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Abstract. Vector symbolic algebras (VSAs) are modelling frameworks
that unify human cognition and neural network models, and some have
recently been shown to be probabilistic models akin to Kernel Mean Em-
beddings. Sampling from vector-embedded distributions is an important
tool for turning distributions into decisions, in the context of cognitive
modelling, or actions, in the context of reinforcement learning. However,
current techniques for sampling from these distribution embeddings rely
on knowledge of the kernel embedding or its gradient, knowledge which
is problematic for neural systems to access. In this paper, we explore
biologically-plausible Hamiltonian Monte Carlo Markov Chain sampling
in the space of VSA encodings, without relying on any explicit knowledge
of the encoding scheme. Specifically, we encode data using a Holographic
Reduced Representation (HRR) VSA, sample from the encoded distribu-
tions using Langevin dynamics in the VSA vector space, and demonstrate
competitive sampling performance in a spiking-neural network implemen-
tation. Surprisingly, while the Langevin dynamics are not constrained
to the manifold defined by the HRR encoding, the generated samples
contain sufficient information to reconstruct the target distribution, given
an appropriate decoding scheme. We also demonstrate that the HRR
algebra provides a straightforward conditioning operation. These results
show that a generalized sampling model can explain how brains turn
probabilistic latent representations into concrete actions in an encoding
scheme-agnostic fashion. Moreover, sampling from vector embeddings
of distributions permits the implementation of probabilistic algorithms,
capturing uncertainty in cognitive models. We also note that the ease
of conditioning distributions is particularly well-suited to reinforcement
learning applications.

Keywords: Hamiltonian Monte Carlo - Neural Sampling - Vector Sym-
bolic algebras.
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1 INTRODUCTION

Managing uncertainty is essential for organisms that operate in noisy and ambigu-
ous environments. The capacity to encode, manipulate, and sample probabilistic
information about the world’s state is vital for decision-making and perception.
Although formal mathematical descriptions of probability and uncertainty have
been successful in machine learning and control theory, and are recognized as
an organizing theory for cognition (8, [I5]), the neurological basis of analogous
computations remains poorly understood.

Prior approaches to capturing probability in neural systems have proposed
methods that map random variables onto individual neurons (e.g.,[32] 311 [7], 277, [4]).
Alternative proposals suggest that populations of neurons represent distributions
over random variables ({11, 2, [42] Bl 10} 23] 24 [6, 19, [41)), and allow biologically
plausible sampling via linear decoding of values from neural activity (e.g., 17,
18], [34]). However, there remains a gap between the expression of probabilistic
cognitive models at the algorithmic level, and their neural implementation.

One way to bridge this gap is to use Vector Symbolic Algebras (VSAs); a
family of algebras over high-dimensional vector spaces that provide a hypothesis
about the structure of the latent representations that neural networks manipulate
to perform cognition (37, 29, 20] 13| 22| 0). One such is the Holographic
Reduced Representation (HRR) algebra, developed by Plate (30), and more
recent restricted forms for the representation of continuous data called Spatial
Semantic Pointers (SSPs) (21)). SSPs are inherently probabilistic (12)), providing
one explanation for how organisms may represent and reason about uncertainty.
However, the ability to sample from these probabilistic representations, crucial
for models of decision-making, remains unexplored. It is important to note that
SSP encodings are non-linear data embeddings, which may require more complex
samplers than do linear embeddings, as suggested by Savin and Deneve (34). If
true, this throws into doubt the feasibility of using simple recurrent dynamics to
sample distributions represented by SSPs.

The method of embedding distributions using VSA representations that we rely
on here, bears a strong resemblance to the techniques developed in the literature
of Kernel Mean Embeddings (KMEs), recently surveyed by Muandet et al. (20).
We posit that the HRR algebra has advantages over the KME formulation
for implementation in resource constrained neural networks. Specifically, the
algebra preserves dimensionality, bounding resource requirements for representing
arbitrary compositions of data, and provides a computationally simple method
for conditioning distributions (see section [3.4)).

Sampling from vector-embeddings of distributions has been explored in the
context of the KME literature, but these methods rely on internal knowledge of
the feature-space encoding in the form of gradients (36|, 39, [35]). Accessing this
knowledge is problematic from a neural perspective for two reasons. First, while
the samplers take advantage of the efficiency of KME representations of distribu-
tions, the sampling is still occurring in the underlying domain, a representation
that may never be instantiated within the brain. Second, sharing knowledge
about the internals of the data encoding function with the (hypothesized) circuit
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that performs sampling is a transport problem at least on par with the weight
transport problem found in backpropagation.

Consequently, turning VSA-encoded distributions into specific decisions or
actions requires a method for sampling from those distributions directly. In
this paper, we consider an approach to Markov Chain Monte Carlo (MCMC)
sampling from the VSA-encoded distributions using Langevin dynamics. Langevin
dynamics are of interest because they can be implemented by the dynamics of
recurrent neural networks (17, I8, 34), and because Monte Carlo sampling has
been proposed as an explanation for how brains can be probabilistic, but still
diverge from optimal decision-making (33, [5).

The contribution of this paper is the development of a biologically plausible
sampler for distributions encoded using the HRR algebra. We argue that this
approach is biologically plausible on several counts. First, the VSAs we adopt as
our feature space embedding were developed in the context of cognitive modelling
(87, 20) and are used to implement models that can be readily translated into
neural networks capable of reproducing physiological data such as BOLD signals
(see Eliasmith (9, Chapter 4)). Second, the binding/unbinding operation of the
chosen (Plate’s (30), outlined in section can be implemented
either via matrix-vector multiplication (a process readily implemented in neu-
ral networks), or as a spiking neural circuit (38]). This latter approach permits
unbinding on-the-fly, allowing for flexible modification of vector-embedded distri-
butions (i.e., conditioning). Third, by not relying on knowledge of the gradient
of the encoding scheme, we avoid the transport problem that would arise when
implementing KME Hamiltonian-MC methods (36, 39, B5) in neurons. Finally,
as mentioned above, the use of Langevin dynamics adds biological plausibility
since they are readily implemented by neural networks, as we demonstrate in
section [3.5] Importantly, the advantages of biological plausibility aren’t limited to
cognitive modelling applications, but extend also to the implementation of neural
networks on neuromorphic hardware, where they can offer benefits in terms of
energy efficiency as well as for the study of embodied cognition.

In the rest of this paper, we demonstrate the utility and generality of this
sampling method, by sampling from continuous, discrete, and mixed continuous
and discrete distributions. We show that we are able to recover samples that
approximate the target distributions of the sampling algorithms, and that we
are able to sample from conditioned distributions without re-training. Finally,
we present a recurrent Spiking Neural Network (SNN) implementation of the
proposed algorithm. We conclude with a discussion of the implications of the
combination of this particular representation, and the neurologically-plausible
sampling dynamics, for cognition and reinforcement learning.

2 METHODS

VSAs specify vector representations together with a set of semantically-meaningful
manipulations that can specify algorithms, that can, in turn, be implemented in a
neural network. Working within a VSA lets one separate the function and imple-
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mentation of algorithms. In the following section, we first review the HRR algebra
and its probabilistic interpretation, then we focus on the proposed algorithm. In
Section we turn our attention to describing a spiking neural network imple-
mentation, accomplished using the Neural Engineering Framework (NEF; [10]),
which is a framework for translating functions and algorithms into the activities
of populations of spiking neurons.

2.1 Holographic Reduced Representations (HRRs)

2.1.1 Vector representation and algebra: The specific VSA we employ is
HRR (30). We choose HRR as it is dimensionality-preserving, and can represent
discrete- and continuous-valued data. HRR has four operations that we use in
this paper: similarity (vector dot product), bundling (vector addition), binding
(circular convolution following the convention of Plate (30), and denoted as ®),
and unbinding (bind with vector’s pseudo-inverse, denoted as @).

To represent continuous data, X C R™, we project input samples x € X into
a vector space of dimensionality d via mapping ¢:

¢X(>\_1X) _ 71 {eiA)\’lx} (1)

Where X is a diagonal, non-negative matrix whose entries (A1, ...\;;) are user-
specified parameters defining the length scale of the representation, A is a d X m
matrix, and F~! denotes the inverse Fourier transform. We refer to A as the
phase matriz. It is constructed of a set of column vectors a;, each comprising
a collection of frequencies. Elements a; j,i = {1,...,(d — 1)/2} are drawn from
a uniform distribution over the range [—m, 7] with 0,5 = 1. The columns of A
are then forced to have conjugate symmetry, to ensure that ¢x(z) is real-valued.
These choices ensure that the Fourier components of ¢x(x) all have magnitude
one, a property that qualifies them as unitary vectors, which is essential for stable,
iterative composition.

This method of representing continuous-valued data is a generalization of
HRR’s binding operator, called fractional binding (28|, 21)) or fractional power
encoding (IT)). Following Komer et al. (21)), we refer to the hypervectors resulting
from this projection as SSPs. The encoding of multidimensional data can also be
written as binding the results of each such mapping together (e.g., ¢x (A~ 'x) =
Ox, (X1 /A1) ® -+ ® dx,, (Tm/Am), selecting a different random unitary vector a,,
for each feature m of the data.

To represent discrete data, we map each value to a random unitary vector.
Specifically, the projections of values into the high-dimensional VSA space,
#(n) : Z+ — R? are generated such that ¢(i) - ¢(j) ~ 0 for i # ] This method
is used in the VSA literature to approximate categorical, as opposed to ordinal,
data. In this paper, we refer to these representations as Semantic Pointers (SPs),
and use "HRRs” to refer to any vector representation in the space (including
SSPs, SPs, and combinations thereof).

5 We give the mapping here for positive integers, but all discrete data can be mapped
onto a subset of the integers.
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In contrast to the encoding of discrete objects, similarity between SSPs is
distance preserving. In fact, the similarity between two SSPs approximates a
normalized sinc function: ¢(z/\) - d(z' /) =~ sinc(w|””_T$/|). Next we show how to
use the HRR to represent probability distributions.

2.1.2 Probabilistic computations: In order to sample from a distribution,
we first approximate that distribution. Furlong and Eliasmith (12)) provide an
in-depth treatment of probabilistic modelling using SSPs, which we extend in
this work to represent and sample from distributions over continuous, discrete,
and mixed continuous-discrete data, and demonstrate sampling from conditioned
distributions. Briefly, we encode K IID samples from some underlying distribution
(henceforth the target distribution) using the HRR, and compress a K x m
database of samples into a d-dimensional vector representation of the probability
distribution, using HRR’s bundling operator, akin to a KME:
1 K

We then use p to evaluate the density function, using the similarity operator
between HRRs to induce an approximate sinc kernel between data points:

P(X =x) ~ max {0, dx(ANIx) - p — ¢} (3)

where ¢ is a bias term, and the transformation max{0,- — £} converts quasi-
probability for sinc-based estimators to probability (14). Approximating a distri-
bution requires selecting parameters d, A, and £&. We employ d = 1024 and select
scalar A and £ on a per-distribution basis through hyperparameter tuning.

Probability distributions can be conditioned through HRR’s unbinding op-
erator. Unbinding has the effect of pre-evaluating one of the arguments of a
probability distribution. Namely,

v @ 951 (2) = = 3 (0x(e0) ® dv (1)) @ 65 (0)

?

(px (i —x) ® Py (vi)) -

=1

(3

3=

n

Consequently, when we evaluate a probability, ¢x(z) - (MXY ® ¢§1(y)), we are
effectively approximating P(X | Y = y)P(Y = y), an unnormalized conditional
distribution. Since samplers using the Metropolis acceptance criterion can sample
unnormalized distributions, Hamiltonian-MC sampling is compatible with our
model of conditioning.

2.2 Sampling Algorithm

The transition function of our Metropolis-Hastings sampler (HAM-MCMC-HRR)
(Algorithm [1)) is defined by the Langevin dynamics

¢ =Vlog P(z) + v, (4)
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Algorithm 1 Metropolis-Hastings sampling in VSA space with Langevin transi-
tion dynamics.

2 t+ 0

3 ¢t < H(x0)

4 while ¢t < Ngamples do

5: v~N (O, %1)

6: ¢ +— ¢t +7Vylog P(X) +v
7 if do_cleanup then

8

9

¢ + cleanup(¢y)
: end if
10: u ~ U[0,1]

11: if u < 1};((23 then
12: b — ¢

13: end if

14: yield ¢

15: end while
16: end function

where v is a step size, and v ~ N (0, "72[) in the d-dimensional VSA space. A

variance scale factor of é reflects that the variance of the dot product between
randomly generated SSPs has a variance of é (I6l [40). The gradient of the SSP
encoding of log P(x) is defined:

Vlog P(x) = Vg4 log max{0, ¢x (x) - ux — &}

_ {P(lx)ux if P(x) >0 (5)

0 otherwise.

Because our representations are high-dimensional, pseudo-orthogonal vectors, we
are concerned that Langevin dynamics alone are not sufficient to stay close to
the manifold defined by an HRR encoding. Consequently, we optionally include
a cleanup memory in line with the dynamics to map samples to valid HRRss.

To decode samples from the VSA space back into the encoded domain, we
find the closest point in the HRR domain in a look-up table, and then use an
optimizer to find the closest point in the encoded domain to the generated sample.
This decoding process outputs a value within the bounds defined for the domain.
Even though samples are not decoded until the sampling process is complete, it
is important to determine how big a role decoding plays in shaping the generated
samples. To evaluate whether the decoder alone is sufficient to reproduce the
target distribution, we test the Langevin dynamics with and without the gradient
term, 7.e., 7y > 0 or v =0 in eq. (see Table [I).

In each experiment, we encode K = 10,000 observations as SSPs and then fit
the target distribution with p, as in eq. (2)). To test the algorithm we designed a
2 x 2 factorial experiment with cleanup memory (with vs. without) and gradient
(with vs. without) as factors. To further demonstrate the utility of the sampler,
we also demonstrate sampling using conditioning in SSP space and from a mixed
discrete-continuous distribution (see section .
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2.3 Spiking Neural Network Algorithm

To implement the sampling algorithm presented in section [2:2] using a recurrent
SNN, we use the methodology of the NEF. A population of 2 x d Leaky Integrate-
and-Fire (LIF) neurons are used to represent the state of the sampler, ¢(t) € R%.
This population is recurrently connected with weights set to approximate

f(o(t)) = 79V log P(x) + 6(t), (6)

where P(x) is the softplus function (a smooth approximation of the ReLU function
used in eq. ), and 7 is the time constant of the recurrent connections’ synaptic
filter. The synaptic filter (a first-order lowpass filter) is applied to the spike train
output of the population, before it is multiplied by connection weights.

The population also receives a filtered white noise signal 7v as input. The
presence of 7 in the input and dynamics is to account for the effect filtering has
on the system’s dynamics (see Eliasmith and Anderson (10) for more details).
The state of the sampler is decoded from the neural activities at every time-step.
The SSP samples are, in turn, decoded from this output.

There are several key differences between this implementation and Algorithm [T}
While the SNN SSP sampler approximates the Langevin dynamics given in , it
does not include the Metropolis acceptance criterion (lines 11-12 in Algorithm .
Additionally, the SNN SSP sampler does not have an option for integrating
cleanup in the recurrent loop (lines 7-8 in Algorithm . As a result, the sampler
may stray from the manifold defined by the HRR encoding. These features were
excluded to simplify this proof-of-concept implementation.

2.4 Baseline Algorithms

We compared our algorithm against two Metropolis-Hastings sampling baselines.
In the KDE-MCMC baseline, the target distribution is estimated using a Kernel
Density Estmimator (KDE) with a Radial Basis Function kernel. Candidate sam-
ples are generated using an isotropic Gaussian distribution centred at the previous
sample point, i.e., x¢11 ~ N(x¢,diag(o)). In the HAM-MCMC-DOMAIN base-
line, sampling occurs in the feature space of the data, but the transition function is
defined with respect to the HRR embedding, as: & = vV [log P(z)] V.o(z)" +v,
where V,¢(z) is the gradient of the HRR encoding at z, and v ~ N (0, 021),
implementing the method of (39) using our kernel embedding. This comparison
allows us to assess the contribution of information about the encoding scheme to
the performance of the sampler. As a baseline for discrete distributions, we use an
MCMC sampler, using a binomial distribution to generate candidate samples. For
both continuous and discrete distributions, we upper bound acceptable sampling
error by comparing to inverse transform sampling (ITS) with naive fits to a
uniform and a unimodal distributions (Gaussian for continuous, binomial for
discrete).
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Table 1. Performance (mean KS distance between target and generated distributions
+ standard deviation) of the proposed HAM-MCMC-HRR sampler, MCMC baselines
and nailve sampling strategies on 5 generating tasks, and in 4 dynamic configurations.
GMM, MVNM-2D, and MVNM-3D refers to a Gaussian mixture model, 2D-, and

3D-multivariate normal mixtures respectively.

Algorithm Continuous Distributions Discrete Distributions
GMM-1D MVNM-2D  MVNM-3D DISCRETE-1 DISCRETE-2
Uniform ITS 0.191 £ 0.001 0.420 £+ 0.002 0.425 £ 0.004 0.186 % 0.003 0.440 £ 0.003
Gaussian ITS 0.181 + 0.003 0.422 + 0.002 0.380 + 0.004 N/A N/A
Binomial ITS N/A N/A N/A 0.343 + 0.001 0.503 + 0.001
KDE MCMC UNGEIESNOTY 0.311 + 0.062 [UPNEIESNWE
HAM-MCMC-DOMAIN|[0.097 £ 0.010 0.268 & 0.024 0.465 % 0.030 N/A N/A
HAM-MCMC-HRR
No Cleanup Gradient [[NFZIESNII 0.283 + 0.009
No Gradient|0.535 £ 0.090 0.279 & 0.012 0.467 + 0.017 0.067 & 0.014 0.443 + 0.062
Cleanup  Gradient|0.103 £ 0.008 0.381 & 0.014 0.340 & 0.082 0.564 % 0.075
No Gradient|0.168 £ 0.016 0.189 & 0.009 0.389 &+ 0.017 0.404 £ 0.095 0.356 % 0.049
MCMC-SNN-HRR 0.122 £ 0.004 0.240 + 0.004 0.084 £ 0.002 0.223 + 0.003

3 RESULTS

In our experiments we drew 2,000 samples from both the proposed and base-
line algorithms. We evaluated the samplers’ performance by calculating the
Kolmogorov-Smirnov (KS) distance between the true and sampled empirical
distributions. We provide performance statistics (mean and standard error of KS
distance) across 10 runs of the tuned model with different seeds in Table

We optimized the SSP approximation parameters (length scale, A, and bias,
) to minimize the Kullback-Leibler divergence from [3|to the true distribution.
Additionally, we optimized the two sampler hyperparameters in eq. — the
gradient step size, 7, and the variance scale factor, 0 — to minimize KS distance.
The baseline MCMC sampler was tuned through simultaneous optimization of
the KDE length scale parameters, B, and transition kernel variance, UKDE.E

3.1 Sampling from continuous spaces

To assess algorithm performance, we applied it to 1D, 2D, and 3D Gaussian
Mixture Models, all multi-modal. Figure shows examples of the algorithms’
performance on continuous target distributions. The HAM-MCMC-HRR sampler
captures the essential features of the target distributions in 1D and 2D spaces. On

" The code for all experiments is available at https://gitlab.com/furlong/
ssp-sampling. All hyperparameter searches were performed using the Tree-structured
Parzen Estimator (TPE) tuner from the NNI library (25). We rely on the SSPSpace
library (github.com/ctn-waterloo/sspspace). KS distance was computed using
functions from either scipy, ndtest (github.com/syrte/ndtest), or genai-evaluation
(github.com/rajiviyer/genai_evaluation) Python packages for 1D, 2D, and
34D data, respectively. The spiking neural network was simulated using Nengo
(github.com/nengo/nengol).
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Fig. 1. Performance of three MCMC sampling algorithms on 1D (top), 2D (middle), and
3D (bottom) multimodal generation tasks. A. Representative distributions generated
by the samplers against target distributions. B. Convergence onto the stationary
distribution with sampling timesteps. C. Correlation between successive samples drawn.

these tasks, the algorithm explores all modes of the distribution modes and draws
few extraneous samples, similar to the MCMC baselines. The HAM-MCMC-HRR
algorithm appears to break down on the 3D task, however, as only one mode is
thoroughly explored and there is an increased contribution from low-probability
samples. Here, however, its behavior is still superior to the HAM-MCMC baseline,
which fails to sample from even one of the modes. The summary statistics in
Table[I]show that the HAM-MCMC-HRR sampler performs similarly to the KDE
MCMC baseline, either outperforming or slightly underperforming depending
on the task. In terms of temporal behavior, the HAM-MCMC-HRR sampler
either keeps pace with or overtakes the baselines in converging to the stationary
distribution (Fig.[[B), and achieves similarly rapid decorrelation (Fig. [I[C).

3.2 Sampling from discrete spaces

We also test the algorithm on two categorical distributions, X € {1,...,N}. In
the first, N = 1(ﬂ and in the second, N = 5(ﬂ In these experiments, length
scale is not a meaningful parameter, however, we do optimize the bias, transition

8 The N = 10 distribution is generated by randomly selecting values v; ~ U[0, 100],
and specifying P(X =n) = E-lvi Un
9 The N = 50 distribution follows Zipf’s law — i.e., P(X = n) = ﬁ%, where Hy is

the N** harmonic number.
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kernel variance, and gradient step size. Results are shown in Figure 2] The
samples from the MCMC HRR algorithm fit the distribution less accurately
than the samples generated from the discrete MCMC sampler (Figure 2} bottom
row). Convergence analysis suggests the sampler may be a biased estimator of
the categorical distribution. Admittedly, MCMC sampling is excessive for these
simple distributions. However, what we have demonstrated is the ability to sample
discrete objects encoded using a VSA embedding, using a simple dynamic system,
despite the fact that the encoding scheme does not have a continuous manifold.

1.0
—— SSP Sampler —— SSP Sampler [ SSP Sampler
025 MCMC Sampler 0.6 MCMC Sampler 0.8+ MCMC Sampler
TuePMF | | e Uniform
05 --- Binomial 06
0.20
8 0.4 g o4
< g s 7
Il 0.15 r g e \
3 J S 03 S 024
| ,_, v g
t > 2
0.10 - I 024 < 0.04 ./‘-/\v N
| A~
0.05 1 0.1 —0.24 \
-0.4
0.00 0.01
2 4 6 8 10 102 10° 0 10 20 30 40 50
X Sample index Lag
035 08 1.0
—— SSP Sampler —— SSP Sampler [ SSP Sampler
030 MCMC Sampler 074 MCMC Sampler 084 MCMC Sampler
- TuePMF | ] e Uniform
- Binomial
0.6 6
0.25 06
| §
%0209 | gos 8 %4
< 0. { g k]
0 { £oa g
x | ] S 024 .
T 015 2 g |
03 ] A
< A : ——
0.0 ANT\A o
010 l ol \/.\/\4 V- AN/
_\‘M -0.2+
———— ]
0.05 L 0.1
g P T —044
0.00 . " y 001

o 10 20 30 40 50 102 10° 0 10 20 30 40 50
Sample index Lag

Fig. 2. Top row: results for sampling from a categorical distribution with 10 values.
Bottom row: results for sampling from a 50-element categorial distribution. In both
cases, the proposed algorithm converges to a smaller error than naive sampling, and
samples are not highly correlated. The proposed sampler appears to converge to a fixed
error in the first 2000 samples.

3.3 Assessing the contribution of peri-manifold dynamics

Table[I] presents the results of experiments investigating the importance of staying
on or near the semantic pointer manifold in reproducing the target distribution.
Among the No Cleanup samplers, those with a gradient term (v > 0) outperformed
the sampler governed by pure noise (v = 0). This confirms that the decoding
scheme alone cannot account for performance and that the gradient information
is necessary to sample these latent representations. This also indicates that the
gradient information constrains trajectories sufficiently near the manifold such
that decoded points are in the support of the target distribution.
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In-the-loop Cleanup could not compensate for the lack of gradient information
on any task. On the 2D task, a sampler with cleanup but without gradient
information achieved a KS distance of only 0.189 4 0.009, which was surpassed
by the configuration with gradient information and no cleanup (KS distance
= 0.17240.008). On other tasks, the performance degradation was much worse. On
the continuous distributions, introducing cleanup had little effect on performance,
while on the categorical sampling tasks it caused a striking degradation in
performance. For example, we observe an increase in KS distance from 0.055
+0.011 to 0.340 4+0.082 for the first discrete distribution, for samplers with
gradient information. These findings indicate that in-the-loop cleanup is neither
necessary nor sufficient for sampling from these spaces.

3.4 Leveraging VSA operations for Probabilistic Programming

As discussed in Section [2.1} we are able to use unbinding to produce an unnormal-
ized conditional distribution. Figure[3JA demonstrates sampling from distributions
conditioned on various values. Without changing the sampling algorithm, mean-
ingful samples are still drawn from the conditioned distribution. As can be seen,
samples are predominantly drawn from high probability regions.

We also considered a simple mixed discrete-continuous distribution using
bound discrete and spatial semantic pointers. The same algorithm was successful
in sampling from that distribution. Figure [3B shows the ability to reconstruct the
joint distribution over the discrete variable X € {A, B, C'} and the continuous
variable Y € [0, 1}@ Note that for the conditional distributions over Y, the SSP
approximation performs worse for X = B and X = C, than for X = A. This
is a reflection of only using one set of length scale parameters for the encoding
scheme, while the distribution’s bandwidth changes. With that in mind, the
samples drawn (indicated by the vertical bars) do appear to be sampling the
approximated distribution.

3.5 Evaluation in a spiking neural network

The SNN SSP sampler was evaluated using the same benchmarks as the algebraic
SSP sampler, with results detailed in Table [I] An example of its output and
spiking activity when applied to a 1D Gaussian Mixture Model is depicted
Figure [l As anticipated, the SNN sampler underperformed compared to the
closest non-spiking counterpart — Hamiltonian MCMC SSP sampler with Gradient
and No Cleanup — primarily due to its absence of the Metropolis acceptance
criteria and the inherent approximations introduced by spiking neurons. However,
Figure {] illustrates the SNN model’s capability to sample from all modes on
a target 1D distributions. Additionally, the SNN sampler surpasses the naive
Uniform Inverse Transform Sampling (ITS) and Gaussian ITS methods and, for
the MVNM-2D, surpasses the performance of the KDE MCMC baseline.

10 The marginal distribution over X € {A, B, C} is defined as a multinomial distribution,
and the conditional distributions over Y € [0, 1] are Beta distributions
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A P(X|Y = —6) P(X|Y =0) B
—— Est. Dist —— Est. Dist.
006l = True Dist == True Dist.
Samples B Sample Density

Fig. 3. A. Plots show distributions represented by uxy ® ¢3'(y), for y € {—6,0},
where puxvy is a kernel embedding of a 2D GMM model. Blue dots (vertical positions are
randomly assigned) indicate the 2000 samples drawn from the distribution. B. Sampling
a joint distribution over the space {A, B, C} x [0, 1].

4 DISCUSSION AND CONCLUSION

In this paper, we set out to create a biologically-plausible sampling algorithm
that can sample from cognitive representations of uncertainty. We developed
and tested a novel sampling algorithm that operates on VSA representations,
and show that the core dynamics can be realized in an SNN. We argue for our
algorithm’s biological plausibility, noting that it can be implemented in neural
dynamics, operates on latent brain representations, and does not require gradient
knowledge, which is difficult for neural circuits to compute and transport. Our
approach successfully approximates distributions across discrete, continuous, and
mixed data using HRR algebra without altering the sampling algorithm.

Our experiments found cleanup memory to be unnecessary and potentially
problematic for sampling (see Table , indicating that our approach can avoid
encoding-specific constraints that would limit its generality. Relying solely on p,
our algorithm flexibly handles various data types and requires less computational
effort than models with cleanup or dependent on data encoding scheme gradients.

Sampling from discrete distributions demonstrates that the method generalizes
to distributions over symbols represented in high-dimensional spaces. Unlike the
SSP representations of continuous data, there was no underlying manifold to
navigate. Given that these discrete representations are used to represent high-
level concepts in non-metric spaces, unlike SSPs, it is impressive that these
distributions can be sampled by a dynamical system with a continuously-varying
state. This suggests that the sampler generalizes to approximate probabilistic
inference in models of high-level cognition. Of course, if biological-plausibility is
not required, sampling from discrete distributions could be achieved with inverse
transform sampling or normalizing flows, and with better performance.

Sampling from conditioned distributions has potential applications in Re-
inforcement Learning (RL). RL involves the problem of learning a policy over
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Fig. 4. A. A histogram of output of the SNN SSP sampler, along with the PDF of the
true distribution and the KDE from the samples. B. The empirical CDF, obtained via
the sampler output, versus the true CDF. C. A spike raster plot of the spike activity of
all neurons in the recurrent sampler SNN over the simulation run time.

states and preferred actions to take in those states. Once this policy is available,
taking actions can be thought of as sampling from that policy, conditioned on
the agent’s current state. Implementing RL with VSA-encoded policies requires
a means of sampling from VSA-encoded distributions, provided in the project
git repository (see footnote [7)).

The presented work extends the utility of VSAs as a probabilistic framework by
providing a biologically-plausible MCMC sampler that can extract samples from
non-linear, latent space encodings. This advance can support future work into
constructing cognitive models that sample distributions over higher-level concepts.
This would pave the way for evaluating a sampler as an explanatory model of
human cognition, towards understanding deficits in probabilistic reasoning.
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