) ∗ φx
i (t)Decoding (6)

where

A′ = τA + I (7)

B′ = τB.

relates the previous control system to the neural control system. Here,φx
i (t) is the

linear population-temporal filter,̃φi is the encoding vector,Gi is the leaky-integrate and
fire nonlinearity,αiandJbiasmap the input vector into soma current,τ is the synaptic
time constant, andδi(t − tn) are spikes from neuroni emitted at timetn. In addition,
we analogously define a ‘control population’ of neurons that encode the escape signal
E, the frequencyω and the startup signalu.

We now introduce an intermediate level model between the high level description
previously presented and the neural model. Such an intermediate level serves two
purposes: The first is to better match the physiology of the larval zebrafish. The larval
zebrafish is composed of 30 segments that have individual local tensions which can
then be simulated individually and/or at the neuron level. The second reason is to
allow reductions in computational complexity. Simulating all segments at the level of
single spiking neurons can be computationally expensive.

We represent the local tensions using Gaussian encoding functions along the length
of the fish:

T (z, t) = κ

(
N∑

n=1

am(t)e(−(z−m∗dz))2

)
(8)

wheream(t) is the amplitude of themth gaussian segment centered at the point
zm = m ∗ dz. Note that the non-linear computations necessary to implement this
control structure are computed in a network of 1200 LIF neurons presumed to reside in
the fish’s brainstem. This is the control population that provides signals for frequency,
escape, and startup behaviours.

From figure (1), it can be seen that the MCoD interneurons which encodex have
dense local connectivity. This correlates well with the known neural data indicating
that MCoD cells have elaborate dendritic arbors [4].

Figure (2) shows the connectivity between the 1200 neurons of the control popu-
lation and the 30 segments of the model. It can be seen that the connection weights
are fairly sparse and have longer range projections along the 30 segment length of the
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larval zebrafish model. This correlates well with the neurophysiology since the axons
of CiD cells are known to extend to up to 13 segments along the length of the zebrafish
[4].

Simulation of this neural control structure in a hydrodynamical model based on one
created by Mason et al. [3] leads to the correct swimming motions (results not shown).

5 Conclusions

The resulting network both maps well to the previously described physiology and pro-
duces a switch between swimming and escape behaviours as desired. In particular,
MCoD cells are elements of the network encodingx, which have similar, dense con-
nections and project contralaterally. CiD neurons share sparse connectivity, and longer
range projections with neurons in the population encodingE. In addition, the result-
ing connectivity for the interactions between the CiD and MCoD cells provide testable
predictions regarding the interaction between these two classes of neurons. Thus, a
biologically plausible mechanism for coordinating the switch between these two kinds
of behaviour is demonstrated by the model.
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Figure 1: Connectivity between segments representing MCoD interneurons. The dense
interconnections map well to known physiology.
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Figure 2: Connectivity between the control population and segments representing CiD
interneurons. The long range projections map well to known physiology.
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