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Abstract: Neural coding, neural computation, and control (or dynamical systems) theory have 

recently been integrated to support descriptions of neurobiological systems at many different 

levels of detail.  I discuss the Neural Engineering Framework (NEF), which realizes this 

integration, and highlight some of the philosophical consequences of its development. To do so, I 

present the three principles of the NEF, and then describe an example of their application to the 

development of a neural model of part of the rat navigation system.  Relying partly on the 

insights provided by this model, I describe the implications of the NEF for traditional 

philosophical problems including: 1) mental representation and semantics; 2) the unity of science 

(i.e., theory reduction); and 3) appropriate theory construction in the behavioural sciences.  
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1. Introduction 

Theoretical (or computational) neuroscience has come to play a role in neuroscience akin 

to that played by theoretical physics in the physical sciences.  However, unlike theoretical 

physics, theoretical neuroscience is not characterized by a few well-studied basic theories (e.g., 

string theory, loop quantum gravity, etc.).  Instead, as can be seen by perusing the textbooks in 

the field, theoretical neuroscience is largely a collection of disparate methods, models, and 

mathematical techniques that relate to neurobiological systems (see e.g., Dayan & Abbott, 2001; 

Koch, 1998).  For any given neural system of interest, some subset of these methods is chosen 

(or new ones developed) and they are applied in the analysis and/or simulation of that system.  In 

short, while theoretical neuroscience has helped provide a quantified understanding of neural 

systems, it has done so in a largely unsystematic manner. 

As a result of this diversity of techniques, and the accompanying variety of assumptions, 

it is difficult to discern what philosophically interesting conclusions can be drawn about neural 

systems in general.  As a result, rather than focusing on the entire range of techniques used by 

theoretical neuroscientists, in this article I describe a systematic approach to studying neural 

systems which has collected and extended a set of consistent methods that are highly general.  

These methods have come to be called the Neural Engineering Framework (NEF), and can be 

summarized by three basic principles, which I describe next.  While these principles have been 

extended in more recent work (Tripp & Eliasmith, in press), here I present their original 

formulation (Eliasmith & Anderson, 2003) which is simpler and does not detract from 

subsequent discussion. An indication of the generality of these three principles is the wide 

variety of neural systems they have been used to characterize.  These include the barn owl 



 

auditory system (Fischer, 2005), the rodent navigation system (Conklin & Eliasmith, 2005), 

escape and swimming control in zebrafish (Kuo & Eliasmith, 2005), the translational vestibular 

ocular reflex in monkeys (Eliasmith, Westover, & Anderson, 2002), working memory systems 

(Singh & Eliasmith, 2006), and language-based deductive inference (Eliasmith, 2004).  These 

models span sensory, motor and cognitive systems across the phylogenetic tree.  This broad 

range of applicability, which is a consequence of the generality of the NEF, makes subsequent 

philosophical consequences of greater interest (see section 4).  

 

2. The Neural Engineering Framework (NEF) 

2.1 Introduction 

The NEF draws heavily on past work in theoretical neuroscience, integrating work on 

neural coding, population representation, and neural dynamics to enable the construction of 

large-scale biologically plausible neural simulations. The three principles that form the basis of 

the framework are: 

  

1. Representation: Neural representations are defined by a combination of non-linear encoding 

and optimal linear decoding.  

2. Transformation: Transformations of neural representations are functions of the variables that 

are represented by a population.  

3. Dynamics: Neural dynamics are characterized by considering neural representations as control 

theoretic state variables. 

  



 

These principles are quantitatively defined by Eliasmith and Anderson (2003) so as to: a) apply 

to a wide variety of single cell dynamics; b) incorporate linear and nonlinear transformations; c) 

permit linear, nonlinear and time-varying dynamics; and d) support the representation of scalars, 

vectors, functions, or any combinations of these.  In addition, the principles are formulated so as 

to preserve our current understanding of the biophysical limitations of neural systems (e.g., the 

presence of significant noise, the intrinsic dynamics of neurons, largely linear somatic 

interactions of dendritic currents, etc.).  In the next four subsections I describe each principle in 

more detail, and discuss how they provide a unified view of the function of neural systems for 

the behavioural sciences. 

 

2.2 Representation  

Introduction 

The notion of ‘representation’ is broadly employed in neuroscience.i  In general, if a 

neuron “fires” relatively rapidly when an animal is presented with a certain set of stimuli, the 

neuron is said to “represent” the property that the set of stimuli share (see e.g., Felleman & Van 

Essen, 1991).  This kind of experiment has been performed on mammals since Hubel and 

Wiesel’s (1962) classic research in which they identified cortical cells selective to the orientation 

and size of a bar in a cat’s visual field. The slightly earlier “bug detector” experiments of Lettvin 

et al. (1959/1988), perhaps better known to philosophers, take a similar approach.  In the bug 

detector experiments, retinal ganglion cells were found that respond to small, black, fly-sized 

dots in a frog’s visual field.  These were referred to as “bug detectors” because they fired rapidly 

when such dots were present and fired less rapidly when they were not.  More recently, this 

method has been used to find “face-selective cells” (i.e., cells that respond strongly to faces in 



 

particular orientations) in monkey visual cortex (Desimone, 1991). In all of these cases, what is 

deemed important for representation is how actively a neuron responds to some known stimuli. 

The two central difficulties with this use of the term ‘representation’ are that it assumes 

1) single neurons are the basic carriers of content, and 2) content can be determined by what has 

been called the “naïve causal theory” – the view that a brain state represents whatever causes it 

to be active – which is well-known to be highly problematic (Dretske, 1988).  Little thought has 

been given in neuroscience to trying to establish a principled means of determining what 

appropriate representational vehicles are, or how they might be related to the stimuli they are 

taken to represent.  Why, for instance, should we assume that cells that selectively fire in the 

presence of faces actually represent faces?  If the system is unable to use the information carried 

by such a cell to detect faces, or if the neuron is only partly informative of the presence of a face, 

or if as yet untested non-face stimuli can cause the cell to be active, such content claims will be 

misleading.  

Work in theoretical neuroscience has been more careful regarding such claims.  In 

particular, researchers examining neural coding are often careful not to assume that the stimuli 

presented to an animal is automatically, or fully represented, despite observed correlations 

(Rieke, et al., 1997).  As a result, one of the most significant conceptual contributions of 

theoretical neuroscience to a neuroscientific understanding of representation is an emphasis on 

decoding.  As mentioned, characterizing the responses of neurons to stimuli in the environment 

has been the mainstay of neuroscience. This, however, describes only an encoding process. That 

is, the process of responding to some physical environmental variable through the generation of 

neural action potentials, or “spike trains.”  By adopting an information theoretic view of 

representation, theoretical neuroscience holds that to truly understand what information is 



 

preserved through the encoding process, we must be able to demonstrate that we (or the system) 

can at least in principle decode the spike train to give the originally encoded signal. As a result, 

to fully define representations, we must characterize both encoding and decoding. 

In addition, theoretical neuroscientists have distinguished two aspects of representation; 

temporal representation, and population representation. The former deals with how neurons 

represent time-varying signals. The latter deals with issues of distributed representation. That is, 

how a single cell’s response contributes to a complex representation over a large group of 

neurons (i.e., allowing content claims to encompass more than single cells). In the next two 

subsections, I describe the theoretical characterization of encoding and decoding over time and 

neural populations employed by the NEF.  

 

Temporal representation  

Perhaps the best understood aspect of how neural systems represent time-varying signals 

is the encoding process. In some ways, this should not be too surprising since the focus of 

neuroscience in general has been on encoding. This is likely because the encoding process can be 

largely characterized by focusing on single cells. So, the highly successful work on quantifying 

the dynamics of action potential generation in single cells – including mathematical descriptions 

of voltage sensitive ion channels of various kinds (Hodgkin & Huxley, 1952), the use of cable 

equations to describe dendritic and axonal morphology (Rall, 1957; Rall, 1962), and the 

introduction of canonical models of a large class of neurons (Hoppensteadt & Izhikevich, 2003) 

– supports a highly mechanistic understanding of encoding.  However, fully describing the 

encoding process also necessitates the identification of the particular, perhaps external, 

parameters that a neuron may be sensitive to (partially in virtue of its relation to other neurons in 



 

the brain).  These more holistic considerations are implicitly captured by the ubiquitously 

reported neuron “tuning curves.” Improving our understanding of the encoding process is largely 

an empirical undertaking, one which has a long, successful history in both experimental and 

theoretical neuroscience. However, this is not true of temporal decoding.  

There are two main kinds of theory of temporal decoding in neuroscience. These are 

referred to as the “rate code” view and the “timing code” view. Generally speaking, rate code 

theories are those that assume that information about temporal changes in the stimulus is carried 

by the average rate of firing of the neuron responding to that stimulus. In contrast, timing code 

theories assume that information about the stimulus is carried by the approximate distance 

between neighbouring spikes in the spike train generated by the neuron responding to the 

stimulus.  

Despite a wide ranging debate over which code is used by neural systems, when carefully 

considering rate codes and timing codes, it becomes evident that they are variations on the same 

theme.  Both codes assume that we choose some time window and count how many spikes fall in 

that window. In the case of rate codes the time window is usually about 100 milliseconds, and in 

the case of timing codes the size of the window varies depending on the distance between spikes. 

It should not be too surprising, then, that methods have been developed for understanding 

temporal decoding that vary smoothly between rate codes and timing codes (Rieke et al., 1997). 

So, in the end, the distinction between rate codes and timing codes is not a significant one for 

understanding temporal representation.  

These methods are surprisingly simple because they are linear (i.e., rely only on weighted 

sums). Suppose that we are trying to understand the representational role of two neurons. To do 

so, we present this ‘population’ with a signal and then record the spikes that it produces in 



 

response to the signal. These spikes are the result of some (well-characterized) highly nonlinear 

encoding process. As discussed earlier, to properly characterize the representational properties of 

this neuron, we should be able to use those spikes to reconstruct the original signal. However, to 

do this we need to identify a decoder that takes those spikes as input and produces an estimate of 

the original signal. We can begin by assuming that the particular position of a given spike in the 

spike train does not change the meaning of that spike; i.e., the decoder should be the same for all 

spikes. Essentially, every time a spike occurs, we place a copy of the decoder at the occurrence 

time of the spike. We can then sum all of the decoders to get our estimate of the original input 

signal (see figure 1). There are well-tested techniques for finding optimal decoders of this sort. 

As a testament to the effectiveness of these assumptions, it has been shown that this kind of 

decoding captures nearly all of the information that could be available in the spike trains of real 

neurons (Rieke et al. 1997, pp. 170-176).  

 

Neuron 1

Neuron 2

Input signal

Decoded estimate

 

Figure 1: Temporal decoding. This diagram depicts linear decoding of a neural spike train (dots) 

using stereotypical decoders (skewed bell-shaped curves) on an input signal (grey line). The 

result of the decoding from two neurons (black line) is a reasonable estimate of the input signal. 



 

This estimate can be indefinitely improved with more neurons. (Adapted from Eliasmith and 

Anderson, 2003.)  

 

A limitation of this understanding of temporal representation is that it is not clear how 

our ability to decode the information in a spike train relates to how that spike train is actually 

used by the organism. The NEF addresses this issue by identifying the postsynaptic currents 

(PSCs) observable in the dendrites of receiving neurons with these temporal decoders (Eliasmith 

and Anderson 2003, ch. 4). While these decoders are no longer optimal, they are biologically 

plausible (unlike the non-causal optimal decoders found with past methods). And, increasing the 

number of neurons in the representation can make up for any loss in fidelity of the represented 

signal. An example of this kind of decoding for two neurons is shown in figure 2a. That figure 

demonstrates how a rapidly fluctuating signal can be decoded from a neural spike train by a 

receiving neuron using a timing code (it is a timing code because significant jitter in the position 

of the spikes would greatly change the estimate). An example of decoding a much slower signal, 

which is encoded using something more like a rate code, is shown in figure 2b. 
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Figure 2: Biologically plausible timing and rate coding. a) A high frequency signal effectively 

decoded using postsynaptic currents (PSCs) as the decoders. This demonstrates a timing code. b) 

A low frequency signal (note the difference in time scale) similarly decoded. This demonstrates a 

typical rate code. (Adapted from Eliasmith and Anderson, 2003.) 

 

Together, these diagrams show that linear temporal decoding with PSCs is biologically 

plausible and can capture both rate and timing codes, depending on the demands of the situation. 

As a result, the NEF incorporates a method of characterizing temporal coding in neurons that is 

unique in its combination of biological plausibility and applicablility to understanding the 

representation of signals at a variety of time scales.   

The examples discussed to this point are only time-varying scalar values. To support 

representations of sufficient complexity to handle the vast variety of behaviours exhibited by 

neurobiological systems, it is essential to understand how large groups of neurons can cooperate 

to effectively encode complex, real-world objects.  

 

Population representation  

In a well-known series of experiments, Apostolos Georgopoulos and colleagues explored 

the idea that the representation of physical variables in the cortex could be understood as a 

weighted sum of the individual neuron responses (Georgopoulos et al., 1986; Georgopoulos et 

al., 1989). By recording from a population of neurons in motor cortex, they demonstrated that a 

good prediction of a monkey’s arm movement could be made by multiplying neuron firing rates 

by their preferred direction of movement and summing the result over the population. 



 

Essentially, Georgopoulos discovered a decoding method for extracting information carried by 

the neural firing rates that captured how this information was used by the motor system.  

It is generally agreed that Georgopoulos provided a demonstration of how to decode a 

scalar variable (arm angle) encoded by a population of neurons. This kind of decoding, we 

should notice, is identical to that described in the temporal case. It is a simple linear decoding 

where the temporal decoder is replaced by a population one (i.e., preferred direction). However, 

the particular decoding chosen by Georgopoulos is far from optimal.  Nevertheless, it is a simple 

matter to determine the optimal linear decoder (Salinas & Abbott, 1994). Furthermore, it is easy 

to generalize this kind of understanding of neural representation to more complex mathematical 

objects than scalars (Eliasmith & Anderson, 2003). For instance, instead of understanding 

neurons in motor cortex as encoding a one-dimensional scalar (i.e., direction), we can take them 

to be encoding a two-dimensional vector (i.e., direction and distance of arm movements). Indeed, 

there is evidence that the neurons Georgopoulos originally recorded from carry information 

about both of these dimensions (Moran & Schwartz, 1999; Schwartz, 1994; Todorov, 2000).  

However, the discussion so far does not make it evident how to capture the wide variety of 

neural responses observed by experimental neuroscientists. For instance, one of the most 

common kinds of tuning curves observed in cortex is a Gaussian-shaped ‘bump’ (sometimes 

called ‘cosine tuning’) around some preferred stimulus. For example, in lateral intraparietal 

cortex (LIP), neurons have these bump-like responses centered around positions of objects in the 

visual field (Andersen et al., 1985; Platt & Glimcher, 1998). On first glance, it may be natural to 

see them as encoding a scalar value which indicates the current estimate of the position of an 

object in the visual field. However, there is evidence to suggest that these representations are 

more sophisticated.  For instance, the representation in this area can encode multiple object 



 

positions simultaneously, and can have differing heights of bumps at those positions (Platt & 

Glimcher, 1997; Sereno & Maunsell, 1998).  As a result, a more natural characterization of the 

representation in this area is as a function.  That is, the activity of the neurons encodes a function 

whose height at a location is determined by the presence of various features at that location, such 

as brightness, shape, etc. 

Conveniently, function representation can be understood analogously to scalar and vector 

representation.  Rather than a preferred direction vector in some parameter space, we can take 

neurons to have preferred functions. This would (approximately) be the function that best 

matched the neuron’s tuning curve over the parameter space (e.g., object position and shape). It 

is then possible to find the optimal linear functional decoder for estimating some set of functions 

that the neural population can represent (Eliasmith and Anderson, 2003).  With the introduction 

of function representation, the NEF shows how essentially any definable mathematical object 

can be represented over a population of neurons.   

To this point, I have described both population representation and temporal 

representation independently. However, since both descriptions are cases of nonlinear encoding 

and linear decoding, it is a simple matter to combine these two kinds of representation. That is, 

rather than having a separate temporal decoder and a separate population decoder, we can define 

a single population-temporal decoder which can be used to decode a spiking, population-wide 

encoding of some mathematical object that captures the properties to be represented. This, then, 

completes a computational neuroscientific description of the representational vehicles employed 

by neurobiological systems.  

In sum, this discussion demonstrates the wide variety of kinds of mathematical objects 

that can be represented in a neurobiologically plausible way with the NEF.  This degree of 



 

generality suggests that the representational assumptions embodied in Principle 1 (section 2) are 

very broadly applicable to neurobiological systems.  And, because this characterization of neural 

representation is simply variations on a common theme (i.e., nonlinear encoding and linear 

decoding), the NEF serves to unify our understanding of representation in neurobiological 

systems.  

 

2.3 Computation 

Conveniently, the NEF characterizes neural computation in the same way as neural 

representation.  That is, in terms of a nonlinear encoding and a linear decoding. The difference is 

that representation consists of estimating the identity function, where as computation, more 

broadly, consists of estimating arbitrary linear or nonlinear functions of the encoded variable. 

That is, when representing a variable, the system is concerned with decoding the value of that 

variable as it is encoded into neural spikes trains. The NEF labels decoders for this purpose 

“representational decoders.” However, it is possible to identify decoders for computing any 

function of the encoded input; the NEF labels such decoders “transformational decoders.”  

For example, if we define the representation in LIP to be a representation of the position of an 

object, we can find representational decoders that estimate the actual position given the neural 

firing rates. However, we can also use exactly the same encoded information to estimate where 

the object would be if it was translated 5° to the right. For this we could identify a 

transformational decoder. This particular example is merely linear transformation of the encoded 

information, and so is not especially interesting. However, exactly the same methods can be used 

to find the transformational decoders for estimating nonlinear computations as well (e.g., perhaps 

the system needs to compute the square of the position of the object).  



 

This account of computation is successful largely because of the nonlinearities in the 

neural encoding of the available information. When decoding, we can either attempt to eliminate 

these nonlinearities by appropriately weighting the responses of the population (as with 

representational decoding), or we can emphasize the nonlinearities necessary to compute the 

function we need (as with transformational decoding). In either case we can get a good estimate 

of the appropriate function, and we can improve that estimate by including more neurons in the 

population encoding the information.  

 

2.4 Dynamics  

Given the previous characterizations of representation and computation, it is possible to 

build neurally realistic circuits that take time-varying signals as input and compute arbitrary 

functions of those signals. However, these techniques, as they stand, apply only to feedforward 

computations. As is well-known, recurrence, or backward projections, are ubiquitous in neural 

systems. This kind of complex interconnectivity suggests that feedforward computation is not 

sufficient for understanding neurobiological function. As a result, theoretical neuroscientists 

need a means of characterizing the sophisticated, possibly recurrent, internal dynamics of the 

representations they take to be present in neural populations.  

The third principle of the NEF incorporates the suggestion that neural dynamics can best 

be understood by taking neural representations to be control theoretic state variables.  Control 

theory is a set of mathematical techniques developed in the 1960s to analyze and synthesize 

complex, analog, physical systems (Kalman, 1960a; Kalman, 1960b). For linear, time-invariant 

(LTI) systems, control theory provides a canonical way of expressing, optimizing, and analyzing 

the set of possible behaviours of the system. More complex dynamics, such as nonlinear and 



 

time-varying dynamics, can also be expressed using control theory, although analysis of the 

systems is no longer guaranteed to be analytically tractable.  

The standard state-space form for control theoretic descriptions of physical systems is a 

set of differential equations defined over variables called the “state variables” (figure 3a). For 

any system so described, the current value of the state variables and the set of differential 

equations governing their dynamics completely determines the future behaviour of the system. In 

neural systems, the set of differential equations can be taken to describe how the representation 

in a neural population changes over time. The value of the variables at any particular time is 

determined by the (spiking) neural representation at that time, and the governing equations are 

determined by the connection weights between that population and any others providing input to 

it (possibly including that population itself).  

Notably, the standard control system depicted in figure 3a assumes that the dynamics of 

the physical system being described can be characterized as integration (hence the transfer 

function being an integral). However, neurons have their dynamics determined by intrinsic 

properties (e.g., ion channel speed, membrane capacitance, etc.), and do not naturally support 

integration. As a result, it is necessary to translate the standard control theoretic equations into a 

form appropriate for neural systems (figure 3b). Fortunately, this translation can be done in the 

general case (Eliasmith and Anderson 2003, ch. 8). Such a translation allows any standard 

control theoretic description of a system to be written in an equivalent ‘neural’ control theoretic 

form. The ability to affect such a translation can prove a great benefit to theorists.  In particular, 

it allows mobilizing the vast theoretical resources of control theory when hypothesizing about 

some observed biological function: a function that may already be well-characterized by control 

theory. 
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 Figure 3: A diagram of the dynamics equation for LTI control theoretic descriptions of a) a 

standard physical system, )()()( ttt BuAxx +=�  and b) a neural system, 

( ))(')('*)()( tttht uBxAx += .  The input signal, u(t), can be modified by the parameters in the 

input matrix, B, before being added to any recurrent signal which is modified by the parameters 

in the dynamics matrix, A. The result is then passed through the transfer function which defines 

the dynamics of the state variable, x(t). In a), the canonical form, the transfer function is 

integration. In b), the neural form, the transfer function is determined by intrinsic neural 

dynamics. Fortunately, given the canonical form and the transfer function, h(t), A' and B' can be 

determined for any A and B, for any linear, nonlinear or time-varying system. 

 

2.5 Synthesis 

The previous sections have defined the three principles of the NEF for characterizing 

neurobiological systems.  However, it may not yet be clear how these principles interact, and, 

more importantly, how they are intended to map onto the observable properties of real neural 

systems.  

Figure 4 depicts how these principles can be integrated in order to characterize the 

functioning of neurobiological systems at various levels of description. Specifically, figure 4 

shows the components of a generic neural subsystem, including temporal decoders, population 



 

decoders, control matrices, encoders, and the spiking neural nonlinearity. A series of such 

subsystems can be connected in order to describe larger neural systems, since both the inputs and 

outputs of the subsystems are neural spikes.  

Additionally, figure 4 depicts what it means to suggest that neural representations are 

control theoretic state variables. The state variables are defined by the temporal and population 

decoders and encoders, the dynamics of the control system are defined by the control matrices, 

and any functions that must be computed in order to implement the control system can be 

estimated by replacing the appropriate representational decoders with transformational decoders.  

This figure also captures how the theoretical elements of this description map onto real neural 

systems. In particular, the control matrices, decoders, and encoders can be used to analytically 

compute the connection weights necessary to implement the desired control system in the neural 

population. The temporal decoders, as noted earlier, are mapped onto the postsynaptic currents 

(PSCs) produced in dendrites as a result of incoming neural spikes. Finally, the weighted 

dendritic currents arriving at the soma (cell body) of the neuron determine the output of the 

neural nonlinearity, i.e., the timing of neural spikes produced by neurons in this population.ii  
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Figure 4: A generic neural subsystem. The outer dotted line encompasses elements of the 

neuron-level description, including PSCs, synaptic weights, and the neural nonlinearity in the 

soma. The inner dotted line encompasses elements of the control theoretic descriptions at the 

higher-level. The grey boxes identify experimentally measurable elements of neural systems. 

The elements inside those boxes denote the theoretically relevant components of the description. 

See text for details (adapted from C. Eliasmith, 2003). 

 

Notably, the theoretical elements in this description are not identical to physically 

measurable properties of neural systems. As a result, there is a sense in which neural systems 

themselves never internally decode the representations they employ. This is because decoding, 

encoding, and the dynamics determined by the control matrices are all included in the synaptic 

weights, and so their individual effects are not measurable. Nevertheless, if our assumptions 

regarding representation or dynamics of the system are incorrect, the model which embodies 

these assumptions will make incorrect predictions regarding the responses of individual neurons. 

So, while we cannot directly measure decoders, we can justify their inclusion in a description of 



 

neural systems insofar as the description is a successful one at predicting the properties we can 

measure (e.g., spike patterns and tuning curves). This, of course, is a typical means of justifying 

the introduction of theoretical entities in science.  Encouragingly, this approach has been 

successfully applied to simulating and predicting the behaviour of a large number of 

neurobiological systems, including sensory, cognitive, and motor systems, as previously 

enumerated at the end of section 1. 

 

3. Rat Navigation  

To better ground the subsequent philosophical claims regarding the NEF, and to show an 

application of these principles, in this section I describe a detailed model of part of the rat 

navigation system first presented in Conklin and Eliasmith (2005).   

The behaviour of interest for this model is called path integration.  It has been observed 

that rats are able to return directly to a starting location in an environment after having searched 

the environment in a somewhat random path (Alyan & McNaughton, 1999; Tolman, 1948; see 

figure 5a).  Notably, in these experiments, the only available cues for the rat are self-motion (i.e., 

only idothetic cues).  As a result, it has been hypothesized that the rat constantly updates an 

internal representation of its location in an environment relative to its starting point.  Based on 

numerous neurophysiological investigations, it has been demonstrated that the representation can 

be thought of as a ‘bump’ of activity which is centered on the rat’s current estimate of its 

location (see figure 5b). 
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Figure 5. a) Path integration in the rat. This is a schematic illustration of the rat’s behaviour 

while searching for a target (‘X’).  Not knowing the target location, it searches the environment 

(solid line) somewhat haphazardly.  However, upon locating the target, it is able to plot a course 

(dashed line) directly back to its starting position. b) Internal representation of location in the rat.  

This is an idealization of the internal neural representation in a rat, if it were located in the 

middle of the environment.  This type of plot is generated by topographically arranging the 

receptive fields of cells in the relevant areas (subiculum, parasubiculum, and superficial layers of 

the entorhinal cortex).  The bump indicates the firing rates of neurons in a population so 

arranged, and the centre of the bump indicates the current estimate of the rat’s location. 

 

The challenge from a modeling point of view is to take the known physiological and 

anatomical properties of neurons in these areas and suggest an arrangement of such neurons that 

could implement a path integration mechanism that reproduces this observed behaviour.  

Adopting the NEF, Conklin and I addressed this challenge with a detailed neural model that 

captures a variety of behavioural and neural observations and provides novel predictions.   



 

In our paper, we begin by characterizing this bump of activity as a two-dimensional bell-shaped 

function representation.  The nonlinear encoding is determined by the response properties of 

neurons observed in these brain areas (Sharp), and the neural model we employ (a leaky 

integrate-and-fire (LIF) neuron). 

Next, we suggest a high-level mechanism for performing path integration using only self-

motion velocity commands available from the vestibular system.  The details of the mechanism 

are not essential.  However, it is notable that this suggestion is in the form of a dynamical/control 

system whose state variables are used to represent the two-dimensional bump.  In short, we 

define a stable function attractor which will ‘hold’ a bump at any location without input (i.e., 

when the rat is not moving), and then slide the bump to a topographically appropriate position 

given self-motion information.  This specification is done independently of neural 

implementation. 

We then embed the representation into the suggested control system as suggested by 

principle 3. The necessary representational transformations to implement the system in neurons 

are accomplished by drawing on the second, computational principle of the NEF.  In short, we 

calculate the feedforward and feedback connections between the relevant populations of neurons 

by incorporating the appropriate dynamics, decoding and encoding matrices into the neural 

weights.  Interestingly, we find that the resulting weight matrices have a centre-surround 

organization, consistent with observed connectivity patterns in these parts of cortex. 

Most significantly, we provide a number of simulations of the resulting model (see figure 6). 

These simulations are the result of the activity of 4000 spiking neurons. Notably, there is small 

drift error (11%) in completing a circular path (figure 6a).  This demonstrates that the model has 

no biases in any particular direction while updating the representation.  This also compares very 



 

favourably to the best past model of path integration, which had an error of approximately 100% 

using a network of 300 000 neurons to traverse a circular path (Samsonovich & McNaughton, 

1997).  
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Figure 6. a) The performance of the path model on a circular path (i.e., heading in every 

direction). The black dots indicate the centre of the bump moving clockwise at samples taken 

every 50ms. b) Three points in time of the bump moving in a linear path from left to right.  The 

bump is a result of counting spikes in a sliding window to determine firing rate. It is smoothed 

with a 5-point moving average for legibility. (Adapted from Conklin and Eliasmith, 2005.) 

 

A number of other results of the model are of particular interest for subsequent 

discussion: 

 

Phase precession. When a theta rhythmiii is introduced into the model as global excitation, two 

phasic phenomena observed in rats are also observed in the model: phase precession 

(acceleration and deceleration of the representation in phase with theta); and phasic bump width 

changes.  



 

Types of tuning curves. The model shows the variety of tuning curves observed in vivo, including 

directionally selective cells in opposing directions, and non-selective cells. 

Tuning curve resemblance.  When tuning curves are generated from model data using the same 

methods as for real cells (i.e., random foraging paths), details of the curves are very similar. 

Sensory input for calibration. The model shows the same effects as observed in the rat for weak 

(smooth, accelerating updating of the represented location) and strong (a ‘jump’ in the location 

of the population activity) sensory input.  

 

In addition to these replications of available data, the model makes three main 

predictions.  First, the model predicts that all cells will be velocity (as well as position) sensitive, 

if they are probed correctly.  Second, the model predicts that cells in the path integrator (unlike 

typical ‘place cells’) will have the same relative location in different environments.  Third, path 

integration should work regardless of the head direction of the rat (e.g., if the rat’s head is 

pointing in a direction other than its direction of motion, this will not affect path integration).  

This last prediction is in contradiction with past models, and so is of particular interest. 

 

4. Philosophical consequences 

There is much to be said about the consequences of the NEF for our understanding of 

neural systems: that aspect of the framework has been extensively discussed in neuroscientific 

journals.  In contrast, much less has been written about the philosophical consequences of this 

means of characterizing neural systems (although see Eliasmith, 2003).  In this section I briefly 

comment on several philosophical issues to which the NEF is relevant.  These include the unity 



 

of science (i.e., theory reduction), theory construction in the behavioural sciences, and mental 

representation. 

 

4.1 Theories, models, and levels 

On occasion, cognitive scientists have expressed hostility towards the idea that our 

understanding of cognitive processes can be improved by a better understanding of how the brain 

functions (Fodor, 1999; Jackendoff, 2002; Lycan, 1984). They have suggested that knowing 

where things happen in the brain, or how they are implemented in the brain, is not relevant for 

answering the more important question of what the cognitive architecture is.  These kinds of 

arguments have driven some to a view of brain sciences that draws sharp distinctions between 

‘cognitive’ and ‘biological’ approaches to understanding neural function (Davies, 2000).  More 

generally, this has been taken to suggest that science, in general, is not unified (Fodor, 1974).  

Often, the reduction of psychology to biology motivates these concerns precisely because the gap 

between these two modes of characterizing neural systems strikes many as unsurmountable. 

Despite the adoption of fMRI, PET, ERP and similar research methods by psychologists, there 

are no well-established techniques for integrating such temporally or spatially ‘broad’ views of 

neural function with work in the electrophysiology or biochemistry of neurons.  Similarly, 

models that incorporate biologically realistic single neurons tend to focus on low-level 

perception (e.g., receptive fields, motion, contour sensitivity, etc.), motor control (saccade 

generation, vestibular ocular reflex, invertebrate locomotion, digestion, etc.), and single-cell 

learning (e.g., retinal wave effects, receptive field learning, cortical column organization, etc.).   

Given the principles and applications of the NEF, it seems plausible to suggest that this 

theoretical approach to neural systems stands to bridge this gap.  That is, the NEF integrates 



 

single cell models (via nonlinear encoding) with cognitive mechanisms (via control theoretic 

descriptions).  This integration is highly precise (i.e., each principle is quantitative), relates 

directly to underlying, measurable physical processes, and scales as computational power 

permits.  The rat model presented earlier provides a somewhat ‘uncognitive’ example of this sort 

of integration.  However, Eliasmith and colleagues (Eliasmith & Conklin, forthcoming; 

Eliasmith, 2004) present a similarly derived (though much larger) model of language-based 

deductive inference which effectively characterizes the well-known Wason selection task 

(Wason, 1966), and exhibits cognitive behaviour found only in human reasoners.  Models of 

these sorts make the brain sciences look much less ‘disunified’ than has been argued in the past.   

In fact, I would like to propose that application of the NEF can suggest a particular kind 

of scientific unification.  In particular, we can see from the rat model that the application of the 

general NEF principles boils down to the continually more precise specification of sets of 

boundary conditions.  Some of these conditions are in the form of a hypothesis regarding the 

dynamics (e.g., integration), some are in the form of a control mechanism (e.g., the particular 

matrices defining the path integrator), and others are in the form of empirically measured neuron 

tuning curves (e.g., the distribution of tuning curves of cells in subiculum).  But, in general, as 

we progress from general theory (NEF) to specific model (rat path integration) we have followed 

a route of increasing specificity.  Were we to continue on that route, that is, were we to match 

each model neuron with a specific neuron in a specific rat (rather than matching neuron property 

distributions across rats), we would end up with a highly detailed (perhaps too detailed) model 

that would be able to make specific predictions regarding the behaviour of a particular rat.  Of 

course, the model as originally presented is not interested in such questions, so the level 

specificity stopped much earlier.  Nevertheless, this notion that increasingly detailed boundary 



 

conditions can serve to traverse a model-to-theory hierarchy seems a potentially useful 

description of how the brain sciences may be unified.  The unification stems from the fact that, at 

each step in the specification, the basic principles do not change. 

Unlike past models, those derived from the NEF can be placed in such a ‘unification 

hierarchy.’  This allows for general principles of neural function that might not otherwise be 

evident to become obvious.  For instance, the close relation between rat path integration, 

mechanisms of horizontal eye control by the nucleus prepositus hypoglossi, the head direction 

system, and working memory (all of which can be characterized as vector integrators) might 

have gone unnoticed without this principled underpinning (see Eliasmith, 2005 for details of 

these and related generalizations).  

While much remains to be said about the potential unification or disunification of brain 

sciences, the NEF provides a first plausible and detailed story about how such a unification 

might be worked out.  As a result, it is in a unique position to support replies to the notion that 

“the description of mental processes at the cognitive level can be divorced from the description 

of their physical realization” (Fodor & Pylyshyn, 1988, p. 54). 

 

4.2 Theory construction in the behavioural sciences 

I have argued elsewhere that current approaches to cognitive science have their 

theoretical foundations grounded in metaphor (Eliasmith, 2003).  I there suggest that the NEF is 

unique in its avoidance of metaphor for theoretical insight (though not for explanation).  An 

important consequence of this reliance on metaphor by past approaches that I have not 

emphasized in past discussions is the adverse effect it has on theory construction in the 

behavioural sciences.  In short, if the theoretical import of a metaphor is not explicitly grounded, 



 

that is, directly related to independently observable quantities, then it will be difficult to 

construct empirically testable theories.  I take notions like ‘empirical testability’ and ‘directly 

related’ to be matters of degree.  However, in both cases, the more the better. 

I would like to suggest that the NEF is unique among approaches to the behavioural 

sciences in that the elements of the theory are (very) directly relatable to observables, and hence 

the models stemming from the NEF are highly testable.  So, for instance, the elements in the path 

integration model can be mapped directly onto elements in the brain (or, more precisely, the 

distribution of element properties can be so mapped).  That is, model neurons produce spike 

rates, tuning curves, spike patterns, somatic currents, etc. that can be compared directly to spike 

rates, tuning curves, spike patterns, somatic currents, etc. in real rat neurons.  In contrast, when 

classical cognitive science assumes the mind is like a computer, and imports notions of data-

structure, symbolic representation, etc. into behavioural models based on such a metaphor, we 

are left wondering how such theoretical entities relate to the physical system that they are 

supposed to be describing.  This is largely because we do not know how to measure (independent 

of this theory) such entities in a real behaving system.  In short, the ability of NEF generated 

models to be mapped in detail onto independently measurable physical properties makes them 

more convincing (because more empirically testable), than those generated by classical models.  

But what of other approaches in the behavioural sciences? Let me briefly consider two other 

paradigms, dynamicism and connectionism.  

The ‘dynamicist’ view in cognitive science emphasizes dynamical descriptions for 

behavioural systems (Port & van Gelder, 1995).  However, there is an extremely important 

difference between these dynamical descriptions and those generated by the NEF. For 

dynamicists, the variables over which the differential equations are defined are not explicitly 



 

related to the physical system itself (Eliasmith, 1997; Eliasmith, 2003). So, for example, the 

“motivation” variable in motivational oscillatory theory (MOT), which is intended to 

characterize some high-level property of the animal, is never related to any specific physical 

property of the system (Busemeyer & Townsend, 1993) – and it is entirely unclear how it could 

be.  In contrast, the NEF is explicit on the relation between higher-level neural representations 

and the activations of single cells. And, it is precisely these representations that serve as the 

variables over which the dynamics are defined.  Again as in the classical case, the explicitness of 

the mapping, and hence empirical import, of models generated by the NEF is far more 

impressive. 

What about connectionism?  The difficulty with connectionism is precisely that, while 

endorsing ‘brain-like’ models, it is far too abstracted from neurobiological constraints.  That is, 

because only the barest features of neural architectures are preserved in connectionist models, it 

is difficult to relate the resulting models back to real brains.  While I earlier expressed concern 

with Fodor and Pylyshyn’s distancing of cognitive from neural approaches to the behavioural 

sciences, they clearly understand the importance of exploiting any available constraints: 

 

Understanding both psychological principles and the way that they are 

neurophysiologically implemented is much better (and, indeed, more empirically 

secure) than only understanding one or the other. That is not at issue. The 

question is whether there is anything to be gained by designing “brain style” 

models that are uncommitted about how the models map onto brains. (1988, p. 

62) 

 



 

While Fodor and Pylyshyn suspect that there is no interesting interplay between these levels of 

description, they do realize the import of both.  I am suggesting that the NEF helps integrate 

high-level and low-level approaches, thus providing more empirically secure models that can 

draw directly from various levels of description in the behavioural sciences.  The path integration 

model is able to make the specific, empirical predictions it does precisely because of the detailed 

mapping between the model and the neurobiological system it simulates.  Notably, these 

predictions are both behavioural (relating head direction to integration bias), and neural 

(predicting specific relations between neural tuning curves and the rat’s environment).  The 

ability of a single model to successfully address multiple levels of description make it reasonable 

to think that Fodor and Pylyshyn’s dismissal of intertheoretic unity is premature. 

In conclusion, the lesson to be learned is that the more explicit and independently testable 

the mappings of your theories or models, the more success you will have in constructing 

interesting theories.  In the behavioural sciences, the NEF uniquely provides such mappings 

across traditionally distinct levels of description. 

 

4.3 Mental representation and semantics 

One useful distinction that has arisen out of the philosophical discussion of representation 

is that between the contents (semantics) and the vehicles (syntax) of representations (Cummins, 

1989; Fodor, 1981).  In general, contents are thought to be determined by the object in the world 

that the representation picks out, the relation of that representation to other representations, or a 

combination of both. The vehicles of representations are the physical realization of objects that 

play the role of representations (i.e., carrying a content) in a system. Theoretical neuroscience 



 

can contribute to improving our understanding of both representational vehicles and their 

contents.  

The characterization of representation in section 2.2 is most clearly about vehicles.  The 

NEF (and previous work on which it draws) tells us how to characterize structures in the brain as 

able to carry contents as values of scalars, vectors, functions, etc.  I suspect this characterization 

is sufficient for understanding the complete set of vehicles available to neural systems.  

However, let me emphasize one particular class that is generally overlooked by the philosophical 

community.  As far as I am aware, there are no discussions in the philosophical literature of 

representational systems that include the uncertainty of the representations in the representations 

themselves.  Because the NEF can describe how neural systems represent functions, it can 

describe how neural systems represent probability distributions over possible states of the world 

– just such a representation of uncertainty.  In fact, the rat’s ‘bump’ of activity can be interpreted 

as just such a representation.  Rather than supposing that the centre of the bump is representing 

the rat’s location, we can more interestingly suppose that the bump represents a distribution of 

the possible locations of the rat with varying certainties.  Thus, a wider bump would indicate 

more uncertainty (variance) in the representation, and a narrower bump less uncertainty.  In 

either case, the best estimate of the rat’s actual location will be the mean, but understanding the 

bump in this way increases the amount of information that such a representation carries, and 

allows the representation to support sophisticated reasoning strategies that employ statistical 

inference (Eliasmith & Anderson, 2003).   

This is not merely idle speculation.  There is increasing evidence that precisely this kind 

of representation is used to encode information about the uncertainty of the estimate of the 

stimulus being encoded, and that this information is used by the nervous system for (nearly 



 

optimal) statistical inference (Britten & Newsome, 1998; Knill & Pouget, 2004; Kording & 

Wolpert, 2004; Stocker & Simoncelli, 2006).   It seems essential, given the noisy, complex, and 

uncertain environment in which neurobiological systems reside, for such systems to be able to 

make decisions with partial, incomplete, or noisy data.  So, it is only to be expected that the 

representations in neural systems can support statistical inference.  In sum, an important class of 

vehicles for understanding minds, those that carry a content and its uncertainty, has been 

overlooked in philosophical discussions. 

Let me now turn to a brief consideration of semantics (see Eliasmith, 2006 for a more 

detailed discussion of a semantic theory consistent with the NEF). There are three broad classes 

of semantic theories: causal, conceptual role, and two-factor theories. Causal theories of meaning 

have as their main thesis that mental representations are about, and thereby mean, what causes 

them (Dretske, 1981; Dretske, 1995; Fodor, 1990; Fodor, 1998). In the context of the previous 

discussion this means that the encoding process alone determines meaning. Conceptual role 

theories hold that the meaning of a term is determined by its overall role in a conceptual scheme 

(Harman, 1982; Loar, 1981). Under such theories, the meaning of a term is determined by the 

inferences it causes, the inferences it is the result of, or both. Here, the focus is on the decoding 

of whatever information happens to be in some neural state.  

One theoretical move, to avoid the difficult problems that arise when adopting either a 

causal theory or a conceptual role theory, is to combine them into a ‘two-factor’ theory (Block, 

1986; Field, 1977). On two-factor theories, causal relations and conceptual role are equally 

important, independent elements of the meaning of a term: “the two-factor approach can be 

regarded as making a conjunctive claim for each sentence” (Block 1986, p. 627). So, only two-

factor theories explicitly acknowledge both encoding and decoding.  



 

Given the NEF characterization of representational vehicles, a representation is only 

defined once both the encoding and decoding processes are identified. This means that, contrary 

to both causal and conceptual role theories of content, both how the information in neural spikes 

is used (decoding), as well as how it is related to previous goings-on (encoding) are relevant for 

determining content. In the rat example, the bump indicates the rat’s location precisely because it 

is caused by (or correlated with) the rat’s actual location in the world, and because it is used by 

the rat to determine how to move (e.g., making a bee-line back to the starting location once the 

goal has been achieved).  So given the characterization of vehicles we have seen, two-factor 

theories of content seem most plausible.  

However, as just noted it is assumed by past two-factor theories that the factors are 

independent. This property raises a grave difficulty for such theories. In criticizing Block’s 

theory, Fodor and Lepore remark “We now have to face the nasty question: What keeps the two 

factors stuck together? For example, what prevents there being an expression that has the 

inferential role appropriate to the content 4 is a prime number but the truth conditions 

appropriate to the content water is wet?” (1992, p. 170). If, in other words, there is no relation 

between the two factors (i.e., they are simply a conjunction), it is quite possible that massive 

misalignments between causal relations and conceptual roles can occur. 

However, in the NEF characterization of representation there is a tight relation between 

the encoding and decoding processes – they are not independent. Broadly speaking, the 

population-temporal decoders are found in order to estimate some function of the encoded 

parameter.  While for simple representation this function is identity, it need not be in the case of 

transformational decoding. That is to say, all of the inferences derivable from some particular 

neural encoding depend on the information carried by that encoding.  As a result, if there is no 



 

relation between the ‘wetness of water’ and ‘4 being a prime number’, it would it be impossible 

for the latter to be part of the conceptual role of the encoding of the former given the NEF 

characterization. Such considerations suggest that this characterization can avoid the main 

weakness of past two-factor theories, though more work must be done to propose a full-fledged 

theory of representation.  

 

5. Conclusion 

Admittedly, each of these discussions of the philosophical consequences of the NEF are 

deserving of much more careful, article-length treatment.  Nevertheless, hopefully these 

suggestions demonstrate the utility of looking beyond traditional philosophical or psychological 

approaches to the behavioural sciences for addressing a variety of philosophical problems. 

It is also worth emphasizing that there is much subtlety to the NEF itself which has not been 

addressed here.   The framework has been designed to account for the ubiquitous effects of noise, 

to allow novel methods for the analysis of learning rules, and to incorporate the wide variety of 

single cell dynamics (e.g., adaptation, bursting, etc.) seen across neurobiological systems.  Each 

of these developments may also serve to highlight new approaches to related philosophical 

problems. 
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i A search of PubMed indexed neuroscience journals (53 journals) over the last 5 years for the 

term ‘represent*’ returns over 2300 hits.  



 

                                                                                                                                                             

 

 

 

ii This nonlinearity can be captured by a set of differential equations that describes the dynamics 

of the channel conductances that control the flow of ions through the cell membrane resulting in 

action potentials, or it could be a simpler reduced model of neural spiking (like the common 

leaky integrate-and-fire model). 

iii In much of the hippocampal complex, there is a globally observable voltage oscillation at 7-

10Hz. This is called the theta rhythm. 


