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Abstract

A theory of category meaning that starts with the shared resources of all animals (i.e.,
neurons) can, if suitably constructed, provide solutions to traditional problems in
semantics. I argue that traditional approaches that rely too heavily on linguistics or folk
psychological categories are likely to lead us astray. In light of these methodological
considerations, I turn to the more theoretical question of how to construct a semantic
theory for categories informed by neuroscience. The second part of the chapter is con-
cerned with describing such a theory and discussing some of its consequences. I pres-
ent a theory of neural representations that describes them as a kind of code, and show
that such an understanding scales naturally to include complex representations such as
concepts. I use this understanding of representational states to underwrite a theory of
semantics. However, the theory must be supplemented by what I call the statistical
dependence hypothesis. Content is then determined by a combination of the states
picked out by this hypothesis and the neural decoders that define subsequent transfor-
mations of the neural representations. I briefly describe a solution to the traditional
problem of misrepresentation that is consistent with this theory.
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1. Introduction

As described in many contributions to this volume, categories are concepts, and con-
cepts are representations. Some claim that these representations are learned by individ-
uals, others that they are socially constructed, and still others that they are innate. There
are theories of perceptual categorization, categorization in data mining, and the meta-
physics of categorization. There are contributions relating to categorization in computer
science, philosophy, psychology, and neuroscience. In most such discussions, there are
fundamental assumptions that usually remain implicit regarding categories. These have
to do with the meaning, or semantics, of categories.

Of course, the semantics of categories has been discussed at length here and else-
where [Loar (1981), Lycan (1984), Millikan (1984), Dretske (1988), Fodor (1998)].
However, what is unique about the discussion in this chapter is the perspective that I
adopt: I address semantics from the perspective of computational neuroscience. Most
attempts at addressing semantics have been linguistic or psychological and rely on more
traditional accounts of computation. I argue that adopting a neuroscientific view has a
number of advantages. And, to demonstrate this concretely, I outline a theory of cate-
gory meaning based on recent work in computational neuroscience. To show that this
theory has some advantages over past theories, I apply it to the traditional problem of
misrepresentation. That is, the problem of determining how we can miscategorize enti-
ties in the world. Somewhat surprisingly, the problem of misrepresentation is simply
ignored by many empirical approaches to categorization. But it is, in fact, the very cen-
tral problem of determining what the appropriate labels for categories actually are.

1.1. Why “neuro”?

Many philosophers who have proposed semantic theories have focused on the proposi-
tional content of beliefs and language [see, e.g., Loar (1981), Evans (1982), Harman
(1982), Lycan (1984), Block (1986), Fodor (1998)]. This project has been less than
obviously successful. As Lycan (1984), a proponent of the approach, has put the point:

Linguistics is so hard. Even after thirty years of exhausting work by scores of brilliant theorists, vir-
tually no actual syntactic or semantic result has been established by the professional community as
known. (p. 259)

But Lycan, like most researchers in the field, is determined to continue with the proj-
ect using the same methods, and shunning others: “And there must be some description
of this processing that yields the right predictions without descending all the way to the
neuron-by-neuron level” [Lycan (1984) p. 259]. After significantly more than 30 years
of difficulty, it seems rather likely that those neuron-by-neuron details actually do mat-
ter to a good characterization of the syntax and semantics of mental representations
(and, through them, language).

There are reasons other than a simple lack of success for language-based approaches
to think that neuroscience may be a better starting point for such theories. For one thing,
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participants in the debate generally agree that mental content should be naturalized.
That is, meaning deserves a scientific explanation that refers to objects found in nature.
Linguistic objects, like words, are presumably one kind of object found in nature. But,
it is a mistake to give an explanation of meaning in terms of words and complex natu-
ral language, since this is to explain one poorly understood natural concept (mental
meaning) in terms of another (linguistic meaning). In fact, such an explanation would
be perfectly circular if we were giving an explanation of meaning that relied on the con-
tent-carrying capacity of words. For this reason, most language-based explanations try
to introduce other notions as primitive, notions like “information,” “cause,” or “func-
tion.” But even with these less circular primitives, assumptions regarding the structure
of mental meanings (e.g., that they are language-like in various ways) are often deeply
influenced by the example of natural language.

This is a serious problem because language is only a tiny domain of the application
of the notion of mental meaning. Language, as most linguists understand it, is a human
specialization. Thus it is unique to one species among billions. This is a good reason to
think that starting with language, or even focusing on language, when constructing a
theory of content is a dubious tactic. This is true unless we have prima facie evidence
that most nonhuman animals do not have internal representations. We have no such evi-
dence, and, in fact, there is significant evidence to the contrary [Redish (1999),
Eliasmith (2003)]. At a minimum, the use of symbols for communication is rampant in
the animal kingdom. Bee dances, monkey calls, whale songs, bird songs, etc. are all
instances of animals communicating properties of the environment via symbols that
refer to the things having those properties. So it is much more common for there to be
meaning without language than meaning with language. Meaning, it seems, is prior to
language.

Further support for this contention comes from the clear evidence that language is
not necessary for mental meaning. People who have had the misfortune of growing up
without natural language, but later learn language, are able to recall events that precede
their linguistic competence [Garmon and Apsell (1997)]. So we need a theory that can
account for meaning regardless of the presence of natural language.

In addition, if we take linguistic capacities to be the result of a somewhat continu-
ous evolutionary process from less complex to more complex organisms, then the fact
that language is a human specialization suggests that it is a far more complex phenom-
enon than “merely” having neural states with meaning. Even those, like Chomsky
(1986), who think that language is a specifically human ability that does not have evo-
lutionary precursors, argue that language is particularly complex. Being able to deal
with the complexities of language suggests a uniquely powerful set of computational
abilities in humans. To begin our explorations of meaning by examining a phenomenon
found solely in the most complex exemplar systems with meaning is, practically speak-
ing, a bad tactic [Bechtel and Richardson (1993)]. This might serve to explain the lack
of progress noted by Lycan.

Given these considerations, it should be clear just how bad an idea it is to hang our the-
ories of mental meaning on what we know about the structure of natural language. To claim
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that animals have a “language of thought” simply because our theory of meaning depends
on our understanding of human language is quite clearly a claim of the tail-wagging-the-
dog variety [see, e.g., Fodor (1975)]. In contrast, a theory of meaning that starts with the
shared resources of all animals (i.e., neurons) can, if suitably constructed, draw the antici-
pated boundaries in virtue of principled differences in the use or organization of these
resources. So starting at the “neuron-by-neuron” level may not be such a bad idea after all.

1.2. The explanandum

In the last 20 years or so, there has been a plethora of philosophical theories trying to
provide naturalistic explanations of mental meaning. They have included covariance
theories [Dretske (1981, 1988), Fodor (1981, 1998)], functional role theories [Harman
(1982, 1987), Block (1986)], adaptational role theories [Millikan (1984), Dretske
(1988, 1995)], and isomorphism theories [Cummins (1996), O’Brien and Opie (2004)].
It is not always clear that these theorists have the same target in mind when providing
their explanations. So, to begin, I outline what I take to be expected of a good, natura-
listic theory of meaning.

For the most part, contemporary naturalistic theories of mental meaning are part of
a tradition concerned primarily with linguistic meaning. In this tradition, the meaning
of a sentence is the abstract proposition that the sentence expresses. For mental states,
it is the thought that has this same meaning (or content). Simple sentences, like The star
is bright, have traditionally been analyzed as an ordered pair of elements <object, pred-
icate> whose meanings are thought to be either senses (sometimes called the “Fregean”
view) or references (sometimes called the “Russellian” view).

In mental, or psycho-, semantics, however, it is not clear what the object/predicate dis-
tinction should amount to (unless one presupposes a Language of Thought, which I do
not). This is because psychosemanticists have been much more concerned with the mean-
ing of simple mental representations, i.e., categories or concepts, which, while they carry
content, are often taken to be the constituents of sentences. Concept labels, like dog, do
not explicitly declare objects and predicates. However, concepts are often taken to be cat-
egory labels, whose members might share some common or “core” properties. And this
category/property distinction is often employed like an object/predicate one (e.g., to say
“My concept [DOG] includes mostly furry objects” is to say that “Dogs are furry”).

For present purposes, this parallel means that doing neurosemantics is really doing
semantics in the linguistic/psychological tradition [which some, like Fodor (1987), may
strongly doubt]. This is because I take the meaning of a neural representation to be what
that representation tells you about what it represents. An equivalent way of saying this is
that the meaning of a neural representation is the set of properties ascribed to something
by that representation1. So, I too adopt an analogous object/predicate or category/property
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distinction. However, this distinction can be “subpsychological” (e.g., the firing of a
retinal neuron ascribes the property of a certain luminance at a retinal location). As a
result, I take my explanandum to be shared with these past theories. And I take that
explanandum to be: How is the set of properties ascribed to an object by its representa-
tion determined?

Before addressing this question directly, in Section 3, the next section takes a brief
detour into recent work in computational neuroscience that sheds light on the kinds of
neural states that are relevant for mental representation [Eliasmith (2003)].

2. Mental representations as neural codes

2.1. Representations

As discussed in detail in Eliasmith and Anderson (2003), it is possible to adapt a stan-
dard information theoretical account of codes to understanding representations in neu-
ral systems. Codes, in information theory, are defined in terms of a complementary
encoding and decoding procedure between two alphabets. Figure 1 depicts a toy case
of a code, where B would be said to be a code for, or representation of, A. In this case,
both alphabets are binary digits.

In order to characterize representation in a neural system in a similar way, we need
to identify each of these procedures and their relevant alphabets. The encoding proce-
dure is straightforward: it is the transduction of stimuli by the system resulting in a
series of neural action potentials. Encoding is what neuroscientists typically talk about.
For example, when we present an image of a dog to a subject, some neurons or other
“fire”2. Unfortunately, neuroscientists often stop here in their characterization of repre-
sentation (i.e., they want to claim that those neurons represent a dog), but this is insuf-
ficient (stopping here is equivalent to adopting a naive causal theory). We also need to

1040 Chris Eliasmith
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2 The precise nature of this encoding has been well quantified [Bower and Beeman (1998)].
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identify a decoding procedure; otherwise, there is no way to determine the relevance of
the encoding for the subject. If no information about the stimulus can be extracted from
the spiking neurons, then it makes no sense to say that it represents the stimulus. After
all, representations should be able to “stand in” for that which they represent. As dis-
cussed in Eliasmith and Anderson (2003), there are methods for determining good, lin-
ear decoders that decode time-varying, distributed population representations.

Having specified the encoding and decoding procedures, we still need to specify the
relevant alphabets. Neuroscientists generally agree that the basic element of the encod-
ing alphabet is the neural spike. However, there are many possibilities for how such
spikes carry information. Of these possibilities, arguably the best evidence exists for a
combination of timing codes and population codes [see Abbott (1994) for an overview;
Salinas and Abbott (1994), Rieke et al. (1997)]. Thus, I take the encoded alphabet to be
the set of temporally patterned neural spikes over populations of neurons.

Unfortunately, it is more difficult to be specific about the nature of the decoded alpha-
bet. Nevertheless, a justifiable assumption is that what is encoded (at least initially) are
physical properties in some specifiable units (e.g., m/s, kg, etc.). More complex proper-
ties (e.g., red, hot, conspecific, etc.) are inferred on the basis of representations of prop-
erties with identifiable units. As a result, the units of such properties will also be
complex, and are currently undetermined (though empirically determinable).

2.2. Transformation

A representational characterization is of little use if it does not play a role in under-
standing the function of a neural system. Conveniently, the preceding characterization of
neural representation can be easily extended to account for neural transformations. This
is because, like representations, transformations can be characterized using the notion of
decoding. Specifically, related methods exist to find a “transformational decoder” which
extracts information other than what the population is taken to represent [Eliasmith and
Anderson (2003)].

Given this understanding of neural computation (i.e., as encoding and (transforma-
tional) decoding), a problem arises because the information encoded in a population
may now be decoded in a variety of ways. Since representation is also defined in terms
of encoding and decoding, it seems that we need a way to determine which of the set
of possible decodings is the relevant one for defining the “true” representation of the
original population.

To resolve this problem, I have elsewhere specified that what a population represents
is determined by the decoding that results in the variable that all other decodings are
functions of [Eliasmith (2003)]. This does not completely resolve the difficulty since
any given variable can be written as a function of another variable that is a function of
it. This remaining difficulty can be resolved by noticing that the relevant variable is that
variable whose units are part of a coherent and useful theory [Eliasmith (2003)]. This
merely amounts to the observation that our neuroscientific theories ought to be consis-
tent and continuous with our other physical theories. For instance, supposing that x is
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an object’s position in the world, and that x and x2 are decoded from some encoding in
a neural population, we would claim that the population represents position because all
uses of the representation can be related to position and “position” is a standard cate-
gory in the sciences (whereas “position squared” is not). In other words, we should (at
least initially) take cognitive systems to represent the properties that we describe the
world in terms of since cognitive systems represent the world. This is not a demand for
realism regarding all properties in our current descriptions of the world, but a demand
for consistency between those descriptions and descriptions of cognitive systems.

2.3. A representational hierarchy

For illustrative purposes, let us consider a neural population’s representation of the hor-
izontal position of an object; such a representation is found in the lateral intraparietal
cortex [Andersen, Essick and Siegel (1985)]. This representation can be understood as
the encoding of a scalar variable into a series of neural spikes3. The units of that vari-
able are “degrees from midline.” Using the quantitative tools mentioned earlier, it is
possible to determine the representational decoder. Once we have the decoder, we can
then estimate what the actual position of the object is, given the neural spiking in this
population. Comparing this result to an independent characterization of the object’s
position, we can then determine precisely how well the original property (or specific
aspects of it) is represented by the neurons in the population.

This simple example not only describes how to characterize representation, it also
shows how we can move from talking about single neuron responses to talking about
“higher-level” variables, such as “horizontal object position.” That is, we can move
from discussing the “basic” representations (i.e., neural spikes) to “higher-level” repre-
sentations (i.e., mathematical objects with units). As I have discussed elsewhere, even
such a simple example as this demonstrates how to build up a “representational hierar-
chy” that permits us to move away from a “neuron-by-neuron” description, while
remaining responsible to it [Eliasmith (2003)]. To continue up the hierarchy, we could
talk about a larger population of neurons that encodes object position in three-dimen-
sional space. We could then spell out the details of lower levels of the hierarchy by dis-
secting this higher-level description into horizontal, vertical, and depth positions, and
then dissect these descriptions further into neural responses. Which description we
employ will depend on the kind of explanation we need and the specific properties of
the neural system we are describing (e.g., the nature of the neurons’ tuning curves).

Notably, this hierarchy can be rigorously defined to include scalars, vectors, func-
tions, and any combinations of these [Eliasmith and Anderson (2003), p. 63]. Because
all of the levels of this hierarchy can be written in a standard form, it is natural to sug-
gest that it provides a unified way of understanding representation in neurobiological
systems. The wide range of mathematical objects that can be related to neural pro-
cessing in this way supports the stronger claim that this hierarchy is general enough to
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capture all neural representation. That is, since all mental representations can be
described as some combination of scalars, vectors, and functions, and those mathe-
matical objects can be neurally represented using these methods, these methods can be
used to describe all mental representations4.

That being said, it is important to keep in mind the fact that there can be more than
one possible implementation at each level of the hierarchy (e.g., more than one way a
neural system can represent a three-dimensional vector). So this hierarchy in no way
relieves us from being responsible to the empirical facts regarding a particular neurobi-
ological system. Nevertheless, this representational hierarchy can unify our under-
standing of representation in neurobiological systems from neural firings to
psychological-level representations.

Thus, regardless of what kind of mathematical objects with units higher-level repre-
sentations turn out to be, the previous method for understanding neural representation
applies. While adopting the representational hierarchy has definite consequences for the
form of a preferred representational account, it is silent as to which particular one is
correct (i.e., it does not determine which mathematical objects are appropriate for
which aspects of neural function). This is a desirable result, since we simply do not
know what the right higher-level representations are at this point in the history of neu-
roscience. While there is general agreement on the mechanism underlying individual
neuron activity, there is little agreement on how populations of neurons manage to rep-
resent the world. Presumably, the right account will be the most coherent and predic-
tively successful one – an adjudication that it is simply too early to make.

3. The meaning of neural representations: Neurosemantics

3.1. The representation relation

To this point, I have only addressed how to characterize the kinds of states that can carry
content. In particular, I have done so using the tools of computational neuroscience. I
have not, however, addressed how to determine the content carried by those states.

Standard accounts of the representation relation, including both causal and concep-
tual role theories, identify a three-place relation in describing representation: for causal
theories, there is the representation, the thing it represents, and the context under which
it is a representation (and not just an effect)5. For conceptual role theories, there is the
representation, the thing it represents, and the role it plays (i.e., its context as defined
by the system of concepts).
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One of the reasons that this three-place relation is so ubiquitous stems, I suspect, from
the nearly universal commitment among philosophers and neuroscientists to under-
standing neurobiological systems as information processing systems [see, e.g., Dretske
(1981), Bialek and Rieke (1992), Van Essen and Anderson (1995), Rieke et al. (1997),
Fodor (1998), Koch (1998), Eliasmith and Anderson (2003)]. Formally, the information
relation is a three-place relation: A {channel} carries {information} with respect to a
{receiver} [Reza (1994) p. 2]. These three places are necessary and sufficient for an ade-
quate and general definition of Shannon and Weaver-style information [Shannon
(1948/1949)]. Also notice that they loosely align with the three places of the representa-
tion relation as described above (i.e., channels or vehicles carry information or content
with respect to receivers or systems). It is not surprising that both the representation rela-
tion and the information relation are three-place relations since the nature of the latter
often informs intuitions about the nature of the former, given such a commitment.

However, the metaphor relating mental representation and information does not hold
up under scrutiny. In particular, as Dretske (1983) has been at pains to point out, there
is no such thing as “misinformation” in the same sense as there is “misrepresentation.”
That is, information (in the technical sense) is never wrong about anything.
Representations, by contrast, can be. This disanalogy is important because it highlights
the need to identify a fourth element in the representation relation: the referent, that is,
the object or event that the content of the representation is supposed to be about. The
importance of this element, of course, is something like what Frege wanted to highlight
with his distinction between reference and sense (although it is not the same).

I take it, in fact, that failure to distinguish contents and referents is what leads to many
of the difficulties for both causal and conceptual role theories. Both equate contents and
referents, though by slightly different routes. Specifically, causal theories take referents to
be contents, with the result that surreptitiously changing referents leads to sometimes coun-
terintuitive shifts in meaning and difficulties explaining misrepresentation. Conceptual role
theories, in contrast, are in a position where it seems they must take contents to be refer-
ents, not allowing them to explain the relevance of truth conditions to meaning.

Consequently, I adopt the following four-place schema for the representation rela-
tion (the “representation schema”):

A {vehicle} represents a {content} regarding a {referent} with respect to a {system}.

3.2. A neurosemantic theory

Given this representation schema, what a semantic theory must do is explain what the
four constituting theoretical objects are. The following description is based on work
presented in Eliasmith (2000).

3.2.1. Systems

Although I call the fourth relatum the “system”, as I take this formulation of the repre-
sentation relation to be general, philosophers of mind tend to narrow the scope of this
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schema to include only natural biological systems (often just human beings). In other
words, they are not interested in representation writ large, but only in neurobiological
representation. I adopt this narrower perspective as well. So, the fourth element of the
schema will be, for my purposes, “the (complete) nervous system.” This is in contrast
to understanding “system” as either a more general physical system or an abstract rep-
resentational system [see, e.g., Goodman (1968)].

3.2.2. Vehicles

Vehicles are the internal physical objects, or “representations,” that carry representa-
tional contents. As evident from Section 2.3, I take there to be two kinds of vehicles:
basic and higher level. Basic vehicles are neurons, understood as functional units.
Higher-level vehicles are simply sets of neurons.

To get a better understanding of what this distinction entails, consider a debate in
neuroscience regarding whether neurons in visual area V1 are “edge detectors” or “ori-
entation filters” [Van Essen and Gallant (1994)]. This example raises a concern about
the distinction I have drawn between basic and higher-level vehicles. Notice that the
terms “edge detectors” and “orientation filters”: (1) are descriptions of single neurons;
and (2) pick out vehicles based on their contents.

This first point raises the concern that taking basic vehicles as uncontentiously iden-
tifiable with single neurons is simply mistaken. Since there are debates over such ter-
minology, it seems clear that the identities of basic vehicles really are not uncontentious
after all. However, I take it that neurons are basic vehicles only as functional units, not
as carriers of content. That is, it has been well established that single neurons have cer-
tain physical properties that result in predictable system-independent functioning. The
plethora of highly detailed single-cell models attests to this fact [e.g., Bower and
Beeman (1998)]. However, it is not well established what the behavior of such single
neurons means. This leads us to the second point.

The reason that the identity of vehicles is not easy to settle is that vehicles are often
named after the contents they supposedly carry. “Edge detectors” are so called because
they are thought to be activated by edges and used to detect edges. “Orientation filters”
are so called because they are thought to be activated by spatial orientations and used
to analyze orientation gradients in visual images. In some ways, this seems unneces-
sarily confusing, but it demonstrates how important content determination is to theories
in neuroscience as well as philosophy. In any case, once we keep in mind that the nam-
ing practices of vehicles have a tendency to rely on content claims, claims about the
nature of vehicles (simpliciter) become less contentious. So, saying that basic vehicles
are neurons as functional units and higher-level vehicles are sets of neurons should not
be taken as saying too much.

However, it also means that claims about specific higher-level vehicles (i.e., the pre-
cise set of neurons that answers to a specific content claim) rely largely on our content
claims. Saying, of a neuron, that it is an “edge detector” is saying that it instantiates a
higher-level vehicle (i.e., it is a set of one neuron) that can carry content about edges.
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To adjudicate this claim, we need to know what it is for a vehicle to carry content (as
well as how well this claim fits into an overall theory of neural processing). Before dis-
cussing content, however, let me address referents.

3.2.3. Referents

Referents are the external objects that representations assign properties to. One tradi-
tional way of determining the “reference” (a closely related, but distinct notion) of a
representation is to rely on causes. However, as Dretske (1981, pp. 26–33) rightly notes,
a theory of cause does not tell you which causes are important for representational con-
tent – which, in this case, means which causes are referents.

So the relevant causes need to be somehow “specially” related to the vehicles that
are carrying content about them. That is, vehicles carry contents about things that they
are, in some sense, good at carrying information about. So I need to say both what this
special relation is, and what causes are, in order to determine what will count as the ref-
erent of a vehicle.

Of course, discussions of the nature of cause can be lengthy enough in themselves.
Here I simply adopt David Fair’s (1979) approach, which identifies token causes with
the transfer of energy momentum (“energy” from now on)6. For example, gas tanks
cause gas gauges to register gas levels because there is a transfer of energy between gas
tank levels and gas gauges.

More specific to semantic theories is the question of the “specialness” of the relation
between the referents and the vehicles. Notably, both the referents, r, and the vehicles, v,
can be measured in their own relevant units (i.e., the decoded alphabet and encoded alpha-
bet, respectively). Many aspects of the relation between two such measurable quantities
is determined by their joint probability distribution, p(r,v). This distribution can be used
to determine to what degree the quantities are statistically dependent. If two quantities are
dependent, then there is some relation or other between changes in one and changes in 
the other. A good way to quantify the degree of statistical dependence is to rely on a meas-
ure called “mutual information.” As a result, I use the two terms interchangeably7.

In fact, I think that mutual information is precisely the quantity we need to under-
write referent (and content) claims. Specifically, let me propose a preliminary version
of the “statistical dependence hypothesis:”

The referent of a vehicle is the set of causes that has the highest statistical dependence with the vehi-
cle under all stimulus conditions.

This hypothesis makes two important assertions: (1) the highest statistical depend-
ency picks out referents; and (2) referents are causes, i.e., they have an energy transfer
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with the relevant vehicles. Cause plays a central role here as it rules out “accidental”
statistical dependencies (e.g., the clock on the Peace Tower striking 12 and my going to
lunch in Montreal). In general, statistical dependencies are too weak to properly under-
write a theory of content on their own.

Despite incorporating causes, this preliminary version of the hypothesis is still inad-
equate. In particular, it results in a kind of solipsism. This is because the highest
dependency of any given vehicle is probably with another vehicle that transfers energy
to it, not with something in the external world.

Fortunately, this is a rather artificial problem. Theories of representation are pre-
cisely theories that describe the relation between a representational system and what it
represents. As a result, my previous identification of the system can be invoked here to
limit the application of the statistical dependence hypothesis. That is, we only apply
such a referent-determining rule external to the system. This results in a modified, and
final, version of the statistical dependence hypothesis:

The referent of a vehicle is the set of causes that has the highest statistical dependence with the neu-
ral responses under all stimulus conditions and does not fall under the computational description.

The computational description here refers to the account of neural functioning pro-
vided by the theory of neural representation and computation discussed earlier. This
description is adequate for only the behavior of neurons; that is, the components of the
system.

A remaining concern with this formulation of the statistical dependence hypothesis
pertains to the concept of “stimulus conditions.” There are a number of options for deal-
ing with stimulus conditions, but let me just consider one here: appeal to other scien-
tific theories to individuate stimulus conditions. Thus, stimulus conditions change if
any physical variable relating the referent and the representation changes. Such vari-
ables include things like distance, illumination, relative velocity, etc. However, this def-
inition makes it difficult to distinguish incremental changes in these more intuitive
stimulus condition variables from incremental changes in variables that specify the
physical properties of the referent itself. This is not a problem for the theory I have pre-
sented, although it may be a problem for determining what the referent is (i.e., in
answering the question “is it a dog or a cat?”). Some such “stimulus conditions” would
be difficult to realize because we cannot construct “dogcats.” That is, we cannot
“morph” dogs into cats in the real world. This may limit our ability to systematically
examine “all possible” stimulus conditions. Although this may initially seem problem-
atic, the real-world development of an animal’s conceptual categories would also be so
limited – so it may not be a hindrance after all.

3.2.4. Content

Recall that I take content to be the properties ascribed to a referent by a vehicle. Recall
as well that the theory of neural representation outlined earlier can be expected to 
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play a central role in content determination. However, as discussed, it does not by itself 
tell us how to make content ascriptions. This is because it is strictly a theoretical or
computational description of the functioning of neural systems. In order to inform 
the theory of content, this computational description needs to be related to a semantic
one.

Recall that a neural representation is defined by identifying an encoding and decod-
ing process. Previously, I mentioned that there are methods for finding the representa-
tional decoder that allow very good reproduction of the encoded signal. In other words,
the decoder tells us how to relate the neural signal to the encoded signal, which means
it tells us what properties of the encoded signal are “saved” by the neural signal. This
in turn tells us which properties are ascribed to a referent by neural activity.

So content is determined by the decoders. But how are the decoders determined?
Simply put, they are found by minimizing the difference (an “error” or “energy”)
between the signals being represented and the decoded neural activities over all repre-
sented input signals. This tells us that the decoders depend on the relation between two
things: (1) the signals to be represented, s; and (2) the neural activities, or response, r.
The response, r, is the activity of a vehicle, and the signals, s, are the referent8.

In effect, then, the decoders describe a rule that determines what properties the cur-
rent neural activities in a population of neurons ascribe to the current referent of the
population. That rule is determined by examining the statistical dependence the vehicle
has with a referent over all stimulus conditions.

This description of content highlights an important distinction between two kinds of
content, what I will call “occurrent” content and “conceptual” content. The former
applies to current neural activity and the current referent, under the current stimulus con-
ditions. The latter applies to the determination of the decoders, over all stimulus condi-
tions. Noticing this difference makes it clear that the statistical dependence hypothesis is
applicable for the determination of conceptual content. To extend this application to
occurrent content, let me suggest the following corollary:

The occurrent referent of a vehicle is the set of causes that has the highest statistical dependence with
the neural responses under the stimulus conditions in which it occurs.

Thus, the process of content determination stays the same, but referent determina-
tion varies across these two kinds of content. I will revisit this distinction in more detail
in my account of misrepresentation. For now, it merely needs to be clear that the statis-
tical dependence that holds over all stimulus conditions can be quite different from that
that holds under a particular subset of those stimulus conditions. According to this the-
ory, such a difference in statistical dependence results in a difference in referent. The
properties ascribed (i.e., occurrent content) to such a referent by neural activity are
determined by the decoders, which are themselves determined by property ascriptions
under all stimulus conditions (conceptual content).
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3.3. Discussion

Because statistical dependence plays such an important role in this theory, it is worth-
while discussing it in more detail. Adopting statistical dependence as a means of refer-
ent determination has a number of beneficial consequences. First, statistical
dependence comes in degrees. The highest dependence of one vehicle with its referent
may be higher than the highest dependence of another vehicle with its referent. The
strength of the dependence maps nicely onto the precision of the representation in ques-
tion. If, for example, the occurrent dependence of my representation of a dog’s position
with the dog’s actual position is nearly perfect (which means any changes in my rela-
tion to the dog are reflected in changes in the contents of my vehicle), we know that my
representation is precise.

A second benefit of using statistical dependence is that it can help minimize our
reliance on intuitions about what is represented by cognitive systems. In other words, it
provides a means of systematically examining the features of the environment on which
the vehicle is statistically dependent; we will be in a position to discover, not stipulate,
what the referent of the vehicle is. In other words, it helps relieve us of our linguistic
bias, which has informed most past theories of categorization.

If we have a set of neurons that we believe to be a vehicle, we can explicitly con-
struct the joint probability histogram between those neurons and features of the envi-
ronment and thus discover the referent of that vehicle. In other words, we can test our
hypotheses about possible vehicles. If we suppose that a certain set of neurons acts as
a “dog” vehicle, we can test that hypothesis by seeing how statistically dependent the
vehicle and referent are. If they have no dependencies, or have better dependencies with
other vehicles or referents, our hypothesis about the nature of the vehicle will change.
The converse may occur as well: what we take to be good referents will help us deter-
mine vehicles. These methodologies are complementary and serve to give us a good
idea of what vehicles and referents there are. What is most important is that this theory
allows us to make discoveries; no doubt we will be surprised by some of the things bio-
logical systems depend on for representing the environment.

The last consequence of adopting statistical dependence I will discuss is a subtler
one. Because referents are related to higher-level vehicles by statistical dependencies,
our identification of referents and of higher-level vehicles is mutually dependent.
Furthermore, referents help determine contents, so contents depend on referents as well.
Therefore, content depends on properties of vehicles. This should not be too surprising.
If you know all there is to know about a vehicle, you will know its possible content.
This is not to say that the vehicles we discover will determine content; rather, they will
constrain possible content. Psychophysics, for example, tells us that there are certain
dynamic ranges over which our retinal cells can encode brightness. Outside of those
ranges, differences in intensity are indistinguishable; that is a fact about physiology. If
the vehicles cannot carry such differences in intensity, then those differences cannot be
used by the system to react to the environment; consequently, those vehicles cannot
carry content about those differences.
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What this means, then, is that vehicles and contents are not independent. In a more
traditional turn of phrase: syntax and semantics are not independent9. The stuff that car-
ries meaning (syntax/vehicles) also helps to determine meaning (semantics/content). As
powerful as natural languages are, they are stuck with certain vehicles. There are con-
tents that these vehicles carry well and there are contents they do not carry well. A fix-
ation on language for understanding categorization is likely to bias our consideration of
possible categories, potentially blocking the route to a successful theory.

4. Misrepresentation

Dretske (1995) notes that the problem of misrepresentation is above all the problem of
explaining how we assign the wrong properties to an object [Dretske (1994) p. 472,
(1995)]. This is the same as what Fodor (1987) calls the “disjunction problem.” It is the
problem of explaining how a representation can assign a specific set of properties to a
referent even though the representation can be caused by a disjunction of referents that
do not all have those properties. For example, according to a naive causal theory if my
“dog” vehicle is caused by a cat under some circumstances, that should mean that the
vehicle is actually a “dog or cat” vehicle (since it can be caused by either). So the prob-
lem is how do I explain ascribing the property “dog” to a cat in certain cases (rather
than just tokening a disjunctive vehicle)? How, in other words, can I explain when my
categorizing a cat as a dog is a mistake. In this section, I address this problem and show
how the theory I have presented can avoid it.

Philosophers tend to presume that cases of representing fall into one of two cate-
gories: right or wrong. This, it seems to me, is a mistake. Dretske (1994 p. 472), for
example, defines misrepresentation as saying of something that does not have a given
property, that it has that property; for example, saying that a black dog is brown. In
other words, misrepresentation is representing one thing (a black dog) as another (a
brown dog). Unfortunately, under a strict application of this definition, it is not clear
that we ever get anything right – that we ever represent.

Consider my representing a black dog standing in front of me. Suppose that after 3
min the dog is removed from my sight. I would then be able to answer all sorts of ques-
tions about its shape, size, length, etc., based solely on my representation of the dog.
However, each of my answers would be inaccurate in some way. Consider the line of
questioning: What color was the dog? Answer: Black. Dark or light black? Answer:
Dark black. This color (showing a color swatch)? Or this color (another swatch)? etc.
There is little doubt that I would eventually answer incorrectly. Does that mean that I
am attributing to this dog a property it does not have (i.e., a certain shade of black)? Yes,
it does. Does it mean that we should say I am misrepresenting the dog? According to
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Dretske’s definition it does, but I think that such an answer is overly hasty. In order to
say why, consider some elementary distinctions in measurement theory.

Measurements are said to be accurate if they are near the right value. If I measure
darkness and get the right answer, I have made an accurate measurement.
Measurements are said to be precise if they are reproducible. If I measure the darkness
of a color swatch over and over again, and get the same answer every time, I am mak-
ing precise measurements of darkness. If my measurements are precise and accurate,
they are said to be exact. Notably, precision is a property of a set of measurements,
while accuracy is a property of a single measurement. But we can define the accuracy
of a set of measurements as the average nearness to the right value. In statistical terms,
precision is measured by the variance of a set of measurements, while accuracy is the
difference between the average measurement and the correct answer.

What the line of questioning above is doing, is probing the representer with increas-
ing degrees of precision. Although the representer may be perfectly accurate at one
degree of precision (black versus white) the representer may be inaccurate at another
(one color swatch versus another). Neural representations have a limited degree of pre-
cision; only about three bits of information are transmitted per spike [Rieke et al.
(1997)]. So we should not be surprised that we will eventually misascribe properties; it
is not possible to be consistently accurate to a degree of precision greater than our
“measuring device” can provide.

What is important here is that representations are best characterized as “better” or
“worse,” not “right” or “wrong.” “Better” means high accuracy with high degrees of pre-
cision. “Worse” means low accuracy with low degrees of precision. We may want to make
“right” and “wrong” claims at a given level of precision, but in doing so we would have
to make an argument as to why being below some standard of accuracy at a given preci-
sion is a good criterion for making this distinction. Dretske’s definition clearly does noth-
ing of the sort. Using the term “misrepresentation” to divide representations into two
groups obscures important subtleties of representation. We will have a more general
understanding of misrepresentation (i.e., one that does not depend on choosing particular
standards and can account for degrees of deviation from any given standard), if we accept
that representations come in degrees, i.e., that they lie on a continuum from good to bad.

The preceding discussion lays the groundwork for addressing Fodor’s disjunction
problem head on. The challenge of the disjunction problem, then, is to explain how my
representation of something (a cat) could mean to me that it had some property (the
property of being a dog) even though it was caused by something that I would say did
not have that property (a cat). The solution is that we can explain this case of misrep-
resentation by a careful application of the statistical dependence hypothesis. More
specifically, we can notice that the hypothesis and its corollary give different answers.
In particular, under all stimulus conditions, this vehicle has the highest statistical
dependency with dogs even though, under this condition, this vehicle has the highest
dependency with a cat.

But, does this really solve the disjunction problem? Will it not be the case that the high-
est statistical dependency holds between dogs-or-this-cat under all stimulus conditions?
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In fact, no. This cat under all stimulus conditions will not have a high statistical depend-
ency with my “dog” vehicle; it will have the highest dependency with my “cat” vehicle.
It is only under this stimulus condition that it has a high statistical dependency with my
“dog” vehicle. In other words, because there is another vehicle (the “cat” vehicle) that has
a higher dependency with this referent under all stimulus conditions, it cannot be this
vehicle (the “dog” vehicle) that has this cat as its referent. Note also that this solution is
possible because the notion of representation/misrepresentation is a graded one.

We can introduce a further variant in order to try to preserve the disjunction prob-
lem. That is, perhaps the problem is that my vehicle has the highest statistical depend-
ence with dogs-or-this-cat-under-these-conditions. Luckily, this disjunction can be
ruled out because it includes a specification of stimulus conditions. We cannot find a
dependence between a vehicle and something-under-a-stimulus-condition under all
stimulus conditions since most of the stimulus conditions are ruled out by such a char-
acterization. It would be self-contradictory to try and determine such a dependency.
Thus, I take it that the account I have given of content determination can satisfactorily
account for misrepresentation.

5. Conclusion

The theory of mental meaning I have presented begins with considerations of represen-
tation in neural systems. For this reason, I have called it a theory of neurosemantics.
However, because I have identified explicit relations between neural and higher-level
representations, I take the theory to be applicable to the more traditional problems of
psychosemantics. I have shown how the referent relation, and the statistical dependence
hypothesis on which it relies, can be used to address at least one such problem, that of
misrepresentation. There are, of course, many issues which I have not addressed in this
paper, but I take this kind of initial success to bode well for neurosemantics in general.

Finally, the fact that I have successfully adopted a neuroscientific view of the problem
of naturalizing semantics demonstrates that, indeed, the “neuron-by-neuron” account so
scorned by Lycan and others may turn out to be the most fruitful one. The irony that try-
ing to understand categorization often requires us to divest ourselves of our own cherished
categories can best be embraced by the adoption of quantitative tools applied to charac-
terizations of the system we are trying to understand. At the moment, neuroscience (com-
bined with engineering), more than linguistics, philosophy, or psychology, provides the
kinds of descriptions of cognitive systems that can inform such a characterization. Getting
to the heart of categorization is a matter of properly understanding the biological imple-
mentation of cognitive systems: once again, the devil is in the details.
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