
Centre for Theoretical Neuroscience
Technical Report

TR name UW-CTN-TR-20102708-001

October 7th, 2010

Dynamic scaling for efficient, low-cost control of
high-precision movements in large environments

Travis DeWolf

Centre for Theoretical Neuroscience, Waterloo, ON. http://compneuro.uwaterloo.ca/cnrglab

Dynamic scaling for efficient, low-cost control of
high-precision movements in large environments

Travis DeWolf

University of Waterloo
Waterloo, ON

Abstract

This paper presents the dynamic scaling technique (DST), a method for control in large environments that
dramatically reduces the resources required to achieve highly accurate movements. The DST uses a low resolution
representation of the environment to calculate an initial approximately optimal trajectory and refines the control
signal as the target is neared. Simulation results are presented and the effect of representation resolution on
accuracy and computational efficiency is analyzed.

Keywords: Dynamic scaling technique; linear Bellman controllers; control theory; high precision movements

1 Introduction

Recent developments in optimal control theory have pre-
sented a new technique for solving Bellman’s equation;
by applying minimal constraints to the cost function, the
problem of solving for the optimal cost-to-go can be re-
duced to a linear form (Todorov, 2009c). These Linear
Bellman Controllers (LBCs) are able to solve offline for
the optimal trajectory to a target from any state the so-
lution is found by an eigenvector calculation on a matrix
which encodes the passive dynamics and state costs of
the system.

The implications of a linear form of the Bellman
equation in control theory are far reaching. It allows for
many new and powerful techniques, such as the compo-
sitionality of optimal control laws (Todorov, 2009a) and
identification of movement primitives through observa-
tion (Todorov, 2009b). Applications have just begun to
be explored, but already its applicability to the field of
robotics is apparent. Currently, however, high precision
control in large environments requires a very high resolu-
tion representation of the environment. This incurs ex-
orbitant computational and storage requirements on the
control system. The work presented here addresses this
problem, presenting an efficient, low-cost control method
for high precision movements in large environments.

2 Linear Bellman Controllers

LBCs operate by controlling the transition probabili-
ties, u(·|·), and effecting control signals to realize desired
probability distributions over the potential next-states of

the system. To derive the linear Bellman equation, start
with the Bellman equation

v(x) = min
u

{l(x, u) + Ex′∼p(·|u,x)[v(x
′)]}, (1)

which specifies the cost to move optimally to the tar-
get from a state, v(x), by summing the cost of mov-
ing from the current state optimally, l(x, u), and the ex-
pected cost-to-go from the next state, Ex′ p(·|u,x)[v(x

′)].
For LBCs, since probability distributions are being com-
pared, the cost function will be based on the Kullback-
Leibler (KL) divergence function,

l(x, u) = q(x) +KL(u(·|x)||p(·|x))

= q(x) + Ex′∼u(·|x)

[

log
u(x′|x)
p(x′|x)

]

. (2)

The linear Bellman equation is derived by exponen-
tiating the cost-to-go function

z(x) = exp(−v(x)), (3)

resulting in z(x), which is termed the ‘desirability’ func-
tion due to being large where the cost-to-go v is small.
Substituting Eq.(2) into Eq.(1) and rewriting in terms
of z gives

−log(z(x)) = q(x)+min
u

{

Ex′∼u(·|x)

[

log
u(x′|x)

p(x′|x)z(x′)

]}

.

(4)
Importantly, the lower term of the expected cost-to-go
function must be normalized before the rules of KL di-
vergence can be applied. To do this, a normalization
term

G[z](x) =
∑

x′

p(x′|x)z(x′) = Ex′∼p(·|x)[z(x
′)] (5)

1

must be applied.
In a KL divergence, the global minimum is achieved

when the two distributions are equal, so the minimum
of the expected cost-to-go will be

u∗(x′|x) =
px′|xz(x′)

G[z](x)
, (6)

where u∗ represents the optimal action. Substituting the
optimal action into the Bellman equation, accounting for
the normalization term and exponentiating gives

z(x) = exp(−q(x))G[z](x), (7)

where Eq.(7) is linear in terms of z. Eq.(7) can be rewrit-
ten in vector notation by enumerating the states from 1
to n, using the n-dimensional column vectors z and q

to represent z(x) and q(x), and the n-by-n matrix P to
represent p(x′|x), with current states, x, listed down the
rows and potential next-states, x′, across the columns.
This can then be rewritten as an eigenvector problem by
defining the matrix M = diag(exp(−q))P and substitut-
ing into Eq.(7)

z = Mz. (8)

See (Todorov, 2009c) for details on the derivation.

Informally, LBCs calculate the optimal cost-to-go from
each state by first identifying the set of possible system
states, enumerating them, and setting up a passive dy-
namics matrix P whose columns and rows are indexed
by this list of all system states. The matrix P encodes
the transition probabilities under the passive dynamics
of the system, where the row indices represent a current
system state, x, and the columns represent a possible
next-step system state, x′. Importantly, the Bellman
equation is not solved for states that are not represented
in the list of enumerated states. For an LBC to obtain
millimeter accuracy inside a metre squared operating en-
vironment, then, there must be a state representing ev-
ery point at millimeter resolution.

In addition to the passive dynamics matrix, P, the
LBC also specifies a diagonal cost matrix,Q, that assigns
a cost value to every state based on the cost function
and desired movement. These two matrices are then
multiplied together and the primary eigenvector is found.

The problem of setting up, storing, and solving for
the primary eigenvector of the QP matrix quickly be-
comes intractable with an increasing number of repre-
sented states. Here we present the dynamic scaling tech-
nique (DST), a novel method for efficient, low-cost con-
trol of high-precision movements in large environments
under an LBC.

The remainder of this paper is organized as follows:
In the next section the DST is introduced, subsequently
that results from simulations are presented, followed by
a comparison with standard methods and a performance

versus cost analysis. The paper concludes with a dis-
cussion of the implications of the presented results and
potential avenues for future development.

3 Dynamic scaling technique

The basic algorithm of the DST is straightforward. First,
create a low resolution representation of the operating
space and solve for the optimal movement. Then, as the
target is approached, reduce the size of the operating
space such the borders are determined by the new loca-
tion of the end-effector and the target, and solve for the
optimal control law again. Continue this process until
the system has been moved to the target location with
the desired precision.

The DST takes advantage of the observation that
relative movement in 3D or 2D space passive dynamics
remains unaltered as the size of the environment scales
up or down. For example, whenever the system is at
position (1,1) and has a velocity of (0,1), the next state
will be (1,2), regardless of whether a unit represents a
millimetre, centimetre, or metre.

Consequently, we can realize a significant compu-
tational savings by allowing the LBC to calculate the
passive dynamics matrix P, once, and recalculate only
the diagonal cost matrix Q as movement scale changes.
The number of system states that are represented in P

will determine how close to optimal the resulting control
law will be, as it will not always be possible to move
optimally to a target without a large number of avail-
able states throughout the operating space. This can
be seen by thinking of the environment as a grid, where
it is only possible to move from point to point on the
grid; the more points on the grid, the more options the
system has to realize the optimal trajectory of contin-
uous space. Clearly, then, there is a trade between the
approximately optimal movements and the calculations
and storage space required. As shown below, the com-
putational saving can be up to 5 orders of magnitude,
while realizing nearly optimal movement.

This massive cost reduction realized by the DST makes
high precision movements in large environments feasible
for systems with restricted resources, such as those of an
on-board processor controlling robotic limb placement,
or the neural-circuit control systems found in animals
with fine-grained motor control.

4 System simulation

To demonstrate the application of the DST here we de-
scribe a simple, linear 2D system model, and its con-
trol using the DST. The system being modeled is a two-
jointed planar arm. All simulations were run in MAT-
LAB. It is important to note that none of the techniques

2

used are restricted to linear systems. For simplicity a
linear model was chosen, but any nonlinear function can
be used to describe the passive dynamics of the system.

Let the system be defined by the state space equa-
tions:

x =
[

px py ṗx ṗy
]T

, ẋ = Ax+Bu

A =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









, B =









0 0
0 0
1 0
0 1









where px and py represent x and y position, and ṗx and
ṗy represent x and y velocities.

When calculating the passive dynamics matrix, P,
the above equation is used to determine the next position
of the system in the (x, y) grid, with the control signal set
to zero. Importantly, in the LBC controller formulation,
the control signal operates in the same space as the noise.
This means that the transition probabilities in P are
over the controlled parameters, which for this system is
velocity (Todorov, 2009c).

The cost matrix, Q, is generated using a simple cost
function that assigns cost based on a weighted summa-
tion of the Euclidean distance of the (x, y) position and
velocities of a state to the target position and velocities.
Although this is termed the ‘cost’ matrix, what is ac-
tually encoded is not the state costs, but the negative
exponential of the state costs, exp(−q), more accurately
referred to as the state desirabilities.

Before control begins, the system solves for control
signals to move optimally to each of the four corners
of the 2D environment, which are stored in memory as
learned movements. During execution the system will
then ‘draw’ a box in the environment between the end-
effect and the target, which is referred to as the operating
environment. The system then chooses a control signal
from the appropriate learned movement, determined by
which corner the target is in, and scales based on the size
of the operating environment. A psuedocode version of
the DST is presented in Algorithm 1.

The implementation of the DST presented in this pa-
per rescales the operating space after every movement,
and recalculates the optimal command inside the new
reduced area. This method of rescaling was chosen to
provides an upper bound for the number of times the
control signal must be calculated for a given grid size.
Consequently, it is a worst case scenario for detmining
the improvement in efficiency. An implementation that
preventing any rescaling once the grid size reaches the
desired precision, and makes more than one move before
rescaling would cause a further reduction in the number
of calculations required.

Algorithm 1 DST psuedocode

1: P = passiveDynamics(equationsOfMotion)

{The cost functions for each of the target corners}

2: Q = [Q00, Q01, Q11, Q10]

{The control signals for each of the target corners}

3: U = genControl(P,Q)

4: while (distT oTarget ≥ THRESHOLD) do
5: [opEnv, dX, dY] = genOpEnv(target,X)

{X is the system state}

6: corner = whichCorner(opEnv, target)

{Use corner and system state to get control signal}

7: currentU = U [corner]
8: u = currentU [getIndex(X)]

{Scale the control signal by the size of the operat-
ing environment grid units}

9: u = u ∗ [dX, dY]

{Send the control signal to the system for execu-
tion}

10: X = nextState(X,u)
11: end while

Table 1: Simulation results

Grid size Avg path error Gen time (s)
3 320.9993 0.1042
5 182.2730 0.1334
7 143.4651 0.4391
10 115.4379 1.3671
12 110.3509 11.6857
15 108.6061 38.1416

5 Simulation results

These simulations were run on a quad-core 3.2GHz ma-
chine with 6GB ram running Ubuntu 10.04 (64-bit). The
trajectories to 25 evenly spaced targets, (x=[10:20:90],
y=[10:20:90]), with millimeter accuracy, were calculated
using the DST. To determine the quality of the com-
puted path, we calculated the path error as the differ-
ence between the chosen trajectory and a straight line
(the optimal trajectory). This was done for grids with
3, 5, 7, 10, 12, and 15 represented points in the operat-
ing environment. The results and comparison between
the different resolution grids’ generation and simulation
runtimes are displayed in Table 1 and Figure 1.

The results show that at the grid size 10, the time
required to generate the optimal movement at each step
starts to significantly increase with grid size and simul-
taneously the improvement to the chosen trajectory be-

3

2 4 6 8 10 12 14 16
100

150

200

250

300

350

P
at

h
 e

rr
ro

r
(u

n
it

s)

Grid size

Simulation results

2 4 6 8 10 12 14 16
0

8

16

24

32

40

G
en

er
at

io
n

 t
im

e
(s

ec
o

n
d

s)
Figure 1: The path error of trajectories calculated using
grids with a varying number of represented points in the op-
erating space and the required time to generate the command
at each step (in seconds).

comes less and less noteworthy. This reduction in path
improvement as the grid size continues to increase can
also be seen by graphing the specified trajectories at dif-
ferent grid sizes, as shown in Figure 2.

The second issue that arises from the simulation re-
sults is that higher resolution grids need larger maximum
step sizes to achieve approximately optimal results. Be-
cause the system balances the state costs specified by
the cost matrix and the control cost, which is the cost of
applying a control signal to change the trajectory from
that specified by the passive dynamics matrix1, when the
grid size increases, decreasing the distance between rep-
resented points, a simple state cost function weighting
the states based on the euclidean distance of their (x, y)
location from the target becomes insufficient. Restated,
the difference between the cost of the current and neigh-
boring state is not necessarily large enough to justify
moving the system.

To address this, either a different function must be
used to compute the state costs for each grid size, or the
range of velocities must be increased to a point that the
difference between the current state cost and reachable
states becomes significant. For some cases, the range of
velocities must be greatly expanded, or optimal move-
ment can actually be hindered by a higher resolution
representation of the operating area, as shown in Fig-
ure 3. The above results show trajectories found with
maximum velocities of 1 for grids sized 3, 5, 7, maxi-
mum velocity of 2 for the grid with 10 points, and 4 for
grids size 12 and 15. Here, even though the range of
velocities was increased, it was not sufficient to prevent

1See (Todorov, 2009c) for details

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

10
unit
grid

15
unit
grid

5
unit
grid

Figure 2: In this figure are the trajectories to 3 different
targets ([50, 70], [70, 70], [20, 70]) as planned by LBCs with
different grid sizes implementing the DST.

increasing the error of the resulting trajectory.
Because the system must increase the number of rep-

resented (x, y) velocities to deal with the increasing reso-
lution, the size of the passive dynamics matrix increases
dramatically with the resolution. The number of ele-
ments in the passive dynamics matrix is significant to
the system calculations because the eigenvector of this
matrix scaled by the cost matrix must be calculated to
find the optimal path to the target. Even with large grid
sizes and velocity ranges, however, the DST achieves a
significant reduction in required resources. Figure 4 dis-
plays a comparison of the total number of elements in the
passive dynamics matrix when moving to a target inside
a meter square operating space with millimeter preci-
sion with and without the DST on a logarithmic scaling,
highlighting the difference in resource requirements.

The displayed number of states required for the con-
trollers implementing the DST is a summation of the
number of states at each iteration. As stated before, the
method of rescaling implemented in this paper is an up-
per bound on the number of iterations for a controller to
perform.

6 Discussion

By examining the results of these simulations there are
several important issues that arise. The first is the im-
portance of the number of points that will be represented
by the system during a given iteration of the DST. The
velocity range over the grid must be plausible for the
system. If the DST is being implemented on a high level
controller which does not control the system directly, but

4

2 4 6 8 10 12 14 16

100

150

200

250

P
at

h
 e

rr
ro

r
(u

n
it

s)

Grid size

Path error with restricted velocity ranges

Figure 3: The path errors that occur with different grid sizes
when the maximum velocities (or maximum step size across
the grid) is held constant as the number of represented states
increases.

is providing a feedforward control signal to be matched
as best as possible by a low level controller, however,
then implausible velocity commands will not result in a
system failure.

In addition to the above mentioned benefits of the
DST, another notable feature is that it provides an ap-
proximately optimal trajectory for the system to follow
while refinements are calculated, continually increasing
the accuracy of the control signal until the desired preci-
sion is reached. This is in contrast to system operation
without the LBC, where the entire control signal must
be calculated offline all at once; the system is at a stand-
still until the exact optimal trajectory is provided. This
becomes especially important when novel environments
are encountered and the amount of time taken is impor-
tant, as is often the case for biological systems controlled
by neural circuits.

7 Conclusions

In this paper we have presented the dynamic scaling
technique, a method of significantly reducing the re-
sources required to implement high-precision control in
large environments through linear Bellman controllers.
The DST provides a means of implementing LBCs on
restricted systems requiring a high degree of accuracy
at a low cost, making LBCs plausible for self-contained
robotics and neural-circuit control systems.

The simulation results presented in this paper pro-
vide results of a system analogous to a high level con-
troller responsible for providing a feedforward control
signal of the abstracted system. This controller issues
commands in terms of end effector position, to be con-
verted into a low level control signal directly applica-

3 5 7 10 12 15
10

4

10
6

10
8

10
10

10
12

10
14

S
iz

e
o

f
p

as
si

ve
 d

yn
am

ic
s

m
at

ri
x

(l
o

g
ar

it
h

m
ic

)

Grid size
Without

DST

Figure 4: The total number of states that must be repre-
sented to reach the target using the different grid sizes pre-
sented above and without the DST.

ble to the system plant by another controller through
quadratic programming or a similar method.

There is still a large amount of room for optimiza-
tion of the methods presented in this paper,but we be-
lieve that the DST is a significant step forward to mak-
ing LBCs plausible for systems of all kinds, providing a
foundation for efficient, low cost control of high precision
movements in large environments.

8 Future work

Avenues for future research that we intend to explore
include: 1) increasing the number of component move-
ments available, 2) incorporating obstacle avoidance, 3)
application to navigation tasks, and 4) exploring poten-
tial underlying neural mechanisms that could allow for
this type of control to be effected in biological systems.

The first two points are intertwined, the four move-
ment components that were made available in the simple
implementation presented in this paper were solved for
when the environment was clear of obstacles. The trajec-
tories are straight lines. If, for example, they were solved
for with an object in the center of the area, then the path
would be curved around the center. An implementation
of obstacle avoidance then could be to solve for a variety
of different movements with various obstacle locations,
then assess the environment and choose the closest, or
use movement compositionality techniques (describe in
(Todorov, 2009a)).

The application to navigation tasks is also straight-
forward, the control of an end point in that instance
would instead represent the location of the machine on

5

a map, rather than an end-effector in the immediate en-
vironment.

It is thought that the hippocampus and the basal
ganglia are strongly involved in environment navigation,
and we suspect that such a similar task would involve
similar neural components. The investigation into un-
derlying mechanisms will then focus on areas identified
to be involved in navigation, as it seems it is an analo-
gous function performed on different information.

References

Todorov, E. (2009a). Compositionality of optimal con-
trol laws. Advances in Neural Information Processing
Systems , 22 , 1856-1864.

Todorov, E. (2009b). Efficient algorithms for
inverse optimal control. Unpublished work,
http://www.cs.washington.edu/homes/todorov/papers.htm.

Todorov, E. (2009c). Efficient computation of optimal
actions. In Pnas (Vol. 106, p. 11478-11483).

6

