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Abstract: Taking ‘computational neuroscience’ to denote theoretical 
neuroscience, I describe accounts of representation, neural computation, and cognitive 
function consistent with recent advances in this field.  During this discussion I provide an 
overview of neural coding and survey its possible implications for more traditional 
theories of the meaning of mental representations. Subsequently, I describe how ideas 
central to computational neuroscience (neural coding, neural computation, and dynamical 
systems/control theory) have been integrated to support descriptions of neurobiological 
systems at many different levels.  Finally, I argue, and provide examples to show, that 
computational neuroscience is an essential ingredient for a complete picture of 
perceptual, motor, and cognitive function.  Throughout the discussion I emphasize how 
computational neuroscience is important for tackling problems of interest to cognitive 
scientists. 
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1 OVERVIEW 

‘Computational neuroscience’ has come to denote two significantly different 
disciplines.  On the one hand computational neuroscience is sometimes considered a part 
of ‘bioinformatics’ or ‘computational biology,’ a field that is concerned with the 
application of computers to the collection, organization, and analysis of biological data.  
Perhaps the best-known example of this kind of work is the recent human genome 
project, where the sequencing of genes was largely done automatically using computers.  
On the other hand, ‘computational neuroscience’ is taken to refer to what has also been 
called ‘theoretical neuroscience’.  In this sense, computational neuroscience is the 
application of theories relating to computation and information processing to 
neurobiological systems. This is the sense of computational neuroscience with which I 
will be concerned in the remainder of this article.   

I take the distinction between computational and experimental neuroscience to be 
analogous to that between theoretical and experiment of physics.  But, as the difference in 
terminology suggests, computational neuroscience relies heavily on computer simulation 
and modeling and so is not, perhaps, ‘purely’ theoretical.  To date, this most often means 
that particular neural systems have been subjected to detailed mathematical analyses 
which are often tested through numerical simulations.  For example, the tools of 
nonlinear systems have been applied to systems of coupled oscillators in an attempt to 
understand the neural mechanisms underlying lamprey and leech locomotion (Wilson 
1999, ch. 13).  Such systems are then often simulated to determine or demonstrate the 
effects of certain parameter regimes. These same sorts of mathematical tools are more 
often, and similarly, applied to a much lower level of description of neural systems: the 
characterization of the dynamics of action potential generation in single cells (Wilson 
1999, ch. 5-10).  In large part this is because there has been a great deal of success (ever 
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since Hodgkin and Huxley’s (1952) famous mathematical description of the giant squid 
axon) at applying such tools to understanding the dynamics of ion conductance in single 
cells.  More recently, researchers have begun to construct detailed, biologically plausible 
models of large systems of interconnected neurons. Building such complex networks 
often makes mathematical analysis intractable, demonstrating the indispensability of 
computers for simulating and analyzing these models. Much of this work can be seen as a 
direct descendant of connectionism.   

As recently as 15 years ago, computational neuroscience was referred to as a 
“new and fledgling” discipline (Koch and Segev, xi).  However, computational 
neuroscience has historical roots that reach as far back as those of connectionism, at least 
to the beginning of the last century.  It was, nevertheless, about 15 years ago when 
computational neuroscience split from its connectionist roots.  This was about the same 
time at which the field of ‘neural computing’ split from its connectionist roots as well.  In 
fact, a similar split is evident in cognitive science, with artificial intelligence (AI) and 
cognitive psychology (which has largely kept the ‘cognitive science’ label) focusing on 
different research problems.  In both cases, one branch (AI/neural computing) has 
become mainly concerned with technical applications of the theory, interested mainly in 
solving difficult engineering problems, while the other branch (cognitive 
science/computational neuroscience) has become mainly concerned with the application 
of the theory to understanding natural systems.   

So, in contrast with neural computing, in computational neuroscience a premium 
is placed on biological realism.  That is, models are not constructed merely to realize 
some function (however useful that function might be from an engineering perspective), 
but rather to realize a particular function as it is realized in some biological system. 
Computational neuroscientists are not interested in how one might implement working 
memory in a collection of identical, interconnected, computational nodes, but rather in 
how working memory is actually implemented by real, heterogeneous neurons in a living 
brain.  It is already well-known that there are multiple ways in which collections of 
neuron-like units can be made to store memories.  The pressing question for 
computational neuroscientists is: Which of those ways is the one relevant for 
neurobiology?  So, the most obvious connection between computational neuroscience 
and cognitive science (is their shared interest in trying to come up with naturalistic 
explanations of the behaviour of complex natural systems.   

Nevertheless, the central methodologies of these approaches are vastly different.  
Computational neuroscientists take as paradigmatic data from experiments in single cell 
physiology (e.g., intercellular or extracellular microelectrode recordings, dendritic patch 
clamps, multielectrodes) and neuroanatomy (e.g., cellular and tract staining, 
immunocytochemistry, tract tracing, deoxyglucose uptake). Cognitive scientists, in 
contrast, tend to consider data from a wide variety of multi-subject psychology studies 
(e.g., studies that measure reaction time, gross motor behaviour, linguistic behaviour, 
etc.).  More recently, neuroscience-related techniques like functional magnetic resonance 
imaging (fMRI), positron emission tomography (PET), and event related potentials 
(ERPs) have began to inform cognitive science.  The biggest difference between the 
standard methodologies and cognitive science and computational neuroscience is one of 
scale.  Computational neuroscientists have focused on the microscopic and cognitive 



scientists have focused on the macroscopic.  This has largely been because, until recently, 
the kind of mathematical descriptions provided by computational neuroscientists have not 
been “scaled up” to be informed by the data at the macroscopic level. 

Because of these methodological differences, cognitive science and computational 
neuroscience also tend to focus on different kinds of behaviours as targets of explanation.  
Cognitive scientists, not surprisingly, focus on largely cognitive phenomena including: 
reasoning, object recognition, imagery, and language processing.  Computational 
neuroscientists focus on more universally biological phenomena including: motor control, 
low-level perception (e.g., proprioception, retinal and early visual processing), and self-
organization (neuron-level learning).  As a result, implementational issues (i.e., issues 
like how many neurons do you have in working memory systems; what signal to noise 
ratio is supported by neural systems; how interconnected are the neurons; what are the 
time constants of dendritic potentials observed in working memory; etc.) have proven 
much more significant to computational neuroscientists. 

From the perspective of a cognitive scientist, it might seem that a preoccupation 
with low-level implementational issues is a good way to waste your time just trying to get 
the irrelevant details right – details that have nothing to do with cognition (Fodor and 
Pylyshyn 1988).  But perhaps computational neuroscientists agree with Mies van der 
Rohe who suggested that “God is in the details”. That is, perhaps the designs discovered 
by mother nature are much more effective, robust, efficient, and so on, than those 
invented by a clever engineer. Perhaps a functional decomposition that is sensitive to the 
same design constraints as mother nature will look very different from one that is not. If 
so, time might be well spent looking at the details, no matter how devilishly obscure they 
may be. After all, we have proof that mother nature is able to construct sophisticated, 
robust, and extremely complex systems – systems exquisitely designed to adapt to rapidly 
changing, dynamic environments.  Unfortunately, the same cannot be said of human 
designed systems.  Similarly, we know that mother nature’s design can scale up 
appropriately, we do not know that for our own designs. So, since we seem to be at the 
beginning of an era where the tools for reverse-engineering to brain are becoming 
available, it would be wise to exploit those tools. 

Some exploitation of these tools has already taken place (indeed, information 
theory has been used since its inception to understand neural systems).  However, most 
work in computational neuroscience has focused on improving our understanding of 
single cells.  And, while the success here has been impressive – there are general methods 
for modeling both the electrical and morphological properties of individual neurons – the 
most remarkable behaviours demonstrated by natural neurobiological systems stem from 
the careful organization of billions of such cells.  It is only when we begin considering 
large groups of neurons that we approach the point of contact between neuroscience and 
cognitive science.  So, major challenges lie in trying to apply mathematical tools to 
neural systems of a sufficient size to tackle issues of interest to those concerned with 
cognitive function (Eliasmith 2003). 

In this article I sketch some methodological, metaphysical, and conceptual issues 
that arise when we begin to consider the integration of higher-level (cognitive) and 
lower-level (neural) descriptions of mental phenomena.  More specifically, I discuss 
accounts of representation, computation, dynamics, and cognition from a computational 



neuroscience perspective. This discussion, I suggest, shows that computational 
neuroscience is indispensable for generating a complete naturalistic characterization of 
mental/cognitive function. 

2 REPRESENTATION 

The concept of a ‘mental representation’ is a central one in cognitive science.  As 
a result, much time has been spent trying to better understand, analyze, and operationalize 
the notion of representation.  Debates in cognitive science on what kinds of 
representations are used for what cognitive tasks (Kosslyn 1994), how to determine 
representational content (Churchland 1989; Fodor 1990; Fodor and Lepore 1992), and 
even on the relevance of representation to cognition (van Gelder 1998) are currently 
ongoing.  As a result, it is essential to address what, if anything, computational 
neuroscience has to say about representation. 

One useful distinction out of the philosophical discussion of representation is that 
between the contents and the vehicles of representations (Fodor 1981; Cummins 1989). 
The contents, or meanings, a representation refer to the semantic value of a representation 
for an animal.  In general, contents are thought to be determined by the object in the 
world that the representation picks out, the relation of that representation to other 
representations, or a combination of both. The vehicles of representations are the 
syntactic structures, or physical realization of objects that play the role of representations 
(i.e., carrying a content) in a cognitive system.  Currently, computational neuroscience 
can contribute most to improving our understanding of representational vehicles.  
Nevertheless, I discuss some of the consequences for our understanding of semantics as 
well. 

Unfortunately, in neuroscience the concept of representation itself has received 
much less consideration than in the cognitive sciences, despite an equally wide usage.1 
As a result, the use of the term representation in neuroscience is often problematic.  In 
general, if a neuron fires relatively rapidly when an animal is presented with a certain set 
of stimuli, the neuron is said to “represent” the property that the set of stimuli share (see, 
e.g., Felleman and Van Essen 1991).  This kind of experiment has been performed since 
Hubel and Wiesel’s (1962) classic experiments in which they identified cortical cells 
selective to the orientation and size of a bar in a cat’s visual field.  The ‘bug detector’ 
experiments of Lettvin et al. (1988/1959), perhaps better known to philosophers, take a 
similar approach.  In the ‘bug detector’ experiments, retinal ganglion cells were found 
that respond to small, black, fly-sized dots in a frog’s visual field.  More recently, this 
method has been used to find ‘face-selective cells’ (i.e., cells that respond strongly to 
faces in particular orientations) in monkey visual cortex (Desimone 1991).  In all of these 
cases, what is deemed important for representation is how actively a neuron responds to 
some known stimuli.   

                                                 

1 A search of PubMed for the term ‘representation OR representations OR represent’ returns well 
over 130000 hits. So far this year, in the Journal of Neuroscience alone, 8% of publications (42/543) 
mention representation in the title or abstract. 



The difficulty is that such usage assumes that single neurons are the carriers of 
content, and that content can be determined by what has been called the ‘naïve causal 
theory’.  So, there are no principled means of determining what the representational 
vehicles are and how they might be related, and a naïve causal theory is well-known to be 
highly problematic (Dretske 1988).   

Nevertheless, much of the work in computational neuroscience can help refine the 
notion of representation such that it is clearly relevant for understanding neurobiological 
systems and avoids the difficulties of these assumptions.  This is partly because, unlike 
the typical treatment of representation in cognitive science, considerations of 
representation in computational neuroscience cannot avoid implementation constraints on 
representation.  This proves to be a strength because such constraints highlight significant 
aspects of representation that have otherwise been missed (e.g. time, precision, etc.). 

One of the most significant conceptual contributions of computational 
neuroscience to a neuroscientific understanding of representation is its emphasis on 
decoding. As mentioned, characterizing the responses of neurons to stimuli in the 
environment has been the mainstay of neuroscience.  This, however, describes only an 
encoding process.  That is, the process of encoding some physical environmental variable 
into neural spike trains.  By adopting an information theoretic view of representation, 
computational neuroscience holds that if we truly understand the encoding process, we 
must be able to demonstrate that we can decode that spike train to give us the originally 
encoded signal.  As a result, to fully define representations, we must understand both 
encoding and decoding.2  

As well, computational neuroscience has focused on two distinct aspects of 
representation: temporal representation; and population representation.  The former deals 
with how neurons represent time-varying signals.  The latter deals with issues of 
distributed representation.  That is, how we should understand the contribution of a single 
cell’s response to a complex representation over a large group of neurons. In the next two 
sections, I describe computational neuroscientific characterizations of encoding and 
decoding over time and neural populations. 

2.1 Temporal representation 

What is often considered one of the major flaws of classical cognitive science can 
simply not be ignored when considering neural systems: the importance of time. The 
extent and impact of this flaw for classical cognitive science has been vociferously 
argued by proponents of dynamicism (Port and van Gelder 1995; van Gelder 1998). They 
have suggested that both symbolic and connectionist models often completely ignore 
time constraints, or include them only after the fact.  This, they suggest, is completely 
unrealistic. Real systems are significantly constrained by the highly dynamic 
environments in which they are embedded. To ignore time is to ignore one of the most 
salient driving forces behind impressiveness of cognitive systems, the limitations of 
cognitive systems, and the evolution of cognitive systems.   

                                                 
2 Note that this does not demand that the decoding take place explicitly within an animal. 



Indeed, neuroscientists, who are interested in exploring real world neural systems, 
have always been confronted with the essentially temporal nature of neurobiological 
systems.  This is clearly reflected in much of the standard vocabulary of neuroscience: 
neuroscientists speak of spike times, firing rates, stimulus onset, persistent activity, 
adaptation, membrane time constants, and so on.  So, unlike the often static 
considerations of representation of symbolicists and connectionists, neuroscientists have 
always considered time-varying representations.  In this respect, any neuroscientific 
endeavour, be it experimental or theoretical, would be remiss if it ignored time.  So it is 
no surprise that the representation of time-varying signals is central to computational 
neuroscience. 

Perhaps the best understood aspect of how neural systems represent time-varying 
signals is the encoding process.  In some ways, this should not be too surprising since the 
focus of neuroscience in general has been on encoding.  This is likely because the 
encoding process can be characterized with respect to a single cell.  So, the highly 
successful work on quantifying the dynamics of action potential generation in single cells 
– including mathematical descriptions of voltage sensitive ion channels of various kinds 
(Hodgkin and Huxley 1952), the use of cable equations to describe dendritic and axonal 
morphology (Rall 1957; Rall 1962), and the introduction of canonical models a large 
classes of neurons (Hoppensteadt and Izhikevich 2003) – supports a highly mechanistic 
understanding of encoding.  While fully describing the encoding process also necessitates 
the identification of the particular parameters a neuron may be sensitive to (partially in 
virtue of its relation to other neurons in the brain), this can largely be inferred from the 
ubiquitous reporting of neuron tuning curves in a neuroscientific literature.  So, 
improving our understanding of the encoding process is largely an empirical undertaking. 
This is not true of temporal decoding. 

There are two main kinds of theory of temporal decoding in neuroscience.  These 
are referred to as the “rate code” view and the “timing code” view. Generally speaking, 
rate code theories are those that assume that information about temporal changes in the 
stimulus is carried by the average rate of firing of the neuron responding to that stimulus 
(Shadlen and Newsome 1994; Shadlen and Newsome 1995; Buracas et al. 1998).  In 
contrast, timing code theories assume that information about the stimulus is carried by the 
distance between neighbouring spikes in the spike train generated by the neuron 
responding to the stimulus (Softky and Koch 1993; de ruyter van Steveninck et al. 1997; 
Rieke et al. 1997). 

Many results in neuroscience are reported under the assumption that rate coding is 
an appropriate way to characterize temporal representation in neurons.  For this reason, it 
is common to see firing rates, or spike histograms, of neurons over time.  To generate 
these figures, neuroscientists usually determine the mean firing rate of a spike train over a 
relatively long, sliding time window (usually about 100 milliseconds). However, there are 
a number of problems with adopting such a view of neural representation.  Perhaps the 
most obvious is that response times of many animals to a given stimulus are much 
quicker than 100 milliseconds.  If the motor system was averaging over 100 milliseconds 
time window in order to determine what information was in the spike train arriving from 
sensory systems, such rapid responses would be impossible.  In fact, there is a large 
volume of evidence that behavioural decisions are often made on the basis of one or two 



neural spikes arriving a few milliseconds apart (see Rieke et al. 1997, pp. 55-63 for a 
review). As well, there is evidence that spike trains with exactly the same average firing 
rate but different placement of spikes within the hundred millisecond window produce 
very different output from a neuron they are presented to (Segundo et al. 1963).  And 
finally, it has been demonstrated that rate codes cannot transmit information at the rates 
observed in neurons (Rieke et al. 1997), although the timing code can (MacKay and 
McCulloch 1952).  

Given these difficulties, many computational neuroscientists prefer to understand 
temporal coding in neurons as dependent on the timing of individual spikes. A standard 
way to characterize this code is to take the inverse of the inter-spike intervals in a neuron 
spike train.  So, when the inter-spike interval is short, the encoded signal was high, and 
when the inter-spike interval is long, the encoded signal was low. However, it would be 
misleading to say that it is the precise time of spikes that carries information about the 
stimulus in most such characterizations.  There is good evidence that the precise timing 
of spikes is not mandatory for the successful transmission of signals with neurons (Bialek 
et al. 1991).  In some ways, this is not a surprising result, since a code which was 
extremely sensitive to the timing of individual spikes would not be robust to noise.3  

When we look carefully at the difference between typical rate codes and timing 
codes, we notice that they are variations on the same theme. Both codes assume that we 
choose some time window and count how many spikes fall in that window. In the case of 
rate codes the time window is about 100 milliseconds, and in the case of timing codes the 
size of the window varies depending on the distance between spikes. It should not be too 
surprising, then, that methods have been developed for understanding temporal decoding 
that vary smoothly between rate codes and timing codes (Rieke et al. 1997).  So, in the 
end, the distinction between rate codes and timing codes is not a significant one for 
understanding temporal representation.  

These methods are surprisingly simple, as they are linear (i.e. rely only on 
weighted sums). Suppose we are trying to understand the representation of a particular 
neuron.  To do so, we present it with a signal and then record the spikes that it produces 
in response to the signal.  These spikes are the result of some (well-characterized) highly 
nonlinear encoding process. As mentioned, if we truly understand representational 
abilities of this neuron, we should be able to use those spikes to reconstruct the original 
signal.  However, to do this we need to identify a decoder.  We can begin by assuming 
that the particular position of a given spike in the spike train does not change the meaning 
of that spike; i.e., the decoder should be the same for all spikes.  Furthermore, under the 
assumption of linear decoding, the process of decoding is very simple. Essentially, every 
time a spike occurs, we place a copy of the decoder at the occurrence time of the spike.  
We then sum all of the decoders to get our estimate of the original input signal (see figure 
1). There are well-tested techniques for finding optimal decoders of this sort.  As a 
testament to the effectiveness of these assumptions, surprisingly, perhaps, this kind of 
decoding captures nearly all of the information that could be available in the spike trains 
of real neurons (Rieke et al. 1997, pp. 170-176). 

                                                 
3 There seems to be a large variety of sources of noise in nervous systems (Eliasmith 2001). 
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Figure 1: Temporal decoding. This diagram depicts linear decoding of a 
neural spike train (dots) using stereotypical decoders (skewed bell-shaped 
curves) on an input signal (grey line). The result of the decoding from two 
neurons (black line) is a reasonable estimate of the input signal. This 
estimate can be indefinitely improved with more neurons. 

A limitation of this understanding of temporal representation, is that it is not clear 
how our ability to decode the information in a spike train relates to how that spike train is 
actually used by the organism.  Recently, it has been suggested that the postsynaptic 
currents observable in the dendrites of receiving neurons can act as temporal decoders 
(Eliasmith and Anderson 2003, ch. 4). While the amount information lost increases under 
this assumption, it is biologically plausible (unlike the acausal optimal decoders 
described earlier), and increasing the number of neurons in the representation can make 
up for any information lost. An example of this kind of decoding for two neurons is 
shown in figure 2a. That example shows how a rapidly fluctuating signal can be decoded 
from a neural spike train by a receiving neuron using a timing code (it is a timing code 
because any jitter in the position of the spikes would greatly change the estimate). An 
example of decoding a much slower signal, which is encoded using something more like 
a rate code is shown in figure 2b. 
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Figure 2: Biologically plausible timing and rate coding. a) A high 
frequency signal effectively decoded using postsynaptic currents (PSCs) 
as the decoders. This demonstrates a timing code. b) A low frequency 



signal (note the difference in time scale) similarly decoded. This 
demonstrates a typical rate code. Together, these show that linear temporal 
decoding with PSCs is biologically plausible and continuous between rate 
and timing codes, depending on the signals. 

This way of understanding temporal coding in neurons is both biologically 
plausible, and applicable to understanding the representation of signals and a wide variety 
of time scales. However, the signals being represented are extremely simple.  All of these 
examples are time-varying scalar values.  To support representations of sufficient 
complexity to handle cognitive functions, we need to understand how large groups of 
neurons can cooperate to effectively encode complex, real-world objects. 

2.2 Population representation 

In a well-known series of experiments, Ausonio Georgopoulos explored the idea 
that the representation of physical variables in the cortex could be understood as a 
weighted sum of the individual neuron responses (Georgopoulos et al. 1986; 
Georgopoulos et al. 1989).  By recording from a population of neurons in motor cortex, 
he demonstrated that a good prediction of a monkey’s arm movement could be made by 
multiplying neuron firing rates by their preferred direction of movement and summing 
the result over the population. Essentially, Georgopoulos discovered a decoding method 
for extracting information carried by the neural firing rates that captured reasonably well 
how this information was used by the actual motor system. 

As a result, it is generally agreed that Georgopoulos provided a demonstration of 
how to decode a scalar variable (arm angle) encoded by a population of neurons. This 
kind of decoding, we should notice, is identical to that described in the temporal case.  It 
is a simple linear decoding where the temporal decoder is replaced by a population one 
(i.e., preferred direction). However, the particular decoding chosen by Georgopoulos is 
far from optimal.  Nevertheless, it is a simple matter to determine the optimal linear 
decoder (Eliasmith and Anderson 2003).  Furthermore, it is easy to generalize this kind of 
understanding of neural representation to more complex mathematical objects.  For 
instance, instead of understanding neurons in motor cortex as encoding a one-
dimensional scalar (i.e., direction), we can take them to be encoding a two-dimensional 
vector (i.e., direction and distance of arm movements).  Indeed, there is evidence that the 
neurons Georgopoulos originally recorded from carry information about both of these 
dimensions (Schwartz 1994; Moran and Schwartz 1999; Todorov 2000). 

However, scalar and vector representation alone is not sufficient for capturing a 
wide variety of neural responses.  One of the most common kinds of tuning curves 
observed in cortex is a Gaussian-shaped ‘bump’ (sometimes called ‘cosine tuning’) 
around some preferred stimulus.  For example, in lateral intraparietal cortex (LIP), 
neurons have these bump-like responses centered around positions of objects in the visual 
field (Andersen et al. 1985; Platt and Glimcher 1998).  On first glance, it may be natural 
to see them as encoding a scalar value which indicates the current estimate of the position 
of an object in the visual field.  However, there is evidence to suggest that these 
representations are more sophisticated. For instance, the representation in this area can 
encode multiple object positions simultaneously, and can have differing heights of bumps 
at those positions (Platt and Glimcher 1997; Sereno and Maunsell 1998). And, although 



this has not been directly tested in LIP, there is evidence that this kind of representation is 
used to encode information about the uncertainty of the estimate of the parameter being 
encoded (Britten and Newsome 1998).  So, this kind of representation seems best 
understood as the representation of a function, not a scalar.  The width of this function 
can be used to encode the uncertainty of the representation (wider functions indicate 
greater uncertainty).  And, more complex functions like bimodal Gaussians, could be 
used to encode position and certainty information about multiple object simultaneously.  
So, it is natural to suggest that LIP is representing functions, not scalars or vectors. 

It seems essential, given the noisy, complex, and uncertain environment in which 
neurobiological systems reside, for such systems to be able to make decisions with partial 
data.  An increasing number of neuroscientists and computational neuroscientists have 
been taking seriously the idea that neural systems must perform some kind of statistical 
inference in order to operate effectively in such an environment (Eliasmith and Anderson 
2003; Kording and Wolpert 2004; Rao 2004; Deneve and Pouget in press).  So, it is only 
to be expected that the representations in neural systems be able to support statistical 
inference.  Clearly, the kind of function representation described for LIP can fulfill this 
role. 

Conveniently, function representation can be understood analogously to scalar 
and vector representation. Rather than a preferred direction vector in some parameter 
space, we can take neurons to have preferred functions.  This would (approximately) be 
the function that best matched the neuron’s tuning curve over the parameter space (e.g. 
object position). It is then possible to find the optimal linear functional decoder for 
estimating some set of functions that the neural population can represent (Eliasmith and 
Anderson 2003).   

These examples demonstrate the wide variety of kinds of mathematical objects 
that can be represented in a neurobiologically plausible way. Nevertheless, a question that 
might remain for cognitive scientists is: is this kind of representation appropriate for 
understanding cognitive behaviour? That is, do we have reason to think that things like 
functions, vectors, and scalars are sufficient for explaining imagery, object recognition, 
and language use?  After all, the standard kinds of representations used to explain these 
cognitive phenomena are things like pictures, graphs, and symbolic representations.  I 
would like to suggest that the differences between these kinds of representations are 
terminological. That is, representations like images just are functions, or vectors.  Take, 
for instance, the representation of an image on a computer.  A computer represents an 
image as simply a long binary string.  A long binary string is a vector.  Similarly, if we 
consider a non-digitized version of a projected image, we can express the image as 
changes in light intensities that are a function of spatial position.  That is, we can write 
down a mathematical expression which captures all of the information contained in the 
projected image. So, despite the particular vocabulary we might use for identifying 
classes of representations, they contain the same information about objects, spatial 
relations, color patterning, and so on.  Similar kinds of examples can be generated for the 
representation of objects and language-like symbols (Eliasmith 2003).   

So, there is nothing inherently limiting in understanding neurons as able to 
represent mathematical objects rather than the typical classes of representation identified 
by cognitive scientists.  And, the characterization of a wide variety of representations as 



variations on a theme (i.e. nonlinear encoding and linear decoding), rather than distinct 
classes, greatly unifies our understanding of representation in neurobiological systems. 

In some ways, this discussion of representation has a great affinity for the 
discussion of distributed representation in connectionism.  Clearly, each of these kinds of 
population representation are distributed representations.  However, there are some 
important differences.  For instance, connectionists only consider the case of vector 
representation.  For another, they have no principled relation between the representations 
of individual nodes and ‘higher-level’ representations over a set of nodes (i.e., each node 
is an element of the represented vector for connectionists, but not for the distributed 
representation described above).  For example, if we take a neural system to be 
representing images, we can define a representation of that image as a function (a 
‘higher-level’ representation) embedded in a population of neurons (at the ‘lower-level). 
Connectionists cannot do this. And, related to these two limitations, connectionists 
always try to learn representations rather than having a hypothesis about what 
representations are relevant for a particular task and then determining if that hypothesis is 
consistent with other (computational, dynamic, or intrinsic) properties of the population.  

The constraints introduced by trying to learn representations can be very severe.  
It is well known that the order in which items are presented, the number of occurrences of 
items in the presentations, and the particular choice of which items are presented all 
greatly influence the results of learning.  Furthermore, while these difficulties affect the 
typical three layer network, they become unmanageable for more complex kinds of 
networks.  In contrast, understanding neural representation in terms of encoding and 
decoding avoids such difficulties. Very complex networks, with any number of layers, 
can have representations and transformations embedded in them using these methods.  As 
well, since the implementation of the representations is a neural one, biologically 
plausible learning can be introduced at any point in the process, as necessary.  So, while 
both connectionism and a computational neuroscience approach understand 
representations as distributed, only the latter provides principled methods for moving 
between levels of description of the representational capacities in a neurobiologically 
realistic network.   

To this point, I have described both population representation and temporal 
representation independently.  However because both descriptions are cases of nonlinear 
encoding and linear decoding, it is a simple matter to combine these two kinds of 
representation.  That is, rather than having a separate temporal decoder and a separate 
population decoder, we can define a single population-temporal decoder which can be 
used to decode a spiking, population-wide encoding of some mathematical object that 
captures the properties to be represented.  This, then, completes a computational 
neuroscientific description of the representational vehicles employed by neurobiological 
systems. 

2.3 Semantics 

As I mentioned earlier, the tools of computational neuroscience are best suited to 
characterizing representational vehicles rather than representational content.  
Nevertheless, the characterization of vehicles and contents is not independent (c.f. 
Cummins 1989): if we think that all vehicles can only support scalars, then only the kinds 



of contents that can be carried by scalars can be contents of a system with those vehicles.  
In general, the ways in which we can characterize vehicles ought to tell us something 
about the kinds of contents those vehicles can carry. 

There are three broad classes of semantic theories: causal, conceptual role, and 
two-factor theories. Causal theories of meaning have as their main thesis that mental 
representations are about, and thereby mean, what causes them (Dretske 1981; Fodor 
1990; Dretske 1995; Fodor 1998).  In the context of the previous discussion this means 
that the encoding process alone determines meaning.  Conceptual role theories hold that 
the meaning of a term is determined by its overall role in a conceptual scheme (Loar 
1981; Harman 1982). Under such theories, the meaning of a term is determined by the 
inferences it causes, the inferences it is the result of, or both.  Here, the focus is on the 
decoding of whatever information happens to be in some neural state.  A common 
theoretical move, to avoid the difficult problems that arise when adopting either a causal 
theory or a conceptual role theory, is to combine them into a ‘two-factor’ theory (Field 
1977; Block 1986).  On two-factor theories, causal relations and conceptual role are 
equally important, independent elements of the meaning of a term: “the two-factor 
approach can be regarded as making a conjunctive claim for each sentence” (Block 1986, 
p. 627).  So, only two-factor theories explicitly acknowledge both encoding and 
decoding.  

In the preceding characterization of representational vehicles, a representation is 
only defined once both the encoding and decoding processes are identified.  This means 
that, contrary to both causal and conceptual role theories of content, both how the 
information in neural spikes is used in (decoding), as well as how it is related to previous 
goings-on (encoding) are relevant for determining content. So given the characterization 
of vehicles I have presented, two-factor theories of content seem most plausible. 

However, it is assumed by past two-factor theories that the factors are 
independent.  This property raises a grave difficulty for such theories.  In criticizing 
Block’s theory, Fodor and Lepore (1992) remark “We now have to face the nasty 
question: What keeps the two factors stuck together?  For example, what prevents there 
being an expression that has the inferential role appropriate to the content 4 is a prime 
number but the truth conditions appropriate to the content water is wet?” (p. 170).  If, in 
other words, there is no relation between the two factors (i.e., they are simply a 
conjunction), it is quite possible that massive misalignments between causal relations and 
conceptual roles can occur. 

However, in the computational neuroscientific characterization of representation 
presented above, there is a tight relation between the encoding and decoding processes.  
Broadly speaking, the population-temporal decoders are found in order to estimate some 
function of the encoded parameter.  While for simple representation this function is 
identity, it need not be (as I discuss below).  That is to say, all of the inferences derivable 
from some particular neural encoding depend on the information carried by that 
encoding.  As a result, if there is no relation between the ‘wetness of water’ and ‘4 being 
a prime number’, it would it be impossible for the latter to be part of the conceptual role 
of the encoding of the former. While there remains much to be said regarding the precise 
relation between encoding and decoding, such considerations suggest that this 
characterization can avoid the main weakness of past two-factor theories. 



3 COMPUTATION 

Conveniently, the above characterization of representation leads naturally to an 
understanding of computation in neural systems.  Of course, without an account of 
computation, any characterization of representation is useless.  The vast variety of 
complex and interesting behaviours observable in animals arise not from simply 
representing the environment, but performing complicated, and currently ill-understood, 
computations with these representations. 

Before considering neural computation in more detail, it will be beneficial to 
address a terminological problem that often arises during such discussions.  In the past, 
the notion of ‘computation’ has been closely allied to processing by serial digital 
computers.  For this reason, many theorists take computational characterizations to be 
applicable only to machines that have discrete symbolic representations and process them 
via rules (van Gelder 1995).  Unfortunately, this use of the term belies the existence of an 
entire field of research on analog computation (Uhr 1994; Douglas and Mahowald 1995; 
Hammerstrom 1995).  The reason the strict notion of computation is often adopted, is 
because it is unclear whether there can be a principled distinction between computational 
and non-computational mechanisms if analog computation is considered to be a kind of 
computation.  Nevertheless, I will adopt the widely accepted view in computational 
neuroscience at the notion ‘computation’ is applicable to neural systems in virtue of the 
kinds of descriptions we apply to them (Churchland et al. 1990): indeed, this area of 
research would not be called computational neuroscience otherwise. 

This terminological issues aside, then, we can define neural computation – just as 
we did neural representation – in terms of a nonlinear encoding and a (different) linear 
decoding.  Essentially, representation consists of trying to compute the identity function.  
That is, whatever is encoded into the neural spikes trains is what we are trying to decode 
when we take neurons to be representing their input.  I refer to the decoders used for 
computing this function as ‘representational decoders’. More generally, we can identify 
decoders for computing any function of the encoded input: I refer to these other decoders 
as ‘transformational decoders’.  So, for example, if we define the representation in LIP to 
be a representation of the position of an object, we can find representational decoders that 
estimate the actual position given the neural firing rates.  However, we can also use 
exactly the same encoded information to estimate where the object would be if it was 
translated 5° to the right.  For this we could identify a transformational decoder.  This 
particular example is merely linear transformation of the encoded information, and so not 
especially interesting.  However, exactly the same methods can be used to find the 
transformational decoders for estimating nonlinear computations as well (e.g., perhaps 
the system needs to compute the square of the position of the object; Eliasmith and 
Anderson 2003). 

This account of computation is successful largely because of the nonlinearities in 
the neural encoding of the available information.  When decoding, we can either attempt 
to eliminate these nonlinearities by appropriately weighting the responses of the 
population (as with representational decoding), or we can emphasize the nonlinearities 
necessary to compute the function we need (as with transformational decoding).  In either 
case we can get a good estimate of the appropriate function, and we can improve that 
estimate by including more neurons in the population encoding the information.  



4 DYNAMICS 

Given the previous characterizations of representation and computation, it is 
possible to build neurally realistic circuits that take time time-varying signals as input and 
compute ‘interesting’ functions of those signals.  However, these techniques, as they 
stand, apply only to feedforward computations.  As is well-known, recurrence, or 
backward projections, are ubiquitous in neural systems.  This kind of complex 
interconnectivity suggests that feedforward computation is not sufficient to understand 
neurobiological function.  As a result, computational neuroscientists need a means of 
characterizing the sophisticated, possibly recurrent, internal dynamics for the 
representations they take to be present in neural populations. 

Eliasmith and Anderson (2003) suggest that neural dynamics can be best 
understood by taking neural representations to be control theoretic state variables.  
Control theory is a set of mathematical techniques developed in the 1960s to analyze and 
synthesize complex, analog, physical systems (Kalman 1960; Kalman 1960).  For linear, 
time-invariant (LTI) systems, control theory provides a canonical way of expressing, 
optimizing, and analyzing the set of possible behaviours of the system.  More complex 
dynamics, such as nonlinear and time-varying dynamics, can also be expressed using 
control theory, although analysis of the systems is no longer guaranteed to be tractable. 

The standard state-space form for control theoretic descriptions of physical 
systems is a set of differential equations defined over variables called the “state 
variables” (figure 3a). For any system so described, the current value of the state 
variables and the set of differential equations governing their dynamics completely 
determines the future behaviour of the system.  In neural systems, the set of differential 
equations can be taken to describe how the representation in a neural population changes 
over time.  The value of the variables at any particular time is determined by the (spiking) 
neural representation at that time, and the governing equations are determined by the 
connection weights between that population and any others providing input to it (possibly 
including that population itself).  

Notably, the standard control system depicted in figure 3a assumes that the 
dynamics of the physical system being described can be characterized as integration 
(hence the transfer function being an integral). However, neurons have their dynamics 
determined by intrinsic properties (e.g., ion channel speed, membrane capacitance, etc.), 
and do not naturally support integration.  As a result, it is necessary to be able to translate 
the standard control theoretic equations into a form appropriate for neural systems (figure 
3b). Fortunately, this translation can be done in the general case (Eliasmith and Anderson 
2003). This allows any standard control theoretic description of a system to be written an 
equivalent ‘neural’ control theoretic form.  This can prove a great benefit to theorists, as 
they can then draw from the vast resources of control theory when hypothesizing about 
which neural architectures may be able to realize some function: a function that may 
already be well-understood by control theorists. 
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Figure 3: Diagram of the dynamics equation for LTI control theoretic 
descriptions of a) a standard physical system, )()()( ttt BuAxx +=&  and b) 

a neural system, ( ))()()()( tttht uBxAx ′+′∗= . The input signal, u(t), can 
be modified by the parameters in the input matrix, B, before being added 
to any recurrent signal which is modified by the parameters in the 
dynamics matrix, A. The result is then passed through the transfer function 
which defines the dynamics of the state variable, x(t). In a), the canonical 
form, the transfer function is integration.  In b), the neural form, the 
transfer function is determined by intrinsic neural dynamics.  Fortunately, 
given the canonical form and the transfer function, h(t), A’ and B’ can be 
determined for any A and B. 

Notably, adopting this description of the dynamics of neural systems is 
reminiscent of the ‘dynamicist’ view in cognitive science (Port and van Gelder 1995). 
Indeed, both characterizations share an emphasis on the importance of time, and both 
suppose that sets of differential equations are the best mathematical tools available for 
quantifying cognitive systems under this assumption.  However, there is an extremely 
important difference between these two views.  For dynamicists, the variables over which 
the differential equations are defined are not explicitly related to the physical system 
itself (Eliasmith 1997; Eliasmith 2003).  So, for example, the “motivation” variable in 
motivational oscillatory theory (MOT), which is intended to characterize some high-level 
property of the animal, is never related to any specific physical property of the system  
(Busemeyer and Townsend 1993) – and it is entirely unclear how it could be.  In contrast, 
the approach described above is explicit on the relation between higher-level neural 
representations and the activations of single cells.  And, it is precisely these 
representations that serve as the variables over which the dynamics are defined.  This 
makes the computational neuroscience approach more directly responsive to (and 
informative for) the experimental results generated by neuroscientists and cognitive 
neuropsychologists. 

5 SYNTHESIS 

The previous sections have defined three important principles for characterizing 
neurobiological systems.  However, it may not yet be clear how these principles interact, 
and, more importantly, how they are intended to map onto the observable properties of 
real neural systems. 



Figure 4 depicts how these principles can be integrated in order to describe the 
functioning of neurobiological systems at various levels of description.  Specifically, 
figure 4 shows the components of a generic neural subsystem, including temporal 
decoders, population decoders, control matrices, encoders, and the spiking neural 
nonlinearity.  A series of such subsystems can be connected in order to describe larger 
neural systems, since both the inputs and outputs of the subsystems are neural spikes.   

Additionally, figure 4 depicts what it means to suggest that neural representations 
are control theoretic state variables.  The state variables are defined by the temporal and 
population decoders and encoders, the dynamics of the control system are defined by the 
control matrices, and any functions that must be computed in order to implement the 
control system can be estimated by replacing the appropriate representational decoders 
with transformational decoders. 

This figure also captures how the theoretical elements of this description map 
onto real neural systems.  In particular, the control matrices, decoders, and encoders can 
be used to analytically compute the connection weights necessary to implement the 
desired control system in the neural population.  The temporal decoders, as noted earlier, 
are mapped onto the postsynaptic currents (PSCs) produced in dendrites as a result of 
incoming neural spikes.  Finally, the weighted dendritic currents arriving at the soma 
(cell body) of the neuron determine the output of the neural nonlinearity, i.e., the timing 
of neural spikes produced by neurons in this population.4 

                                                 
4  This nonlinearity can be captured by a set of differential equations that describes the dynamics 

of the channel conductances that control the flow of ions through the cell membrane resulting in action 
potentials, or it could be a simpler reduced model of neural spiking (like the common leaky integrate-and-
fire model) 



...

...

...

...

synaptic weights

neural 
nonlinearity

higher-level 
description

neuron-level description

PSCs

dendrites

incoming
spikes

temporal
decoder decoder

encoder

outgoing
 spikescontrol 

matrices

possible recurrent

connections

dendritic  
current

 

Figure 4: A generic neural subsystem (adapted from Eliasmith 2003). The 
outer dotted line encompasses elements of the neuron-level description, 
including PSCs, synaptic weights, and the neural nonlinearity in the soma. 
The inner dotted line encompasses elements of the control theoretic 
descriptions at the higher-level. The grey boxes identify experimentally 
measurable elements of neural systems. The elements inside those boxes 
denote the theoretically relevant components of the description. See text 
for details. 

Notably, the theoretical elements in this description are not identical to physically 
measurable properties of neural systems.  As a result, there is a sense in which neural 
systems themselves never decode the representations they employ.  This is because 
decoding, encoding, and the dynamics determined by the control matrices are all included 
in the synaptic weights.  Nevertheless, if our assumptions regarding representation or 
dynamics of the system are incorrect, the model which embodies these assumptions will 
make incorrect predictions regarding the responses of individual neurons.  So, while we 
cannot directly measure decoders, we can justify their inclusion in a description of neural 
systems insofar as the description is a successful one at predicting the properties we can 
measure. This, of course, is a typical means of justifying the introduction of theoretical 
entities in science. 

This approach has been successfully applied to modeling the number of 
neurobiological systems, including sensory, cognitive, and motor systems (Eliasmith and 
Anderson 1999; Eliasmith and Anderson 2000; Nenadic et al. 2000; Eliasmith and 
Anderson 2001).  Of greatest interest to cognitive scientists, however, is whether or not 
this kind of description can contribute to improving our understanding of high-level 
cognitive function. 



6 COGNITION 

On occasion, cognitive scientists have expressed hostility towards the idea that 
our understanding of cognitive processes can be improved by a better understanding of 
how the brain functions (Lycan 1984; Fodor 1999).  They have suggested that knowing 
where things happen in the brain, or how they are implemented in the brain, are not 
relevant for answering the more important question of what the cognitive architecture is.  
This, however, is no longer the widely-held view that it once was.  The immense recent 
increase in cognitive research employing techniques that measure physiological signals in 
the brain (such as functional magnetic resonance imaging (fMRI), positron emission 
tomography (PET), event related potentials (ERPs), etc.), suggest that a more common 
view is that improving our understanding of neural organization will greatly benefit our 
understanding of the nature of cognitive function. 

Despite the seeming prominence of this view, there are no well-established 
modeling techniques for bridging the gap between the functioning of single neurons and 
the functioning of the cognitive systems of which they are a part. Models that incorporate 
biologically realistic single neurons tend to focus on low-level perception (e.g., receptive 
fields, motion, contour sensitivity, etc.), motor control (saccade generation, vestibular 
ocular reflex, invertebrate locomotion, digestion, etc.), and single-cell learning (e.g., 
retinal wave effects, receptive field learning, cortical column organization, etc.). In 
contrast, cognitive scientists are largely interested in models of cognitive functions like 
reasoning, memory, language, and so on.  So, the question naturally arises as to whether 
the methods of computational neuroscientists can actually prove useful to cognitive 
scientists. 

For some time now, computational neuroscientists have built sophisticated models 
of brain areas whose functions map naturally onto certain psychological categories.  
Perhaps the most successful example of such models are those related to short-
term/working memory (Camperi and Wang 1998; Laing and Chow 2001; Brody et al. 
2003).  In general, these models have helped make the notion of working memory much 
more precise. Specific implementational constraints have been derived from some of 
these models, including the kinds of time constants and receptors that are likely necessary 
to support working memory function.  Preliminary results regarding the source of 
working memory limitations (Trappenberg 2003), and the cost of representational 
complexity (Eliasmith and Anderson 2003) in such networks have also been generated.  
Such results have vastly improved our understanding of how working memory might be 
organized, its strengths, expected limitations, and so on.  Such insights should inform our 
functional decomposition of other high-level cognitive categories.  So, in this instance, 
computational neuroscience serves as a useful means of filling in important details for 
improving our understanding of a specific cognitive function, and may serve as a 
springboard for better understanding other cognitive functions. 

However, working memory itself does not seem to be particularly representative 
of what counts as truly cognitive behaviour, since it is found in a wide variety of 
nonhuman animals.  As well, the available models of working memory tend not to be 
systemic.  That is, they are focused on small, highly-constrained neural areas, and do not 
have complex dynamics or support sophisticated representations. So, it could well be 



argued that such examples do not demonstrate that the methods described earlier will be 
able to tackle interesting problems in cognitive science. 

Recently, however, significantly more sophisticated models of clearly high-level 
cognitive function have been built. As an example, I will consider a model of the Wason 
card selection task (Wason 1966). This task requires the manipulation of language-like 
structures and is performed only by humans. Thus it is, if anything is, a high-level 
cognitive phenomenon. A considerable amount of research in psychology has focussed 
on exploring this task (Griggs and Cox 1982; Reich and Ruth 1982; Cheng and Holyoak 
1985; Cosmides 1989; Gigerenzer and Hug 1992; Chater and Oaksford 1996; Liberman 
and Klar 1996; Fiddick et al. 2000).  The task itself consists of subjects being presented 
with a conditional statement such as “if P then Q,” which they must test for validity given 
some data.  So, for example, suppose that a subject is presented with a rule such as “if a 
card has a vowel on one side, then it has an even number on the other”.  They are then 
give a data set that consists of four cards laying on a table with one of ‘A’, ‘B’, ‘2’, or ‘3’ 
written on the visible side of each card.  The subject is then asked to choose the card or 
cards that must be turned over in order to test this conditional.  The correct choice in this 
example are the ‘A’ and ‘3’ cards.  However, this combination is usually chosen only by 
a small minority of subjects (5-40%).  More often, subjects will choose the ‘A’ card or 
the ‘A’ and ‘2’ cards (80-90%). 

In an interesting variation on this task, the rules chosen were made significantly 
more concrete, or familiar.  For instance, the researcher might use the rule, “if someone 
drinks alcohol then that person is over 18,” with the data being analogous to that 
presented earlier.  This shift in the rule’s content massively increased success on the card 
selection task.  Much of the discussion regarding the Wason card selection task focuses 
on attempting to explain the differences between this ‘concrete’ task and the original 
‘abstract’ task.  

The neural-level model generated using the techniques described earlier 
demonstrates how a specific hypothesis regarding these differences can be shown to be 
neurally plausible.  Specifically, the model shows that (Cheng and Holyoak 1985; 
Cosmides 1989; Gigerenzer and Hug 1992) domain general, context-sensitive inference 
can account for the differences in performance in human subjects on these tasks in a 
manner consistent with known neuroanatomy and neurophysiology.  Some highlights of 
the model are that: 1) it is a large-scale model, consisting of nine separate, interconnected 
populations; 2) it performs structure-sensitive processing (it uses one of the available 
vector binding operations (Plate 1994; Plate 1997), for encoding the rules into language-
like structures and transforming the rules appropriately); 3) it performs context sensitive 
processing (i.e., different transformations are applied depending on whether the rule is 
concrete or abstract); 4) it learns which transformations to perform (i.e., based on 
reinforcement or the provision of the correct answer, it updates the appropriate 
transformation in the current context to determine which transformation is appropriate for 
which context); 5) the model is mapped to known neuroanatomy; and 6) these functions 
are carried out using populations of spiking neurons that encode complex representations 
(100 dimensional vectors). 

In sum, this model has both cognitive and neural plausibility: that is, it explains 
cognitive behaviour and does so in a neurally realistic way.  Unlike past attempts at 



understanding human performance on this task, it can be used to make specific 
predictions regarding physiological measures of people performing these tasks, as well as 
behavioural predictions.  Also unlike other suggestions, it has been shown that the 
hypothesized dynamics, representations, and computations can actually be carried out in 
neural hardware.  More generally, this model serves to demonstrate that we can, indeed, 
begin to bridge the gap between neural and psychological explanations of cognitive 
systems. 

Given such examples, I suspect that the methods of computational neuroscience 
will not only prove useful, but will be essential for giving a comprehensive explanation 
of how cognitive systems operate.  It is not only the success of such models, but also our 
changing understanding of the nature of cognitive systems, that will render such accounts 
indispensable.  Let me consider two recent shifts in our understanding of cognition. 

First, it has been suggested by a number of psychologists and philosophers, 
perhaps Gibson (1955) being the most famous, that the distinction between 
perception/action and cognition may be a misleading one. They suggest that in order to 
understand the complicated behaviours we see arising from neurobiological systems – no 
matter how complicated – we must first understand the tight connection between 
perception and action.  Indeed, there has been a significant amount of recent work in 
dealing with what is often called “embedded” or “embodied” cognition (Varela et al. 
1991; Haugeland 1993; Hutchins 1995; Clark 1997; Kelly 2001). This is the view that in 
order to understand cognition, we must understand an organism as placed within its 
environment.  These theorists thus take the organism, its actions, and its environment as 
tightly linked: linked through the perceptual/motor loop of the organism itself. For these 
theorists, thinking of cognitive behaviours as somehow specially internal, or separable 
from action and perception, is misguided.  Related experimental work suggests that much 
of our cognitive life is thus tightly tied to more ‘basic’ perceptual and action-oriented 
processes (Barsalou 1999; Richardson et al. 2001; Matlock in press).  Thus, if we can not 
easily distinguish cognitive processes from non-cognitive ones, then work in 
computational neuroscience on simple motor and perceptual systems is highly relevant 
for understanding cognitive function. 

Second, not only has the distinction between cognition and perception/action 
come under scrutiny in recent years, but so has the distinction between cognition and 
emotion (Damasio 1994).  There is ample neurological evidence that people with damage 
to emotionally related brain structures (e.g. ventromedial prefrontal cortex) become partly 
cognitively incompetent.  While many cognitive functions are preserved in such patients, 
tasks such as decision-making, risk assessment and planning become severely impaired 
(Bechara et al. 2000; Spinella 2003). As a result, the traditional cognitivist view that 
emotions inhibit our ability to be rational seems implausible.  From a computational 
perspective, this suggests that distinguishing cognitive systems from other systems may 
not allow us to properly explain what we typically take to be cognitive functions. 

Both of these challenges to the idea that cognition is somehow separable from 
other neural functions suggest the need for a method that is continuous between typically 
cognitive systems and supposedly non-cognitive ones.  On the face of it, this need should 
not be surprising since all such systems fundamentally use spiking neural cells to perform 
their functions.  As a result, if we have methods for embedding high-level functions into 



complex networks of neural cells, we can use those methods to consistently characterize 
what are intuitively different high-level functions (e.g., cognitive versus non-cognitive). 
This consistency thus makes it possible to interface models of traditionally non-cognitive 
systems with those of more cognitive brain systems.  As a result, the methods of 
computational neuroscience, unlike other methods, make it possible to unify a wide 
variety of neural functions – a unification that seems essential if we are to understand the 
whole system – so such methods are essential to constructing good explanations in 
cognitive science. 
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